BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao B, Bian X, Mahbub R, Lu K. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environ Health Perspect 2017;125:198-206. [PMID: 27203275 DOI: 10.1289/EHP202] [Cited by in Crossref: 67] [Cited by in F6Publishing: 31] [Article Influence: 11.2] [Reference Citation Analysis]
Number Citing Articles
1 Konkel L. What Is Your Gut Telling You? Exploring the Role of the Microbiome in Gut-Brain Signaling. Environ Health Perspect 2018;126:062001. [PMID: 29883071 DOI: 10.1289/EHP3127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Chi H, Cao W, Zhang M, Su D, Yang H, Li Z, Li C, She X, Wang K, Gao X, Ma K, Zheng P, Li X, Cui B. Environmental noise stress disturbs commensal microbiota homeostasis and induces oxi-inflammmation and AD-like neuropathology through epithelial barrier disruption in the EOAD mouse model. J Neuroinflammation 2021;18:9. [PMID: 33407614 DOI: 10.1186/s12974-020-02053-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
3 Hampl R, Stárka L. Endocrine disruptors and gut microbiome interactions.Physiol Res. 2020;69:S211-S223. [PMID: 33094620 DOI: 10.33549/physiolres.934513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’amato M, Wang DQ, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2022;10:83. [DOI: 10.3390/biomedicines10010083] [Reference Citation Analysis]
5 Guo J, Zhao Y, Jiang X, Li R, Xie H, Ge L, Xie B, Yang X, Zhang L. Exposure to Formaldehyde Perturbs the Mouse Gut Microbiome. Genes (Basel) 2018;9:E192. [PMID: 29614050 DOI: 10.3390/genes9040192] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
6 Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2020.1828263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Gao B, Tu P, Bian X, Chi L, Ru H, Lu K. Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes. BMC Pharmacol Toxicol 2017;18:46. [PMID: 28606169 DOI: 10.1186/s40360-017-0150-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
8 Tu P, Bian X, Chi L, Gao B, Ru H, Knobloch TJ, Weghorst CM, Lu K. Characterization of the Functional Changes in Mouse Gut Microbiome Associated with Increased Akkermansia muciniphila Population Modulated by Dietary Black Raspberries. ACS Omega 2018;3:10927-37. [PMID: 30288460 DOI: 10.1021/acsomega.8b00064] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
9 Duan C, Kuang L, Xiang X, Zhang J, Zhu Y, Wu Y, Yan Q, Liu L, Li T. Activated Drp1-mediated mitochondrial ROS influence the gut microbiome and intestinal barrier after hemorrhagic shock. Aging (Albany NY) 2020;12:1397-416. [PMID: 31954373 DOI: 10.18632/aging.102690] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
10 Lai Y, Dhingra R, Zhang Z, Ball LM, Zylka MJ, Lu K. Toward Elucidating the Human Gut Microbiota-Brain Axis: Molecules, Biochemistry, and Implications for Health and Diseases. Biochemistry 2021. [PMID: 34910469 DOI: 10.1021/acs.biochem.1c00656] [Reference Citation Analysis]
11 Beaudry MS, Wang J, Kieran TJ, Thomas J, Bayona-Vásquez NJ, Gao B, Devault A, Brunelle B, Lu K, Wang JS, Rhodes OE Jr, Glenn TC. Improved Microbial Community Characterization of 16S rRNA via Metagenome Hybridization Capture Enrichment. Front Microbiol 2021;12:644662. [PMID: 33986735 DOI: 10.3389/fmicb.2021.644662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Dempsey JL, Little M, Cui JY. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 2019;75:41-69. [PMID: 31454513 DOI: 10.1016/j.neuro.2019.08.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
13 Di Ciaula A, Baj J, Garruti G, Celano G, De Angelis M, Wang HH, Di Palo DM, Bonfrate L, Wang DQ, Portincasa P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J Clin Med 2020;9:E2648. [PMID: 32823983 DOI: 10.3390/jcm9082648] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
