BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Knaepen K, Mierau A, Swinnen E, Fernandez Tellez H, Michielsen M, Kerckhofs E, Lefeber D, Meeusen R. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking? PLoS One 2015;10:e0140626. [PMID: 26485148 DOI: 10.1371/journal.pone.0140626] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Bonnal J, Monnet F, Le BT, Pila O, Grosmaire AG, Ozsancak C, Duret C, Auzou P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). Sensors (Basel) 2022;22:5542. [PMID: 35898041 DOI: 10.3390/s22155542] [Reference Citation Analysis]
2 Chen S, Kang J, Peng C, Hsu C, Lin Y, Lai C. Adjustable Parameters and the Effectiveness of Adjunct Robot-Assisted Gait Training in Individuals with Chronic Stroke. IJERPH 2022;19:8186. [DOI: 10.3390/ijerph19138186] [Reference Citation Analysis]
3 Shin J, Yang S, Park C, Lee Y, You SJH. Comparative effects of passive and active mode robot-assisted gait training on brain and muscular activities in sub-acute and chronic stroke. NeuroRehabilitation 2022. [PMID: 35311717 DOI: 10.3233/NRE-210304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Stuart S, Wagner J, Makeig S, Mancini M. Brain Activity Response to Visual Cues for Gait Impairment in Parkinson's Disease: An EEG Study. Neurorehabil Neural Repair 2021;35:996-1009. [PMID: 34505536 DOI: 10.1177/15459683211041317] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
5 Di Marco R, Rubega M, Lennon O, Formaggio E, Sutaj N, Dazzi G, Venturin C, Bonini I, Ortner R, Cerrel Bazo HA, Tonin L, Tortora S, Masiero S, Del Felice A, On Behalf Of The Pro Gait Consortium. Experimental Protocol to Assess Neuromuscular Plasticity Induced by an Exoskeleton Training Session. Methods Protoc 2021;4:48. [PMID: 34287357 DOI: 10.3390/mps4030048] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Maggio MG, Naro A, Manuli A, Maresca G, Balletta T, Latella D, De Luca R, Calabrò RS. Effects of Robotic Neurorehabilitation on Body Representation in Individuals with Stroke: A Preliminary Study Focusing on an EEG-Based Approach. Brain Topogr 2021;34:348-62. [PMID: 33661430 DOI: 10.1007/s10548-021-00825-5] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
7 Koo KI, Hwang CH. Five-day rehabilitation of patients undergoing total knee arthroplasty using an end-effector gait robot as a neuromodulation blending tool for deafferentation, weight offloading and stereotyped movement: Interim analysis. PLoS One 2020;15:e0241117. [PMID: 33326434 DOI: 10.1371/journal.pone.0241117] [Reference Citation Analysis]
8 Liu Q, Zuo J, Zhu C, Xie SQ. Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art. Future Generation Computer Systems 2020;113:620-34. [DOI: 10.1016/j.future.2020.06.046] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
9 Xue T, Wang W, Ma J, Liu W, Pan Z, Han M. Progress and Prospects of Multimodal Fusion Methods in Physical Human–Robot Interaction: A Review. IEEE Sensors J 2020;20:10355-70. [DOI: 10.1109/jsen.2020.2995271] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Berger A, Horst F, Steinberg F, Thomas F, Müller-Eising C, Schöllhorn WI, Doppelmayr M. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people. J Neuroeng Rehabil 2019;16:161. [PMID: 31882008 DOI: 10.1186/s12984-019-0636-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
11 Contreras-Vidal JL, Bortole M, Zhu F, Nathan K, Venkatakrishnan A, Francisco GE, Soto R, Pons JL. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. Am J Phys Med Rehabil 2018;97:541-50. [PMID: 29481376 DOI: 10.1097/PHM.0000000000000914] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
12 Berger A, Horst F, Müller S, Steinberg F, Doppelmayr M. Current State and Future Prospects of EEG and fNIRS in Robot-Assisted Gait Rehabilitation: A Brief Review. Front Hum Neurosci 2019;13:172. [PMID: 31231200 DOI: 10.3389/fnhum.2019.00172] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
