BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: King AJ, Teki S, Willmore BDB. Recent advances in understanding the auditory cortex. F1000Res 2018;7:F1000 Faculty Rev-1555. [PMID: 30345008 DOI: 10.12688/f1000research.15580.1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Deere JU, Sarkissian AA, Yang M, Uttley HA, Martinez Santana N, Nguyen L, Ravi K, Devineni AV. Selective integration of diverse taste inputs within a single taste modality. Elife 2023;12. [PMID: 36692370 DOI: 10.7554/eLife.84856] [Reference Citation Analysis]
2 Bonetti L, Carlomagno F, Kliuchko M, Gold B, Palva S, Haumann N, Tervaniemi M, Huotilainen M, Vuust P, Brattico E. Whole-brain computation of cognitive versus acoustic errors in music: A mismatch negativity study. Neuroimage: Reports 2022;2:100145. [DOI: 10.1016/j.ynirp.2022.100145] [Reference Citation Analysis]
3 O'Reilly JA, Angsuwatanakul T, Wehrman J. Decoding violated sensory expectations from the auditory cortex of anaesthetised mice: Hierarchical recurrent neural network depicts separate 'danger' and 'safety' units. Eur J Neurosci 2022. [PMID: 35695993 DOI: 10.1111/ejn.15736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Bonetti L, Carlomagno F, Kliuchko M, Gold B, Palva S, Haumann N, Tervaniemi M, Huotilainen M, Vuust P, Brattico E. Whole-brain computation of cognitive versus acoustic errors in music.. [DOI: 10.1101/2022.05.17.492262] [Reference Citation Analysis]
5 O’reilly JA, Angsuwatanakul T, Wehrman J. Decoding violated sensory expectations from the auditory cortex of anaesthetized mice: Hierarchical recurrent neural network depicts separate ‘danger’ and ‘safety’ units.. [DOI: 10.1101/2022.04.29.490005] [Reference Citation Analysis]
6 Deane KE, Klymentiev R, Heck J, Mark MD, Ohl FW, Heine M, Happel MFK. Inhibiting presynaptic calcium channel mobility in the auditory cortex suppresses synchronized input processing.. [DOI: 10.1101/2022.03.30.486338] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Zhao M, Ren M, Jiang T, Jia X, Wang X, Li A, Li X, Luo Q, Gong H. Whole-Brain Direct Inputs to and Axonal Projections from Excitatory and Inhibitory Neurons in the Mouse Primary Auditory Area. Neurosci Bull . [DOI: 10.1007/s12264-022-00838-5] [Reference Citation Analysis]
8 Deere JU, Uttley HA, Santana NM, Devineni AV. Selective integration of diverse taste inputs within a single taste modality.. [DOI: 10.1101/2022.02.09.479727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yang H, Zhang Y, Wu X, Gan P, Luo X, Zhong S, Zuo W. Effects of Acute Exposure to 3500 MHz (5G) Radiofrequency Electromagnetic Radiation on Anxiety‐Like Behavior and the Auditory Cortex in Guinea Pigs. Bioelectromagnetics. [DOI: 10.1002/bem.22388] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Didoné DD, Oliveira LS, Durante AS, Almeida K, Garcia MV, Riesgo RDS, Sleifer P. Cortical auditory-evoked potential as a biomarker of central auditory maturation in term and preterm infants during the first 3 months. Clinics (Sao Paulo) 2021;76:e2944. [PMID: 34669874 DOI: 10.6061/clinics/2021/e2944] [Reference Citation Analysis]
11 Saldeitis K, Jeschke M, Budinger E, Ohl FW, Happel MFK. Laser-Induced Apoptosis of Corticothalamic Neurons in Layer VI of Auditory Cortex Impact on Cortical Frequency Processing. Front Neural Circuits 2021;15:659280. [PMID: 34322001 DOI: 10.3389/fncir.2021.659280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Huang MX, Huang CW, Harrington DL, Nichols S, Robb-Swan A, Angeles-Quinto A, Le L, Rimmele C, Drake A, Song T, Huang JW, Clifford R, Ji Z, Cheng CK, Lerman I, Yurgil KA, Lee RR, Baker DG. Marked Increases in Resting-State MEG Gamma-Band Activity in Combat-Related Mild Traumatic Brain Injury. Cereb Cortex 2020;30:283-95. [PMID: 31041986 DOI: 10.1093/cercor/bhz087] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
13 Carli S, Chaabane L, Butti C, De Palma C, Aimar P, Salio C, Vignoli A, Giustetto M, Landsberger N, Frasca A. In vivo magnetic resonance spectroscopy in the brain of Cdkl5 null mice reveals a metabolic profile indicative of mitochondrial dysfunctions. J Neurochem 2021;157:1253-69. [PMID: 33448385 DOI: 10.1111/jnc.15300] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Latini F, Trevisi G, Fahlström M, Jemstedt M, Alberius Munkhammar Å, Zetterling M, Hesselager G, Ryttlefors M. New Insights Into the Anatomy, Connectivity and Clinical Implications of the Middle Longitudinal Fasciculus. Front Neuroanat 2020;14:610324. [PMID: 33584207 DOI: 10.3389/fnana.2020.610324] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