14 Aguilera M, Gálvez-Ontiveros Y, Rivas A. Endobolome, a New Concept for Determining the Influence of Microbiota Disrupting Chemicals (MDC) in Relation to Specific Endocrine Pathogenesis. Front Microbiol 2020;11:578007. [PMID: 33329442 DOI: 10.3389/fmicb.2020.578007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
15 Tu P, Gao B, Chi L, Lai Y, Bian X, Ru H, Lu K. Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Sci Rep 2019;9:4363. [PMID: 30867497 DOI: 10.1038/s41598-019-40776-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
16 Sevim Ç, Kara M. Can probiotics win the battle against environmental endocrine disruptors? Arhiv za farmaciju 2021;71:565-80. [DOI: 10.5937/arhfarm71-34237] [Reference Citation Analysis]
17 Chen H, Ritz B. The Search for Environmental Causes of Parkinson's Disease: Moving Forward. J Parkinsons Dis 2018;8:S9-S17. [PMID: 30584168 DOI: 10.3233/JPD-181493] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 9.3] [Reference Citation Analysis]
18 Wu F, Chi L, Ru H, Parvez F, Slavkovich V, Eunus M, Ahmed A, Islam T, Rakibuz-Zaman M, Hasan R, Sarwar G, Graziano JH, Ahsan H, Lu K, Chen Y. Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. Environ Health Perspect 2018;126:017005. [PMID: 29329102 DOI: 10.1289/EHP1992] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Tu P, Chi L, Bodnar W, Zhang Z, Gao B, Bian X, Stewart J, Fry R, Lu K. Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics 2020;8:E19. [PMID: 32178396 DOI: 10.3390/toxics8010019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
20 Chi L, Gao B, Bian X, Tu P, Ru H, Lu K. Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicol Appl Pharmacol 2017;331:142-53. [PMID: 28610994 DOI: 10.1016/j.taap.2017.06.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
21 Chen Q, Kong Q, Tian P, He Y, Zhao J, Zhang H, Wang G, Chen W. Lactic acid bacteria alleviate di-(2-ethylhexyl) phthalate-induced liver and testis toxicity via their bio-binding capacity, antioxidant capacity and regulation of the gut microbiota. Environ Pollut 2022;:119197. [PMID: 35378196 DOI: 10.1016/j.envpol.2022.119197] [Reference Citation Analysis]
22 Chi L, Tu P, Ru H, Lu K. Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes 2021;13:1921912. [PMID: 34313531 DOI: 10.1080/19490976.2021.1921912] [Reference Citation Analysis]
23 Yang K, Xu M, Cao J, Zhu Q, Rahman M, Holmén BA, Fukagawa NK, Zhu J. Ultrafine particles altered gut microbial population and metabolic profiles in a sex-specific manner in an obese mouse model. Sci Rep 2021;11:6906. [PMID: 33767227 DOI: 10.1038/s41598-021-85784-4] [Reference Citation Analysis]
24 Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell. 2016;167:1469-1480.e12. [PMID: 27912057 DOI: 10.1016/j.cell.2016.11.018] [Cited by in Crossref: 1264] [Cited by in F6Publishing: 1153] [Article Influence: 252.8] [Reference Citation Analysis]
25 Chiu K, Warner G, Nowak RA, Flaws JA, Mei W. The Impact of Environmental Chemicals on the Gut Microbiome. Toxicol Sci 2020;176:253-84. [PMID: 32392306 DOI: 10.1093/toxsci/kfaa065] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
26 Gálvez-Ontiveros Y, Páez S, Monteagudo C, Rivas A. Endocrine Disruptors in Food: Impact on Gut Microbiota and Metabolic Diseases. Nutrients 2020;12:E1158. [PMID: 32326280 DOI: 10.3390/nu12041158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
27 Onaru K, Ohno S, Kubo S, Nakanishi S, Hirano T, Mantani Y, Yokoyama T, Hoshi N. Immunotoxicity evaluation by subchronic oral administration of clothianidin in Sprague-Dawley rats. J Vet Med Sci 2020;82:360-72. [PMID: 31983703 DOI: 10.1292/jvms.19-0689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
28 Smith A, Yu X, Yin L. Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes. Pestic Biochem Physiol 2018;150:48-58. [PMID: 30195387 DOI: 10.1016/j.pestbp.2018.07.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
