BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hubbard L, Malkasian S, Zhao Y, Abbona P, Molloi S. Timing optimization of low-dose first-pass analysis dynamic CT myocardial perfusion measurement: validation in a swine model. Eur Radiol Exp 2019;3:16. [PMID: 30945100 DOI: 10.1186/s41747-019-0093-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Cressoni M, Cozzi A, Schiaffino S, Cadringher P, Vitali P, Basso G, Ippolito D, Sardanelli F. Computation of contrast-enhanced perfusion using only two CT scan phases: a proof-of-concept study on abdominal organs. Eur Radiol Exp 2022;6. [DOI: 10.1186/s41747-022-00292-y] [Reference Citation Analysis]
2 Abbona P, Zhao Y, Hubbard L, Malkasian S, Flynn B, Molloi S. Absolute cerebral blood flow: Assessment with a novel low-radiation-dose dynamic CT perfusion technique in a swine model. J Neuroradiol 2021:S0150-9861(21)00151-6. [PMID: 34634295 DOI: 10.1016/j.neurad.2021.09.003] [Reference Citation Analysis]
3 Avanzo M, Gagliardi V, Stancanello J, Blanck O, Pirrone G, El Naqa I, Revelant A, Sartor G. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Med Phys 2021;48:6257-69. [PMID: 34415574 DOI: 10.1002/mp.15178] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
4 Hubbard L, Malkasian S, Zhao Y, Abbona P, Molloi S. Combining perfusion and angiography with a low-dose cardiac CT technique: a preliminary investigation in a swine model. Int J Cardiovasc Imaging 2021;37:1767-79. [PMID: 33506345 DOI: 10.1007/s10554-020-02130-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Tomizawa N, Chou S, Fujino Y, Matsuoka S, Yamamoto K, Inoh S, Nojo T, Kumamaru KK, Fujimoto S, Nakamura S. Impact of Abnormal Remote Stress Myocardial Blood Flow by Dynamic CT Perfusion on Clinical Outcomes. Sci Rep 2020;10:10244. [DOI: 10.1038/s41598-020-66992-w] [Reference Citation Analysis]
6 Willemink MJ. At the heart of innovation: cardiac imaging in 2019. Eur Radiol 2021;31:11-3. [PMID: 32740812 DOI: 10.1007/s00330-020-07106-y] [Reference Citation Analysis]
7 Assen MV, Vonder M, Pelgrim GJ, Von Knebel Doeberitz PL, Vliegenthart R. Computed tomography for myocardial characterization in ischemic heart disease: a state-of-the-art review. Eur Radiol Exp 2020;4:36. [PMID: 32548777 DOI: 10.1186/s41747-020-00158-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
8 Zhao Y, Hubbard L, Malkasian S, Abbona P, Molloi S. Dynamic pulmonary CT perfusion using first-pass analysis technique with only two volume scans: Validation in a swine model. PLoS One 2020;15:e0228110. [PMID: 32049969 DOI: 10.1371/journal.pone.0228110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hubbard L, Malkasian S, Zhao Y, Abbona P, Kwon J, Molloi S. Low-Radiation-Dose Stress Myocardial Perfusion Measurement Using First-Pass Analysis Dynamic Computed Tomography: A Preliminary Investigation in a Swine Model. Invest Radiol 2019;54:774-80. [PMID: 31633574 DOI: 10.1097/RLI.0000000000000613] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]