13 Burwell SJ, Makeig S, Iacono WG, Malone SM. Reduced premovement positivity during the stimulus-response interval precedes errors: Using single-trial and regression ERPs to understand performance deficits in ADHD. Psychophysiology 2019;56:e13392. [PMID: 31081153 DOI: 10.1111/psyp.13392] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
14 Vova JA, Eggebrecht EM. Utilizing Functional Electrical Stimulation and Exoskeletons in Pediatrics: a Closer Look at Their Roles in Gait and Functional Changes in Cerebral Palsy. Curr Phys Med Rehabil Rep 2019;7:57-66. [DOI: 10.1007/s40141-019-00215-w] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 van Kammen K, Boonstra AM, van der Woude LHV, Visscher C, Reinders-messelink HA, den Otter R. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disability and Rehabilitation 2020;42:2977-85. [DOI: 10.1080/09638288.2019.1579259] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
16 Peña GG, Consoni LJ, dos Santos WM, Siqueira AA. Feasibility of an optimal EMG-driven adaptive impedance control applied to an active knee orthosis. Robotics and Autonomous Systems 2019;112:98-108. [DOI: 10.1016/j.robot.2018.11.011] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
17 Mikolajczyk T, Ciobanu I, Badea DI, Iliescu A, Pizzamiglio S, Schauer T, Seel T, Seiciu PL, Turner DL, Berteanu M. Advanced technology for gait rehabilitation: An overview. Advances in Mechanical Engineering 2018;10:168781401878362. [DOI: 10.1177/1687814018783627] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 7.8] [Reference Citation Analysis]
18 Roeder L, Boonstra TW, Smith SS, Kerr GK. Dynamics of corticospinal motor control during overground and treadmill walking in humans. J Neurophysiol 2018;120:1017-31. [PMID: 29847229 DOI: 10.1152/jn.00613.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
19 Abedi M, Moghaddam MM, Fallah D. A Poincare map based analysis of stroke patients' walking after a rehabilitation by a robot. Math Biosci 2018;299:73-84. [PMID: 29518402 DOI: 10.1016/j.mbs.2018.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
20 Fundarò C, Giardini A, Maestri R, Traversoni S, Bartolo M, Casale R. Motor and psychosocial impact of robot-assisted gait training in a real-world rehabilitation setting: A pilot study. PLoS One 2018;13:e0191894. [PMID: 29444172 DOI: 10.1371/journal.pone.0191894] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
21 Cherni Y, Begon M, Chababe H, Moissenet F. Use of electromyography to optimize Lokomat ® settings for subject-specific gait rehabilitation in post-stroke hemiparetic patients: A proof-of-concept study. Neurophysiologie Clinique/Clinical Neurophysiology 2017;47:293-9. [DOI: 10.1016/j.neucli.2017.01.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
22 Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La Rosa G, Bramanti A, Bramanti P. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil 2017;14:53. [PMID: 28592282 DOI: 10.1186/s12984-017-0268-4] [Cited by in Crossref: 79] [Cited by in F6Publishing: 78] [Article Influence: 15.8] [Reference Citation Analysis]
23 Dierick F, Dehas M, Isambert JL, Injeyan S, Bouché AF, Bleyenheuft Y, Portnoy S. Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy? PLoS One 2017;12:e0178636. [PMID: 28575054 DOI: 10.1371/journal.pone.0178636] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
24 van Kammen K, Boonstra AM, van der Woude LH, Reinders-Messelink HA, den Otter R. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat. Clin Biomech (Bristol, Avon). 2016;36:65-73. [PMID: 27214248 DOI: 10.1016/j.clinbiomech.2016.04.013] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]