BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang M, Gao Y, Caja K, Zhao B, Kim JA. Non-viral nanoparticle delivers small interfering RNA to macrophages in vitro and in vivo. PLoS One 2015;10:e0118472. [PMID: 25799489 DOI: 10.1371/journal.pone.0118472] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Ezra Manicum A, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2022;71:103288. [DOI: 10.1016/j.jddst.2022.103288] [Reference Citation Analysis]
2 Siddiqui L, Mahtab A, Rabbani SA, Verma A, Talegaonkar S. Polymeric Nanoparticles-Assisted Macrophage Targeting: Basic Concepts and Therapeutic Goals. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_6] [Reference Citation Analysis]
3 Kaushal D, Gupta S, Pathak YV. Delivery of siRNA to Macrophages: Challenges and Opportunities. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_21] [Reference Citation Analysis]
4 Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021;22:7239. [PMID: 34281293 DOI: 10.3390/ijms22137239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
5 Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS. Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opinion on Drug Delivery 2021;18:1047-66. [DOI: 10.1080/17425247.2021.1879790] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
6 Fiani ML, Barreca V, Sargiacomo M, Ferrantelli F, Manfredi F, Federico M. Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. Int J Mol Sci 2020;21:E6318. [PMID: 32878276 DOI: 10.3390/ijms21176318] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
7 Xing L, Chang X, Shen L, Zhang C, Fan Y, Cho C, Zhang Z, Jiang H. Progress in drug delivery system for fibrosis therapy. Asian J Pharm Sci 2021;16:47-61. [PMID: 33613729 DOI: 10.1016/j.ajps.2020.06.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
8 Abdalla AME, Xiao L, Miao Y, Huang L, Fadlallah GM, Gauthier M, Ouyang C, Yang G. Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. Adv Sci (Weinh) 2020;7:1903164. [PMID: 32440473 DOI: 10.1002/advs.201903164] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
9 Gaspar N, Zambito G, Löwik CMWG, Mezzanotte L. Active Nano-targeting of Macrophages. Curr Pharm Des 2019;25:1951-61. [PMID: 31291874 DOI: 10.2174/1381612825666190710114108] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
10 Zins K, Abraham D. Cancer Immunotherapy: Targeting Tumor-Associated Macrophages by Gene Silencing. Methods Mol Biol 2020;2115:289-325. [PMID: 32006408 DOI: 10.1007/978-1-0716-0290-4_17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
11 Geller A, Shrestha R, Yan J. Yeast-Derived β-Glucan in Cancer: Novel Uses of a Traditional Therapeutic. Int J Mol Sci 2019;20:E3618. [PMID: 31344853 DOI: 10.3390/ijms20153618] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
12 Harrison EB, Azam SH, Pecot CV. Targeting Accessories to the Crime: Nanoparticle Nucleic Acid Delivery to the Tumor Microenvironment. Front Pharmacol 2018;9:307. [PMID: 29670528 DOI: 10.3389/fphar.2018.00307] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
13 Gao Y. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications. J Funct Biomater 2018;9:E16. [PMID: 29415438 DOI: 10.3390/jfb9010016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
14 Lin T, Jämsen E, Lu L, Nathan K, Pajarinen J, Goodman SB. Modulating Innate Inflammatory Reactions in the Application of Orthopedic Biomaterials. Orthopedic Biomaterials 2018. [DOI: 10.1007/978-3-319-89542-0_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Binnemars-Postma K, Storm G, Prakash J. Nanomedicine Strategies to Target Tumor-Associated Macrophages. Int J Mol Sci 2017;18:E979. [PMID: 28471401 DOI: 10.3390/ijms18050979] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 10.5] [Reference Citation Analysis]
16 Belgiovine C, D'Incalci M, Allavena P, Frapolli R. Tumor-associated macrophages and anti-tumor therapies: complex links. Cell Mol Life Sci 2016;73:2411-24. [PMID: 26956893 DOI: 10.1007/s00018-016-2166-5] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 9.1] [Reference Citation Analysis]
17 Alvarez MM, Liu JC, Trujillo-de Santiago G, Cha BH, Vishwakarma A, Ghaemmaghami AM, Khademhosseini A. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications. J Control Release 2016;240:349-63. [PMID: 26778695 DOI: 10.1016/j.jconrel.2016.01.026] [Cited by in Crossref: 132] [Cited by in F6Publishing: 135] [Article Influence: 18.9] [Reference Citation Analysis]