15 Li L, Rehr R, Bruns P, Gerkmann T, Röder B. A Survey on Probabilistic Models in Human Perception and Machines. Front Robot AI 2020;7:85. [PMID: 33501252 DOI: 10.3389/frobt.2020.00085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Shamma S, Patel P, Mukherjee S, Marion G, Khalighinejad B, Han C, Herrero J, Bickel S, Mehta A, Mesgarani N. Learning Speech Production and Perception through Sensorimotor Interactions. Cereb Cortex Commun 2021;2:tgaa091. [PMID: 33506209 DOI: 10.1093/texcom/tgaa091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
17 Stoilova VV, Knauer B, Berg S, Rieber E, Jäkel F, Stüttgen MC. Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking. J Neurophysiol 2020;124:1056-71. [PMID: 32845769 DOI: 10.1152/jn.00736.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Banno T, Lestang JH, Cohen YE. Computational and neurophysiological principles underlying auditory perceptual decisions. Curr Opin Physiol 2020;18:20-4. [PMID: 32832744 DOI: 10.1016/j.cophys.2020.07.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
19 Gourévitch B, Martin C, Postal O, Eggermont JJ. Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020;113:507-28. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
20 Formisano E, Hausfeld L. The Dialog of Primary and Non-primary Auditory Cortex at the 'Cocktail Party'. Neuron 2019;104:1029-31. [PMID: 31951534 DOI: 10.1016/j.neuron.2019.11.031] [Reference Citation Analysis]
21 Pecka M, Encke J. Coding of Spatial Information. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24243-0] [Reference Citation Analysis]
22 Malone BJ, Hasenstaub AR, Schreiner CE. Primary Auditory Cortex II. Some Functional Considerations. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24268-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 King AJ. Feedback Systems: Descending Pathways and Adaptive Coding in the Auditory System. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24188-6] [Reference Citation Analysis]
24 Yang Y, Chen QC, Shen JX, Jen PH. Binaural Response Properties and Sensitivity to Interaural Difference of Neurons in the Auditory Cortex of the Big Brown Bat, Eptesicus fuscus. Neuroscience 2020;424:72-85. [PMID: 31785358 DOI: 10.1016/j.neuroscience.2019.11.024] [Reference Citation Analysis]
25 Brunk MGK, Deane KE, Kisse M, Deliano M, Vieweg S, Ohl FW, Lippert MT, Happel MFK. Optogenetic stimulation of the VTA modulates a frequency-specific gain of thalamocortical inputs in infragranular layers of the auditory cortex. Sci Rep 2019;9:20385. [PMID: 31892726 DOI: 10.1038/s41598-019-56926-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
26 Zempeltzi MM, Kisse M, Brunk MGK, Glemser C, Aksit S, Deane KE, Maurya S, Schneider L, Ohl FW, Deliano M, Happel MFK. Task rule and choice are reflected by layer-specific processing in rodent auditory cortical microcircuits.. [DOI: 10.1101/860064] [Reference Citation Analysis]
27 Ogi M, Yamagishi T, Tsukano H, Nishio N, Hishida R, Takahashi K, Horii A, Shibuki K. Associative responses to visual shape stimuli in the mouse auditory cortex. PLoS One 2019;14:e0223242. [PMID: 31581242 DOI: 10.1371/journal.pone.0223242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 van der Heijden K, Rauschecker JP, de Gelder B, Formisano E. Cortical mechanisms of spatial hearing. Nat Rev Neurosci 2019;20:609-23. [PMID: 31467450 DOI: 10.1038/s41583-019-0206-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
29 Lohse M, Bajo VM, King AJ, Willmore BD. Auditory contrast gain control predicts perceptual performance and is not dependent on cortical activity.. [DOI: 10.1101/702506] [Reference Citation Analysis]
30 Levy RB, Marquarding T, Reid AP, Pun CM, Renier N, Oviedo HV. Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat Commun 2019;10:2783. [PMID: 31239458 DOI: 10.1038/s41467-019-10690-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
31 Brunk MGK, Deane KE, Kisse M, Deliano M, Vieweg S, Ohl FW, Lippert MT, Happel MFK. Optogenetic stimulation of the VTA modulates a frequency-specific gain of thalamocortical inputs in infragranular layers of the auditory cortex.. [DOI: 10.1101/669168] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Cartocci G, Scorpecci A, Borghini G, Maglione AG, Inguscio BMS, Giannantonio S, Giorgi A, Malerba P, Rossi D, Modica E, Aricò P, Di Flumeri G, Marsella P, Babiloni F. EEG rhythms lateralization patterns in children with unilateral hearing loss are different from the patterns of normal hearing controls during speech-in-noise listening. Hear Res 2019;379:31-42. [PMID: 31042607 DOI: 10.1016/j.heares.2019.04.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]