29 Costa LG. Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol Sci 2018;162:24-35. [PMID: 29228398 DOI: 10.1093/toxsci/kfx266] [Cited by in Crossref: 68] [Cited by in F6Publishing: 56] [Article Influence: 22.7] [Reference Citation Analysis]
30 Iszatt N, Janssen S, Lenters V, Dahl C, Stigum H, Knight R, Mandal S, Peddada S, González A, Midtvedt T, Eggesbø M. Environmental toxicants in breast milk of Norwegian mothers and gut bacteria composition and metabolites in their infants at 1 month. Microbiome 2019;7:34. [PMID: 30813950 DOI: 10.1186/s40168-019-0645-2] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 15.0] [Reference Citation Analysis]
31 Yang X, Qian Y, Xu S, Song Y, Xiao Q. Longitudinal Analysis of Fecal Microbiome and Pathologic Processes in a Rotenone Induced Mice Model of Parkinson's Disease. Front Aging Neurosci 2017;9:441. [PMID: 29358918 DOI: 10.3389/fnagi.2017.00441] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
32 Stanaway IB, Wallace JC, Shojaie A, Griffith WC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, McLean JS, Thompson B, Faustman EM. Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Appl Environ Microbiol 2017;83:e02149-16. [PMID: 27836847 DOI: 10.1128/AEM.02149-16] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
33 Sobol CV. Role of Microbiota in Neurodegenerative Diseases. Russ J Dev Biol 2018;49:297-313. [DOI: 10.1134/s1062360418060061] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Ortiz P, Torres-sánchez A, López-moreno A, Cerk K, Ruiz-moreno Á, Monteoliva-sánchez M, Ampatzoglou A, Aguilera M, Gruszecka-kosowska A. Impact of Cumulative Environmental and Dietary Xenobiotics on Human Microbiota: Risk Assessment for One Health. JoX 2022;12:56-63. [DOI: 10.3390/jox12010006] [Reference Citation Analysis]
35 Song Q, Zhu Z. Using Cordyceps militaris extracellular polysaccharides to prevent Pb2+-induced liver and kidney toxicity by activating Nrf2 signals and modulating gut microbiota. Food Funct 2020;11:9226-39. [PMID: 33030475 DOI: 10.1039/d0fo01608j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
36 Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients 2018;11:E22. [PMID: 30577661 DOI: 10.3390/nu11010022] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
37 Ropot AV, Karamzin AM, Sergeyev OV. Cultivation of the Next-Generation Probiotic Akkermansia muciniphila, Methods of Its Safe Delivery to the Intestine, and Factors Contributing to Its Growth In Vivo. Curr Microbiol 2020;77:1363-72. [PMID: 32318863 DOI: 10.1007/s00284-020-01992-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
38 Li M, Liu T, Yang T, Zhu J, Zhou Y, Wang M, Wang Q. Gut microbiota dysbiosis involves in host non-alcoholic fatty liver disease upon pyrethroid pesticide exposure. Environmental Science and Ecotechnology 2022. [DOI: 10.1016/j.ese.2022.100185] [Reference Citation Analysis]
39 Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Front Physiol 2017;8:487. [PMID: 28790923 DOI: 10.3389/fphys.2017.00487] [Cited by in Crossref: 91] [Cited by in F6Publishing: 78] [Article Influence: 18.2] [Reference Citation Analysis]
40 Chi L, Lai Y, Tu P, Liu CW, Xue J, Ru H, Lu K. Lipid and Cholesterol Homeostasis after Arsenic Exposure and Antibiotic Treatment in Mice: Potential Role of the Microbiota. Environ Health Perspect 2019;127:97002. [PMID: 31532247 DOI: 10.1289/EHP4415] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
41 Gao B, Bian X, Chi L, Tu P, Ru H, Lu K. Editor's Highlight: OrganophosphateDiazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicol Sci 2017;157:354-64. [PMID: 28369659 DOI: 10.1093/toxsci/kfx053] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]