BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019;23:20. [PMID: 31832232 DOI: 10.1186/s40824-019-0166-x] [Cited by in Crossref: 296] [Cited by in F6Publishing: 315] [Article Influence: 74.0] [Reference Citation Analysis]
Number Citing Articles
1 Ye J, Liu L, Lan W, Xiong J. Targeted release of soybean peptide from CMC/PVA hydrogels in simulated intestinal fluid and their pharmacokinetics. Carbohydr Polym 2023;310:120713. [PMID: 36925260 DOI: 10.1016/j.carbpol.2023.120713] [Reference Citation Analysis]
2 Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr Polym 2023;309:120666. [PMID: 36906369 DOI: 10.1016/j.carbpol.2023.120666] [Reference Citation Analysis]
3 Kaurav M, Ruhi S, Al-goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023;14. [DOI: 10.3389/fphar.2023.1159131] [Reference Citation Analysis]
4 Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS Omega 2023. [DOI: 10.1021/acsomega.2c06242] [Reference Citation Analysis]
5 Herdiana Y, Wathoni N, Gozali D, Shamsuddin S, Muchtaridi M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023;15:879. [DOI: 10.3390/pharmaceutics15030879] [Reference Citation Analysis]
6 Khalili L, Dehghan G, Fazli A, Khataee A. State-of-the-art advancement of surface functionalized layered double hydroxides for cell-specific targeting of therapeutics. Adv Colloid Interface Sci 2023;314:102869. [PMID: 36933542 DOI: 10.1016/j.cis.2023.102869] [Reference Citation Analysis]
7 Pangeni R, Meng T, Poudel S, Sharma D, Hutsell H, Ma J, Rubin BK, Longest W, Hindle M, Xu Q. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int J Pharm 2023;634:122661. [PMID: 36736964 DOI: 10.1016/j.ijpharm.2023.122661] [Reference Citation Analysis]
8 Sheikhi S, Aliannezhadi M, Tehrani FS. The effect of PEGylation on optical and structural properties of ZnO nanostructures for photocatalyst and photodynamic applications. Materials Today Communications 2023;34:105103. [DOI: 10.1016/j.mtcomm.2022.105103] [Reference Citation Analysis]
9 Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1846. [PMID: 35979879 DOI: 10.1002/wnan.1846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023;18:100779. [PMID: 36845840 DOI: 10.1016/j.ajps.2023.100779] [Reference Citation Analysis]
11 Pathania K, Sah SP, Salunke DB, Jain M, Yadav AK, Yadav VG, Pawar SV. Green synthesis of lignin-based nanoparticles as a bio-carrier for targeted delivery in cancer therapy. Int J Biol Macromol 2023;229:684-95. [PMID: 36603714 DOI: 10.1016/j.ijbiomac.2022.12.323] [Reference Citation Analysis]
12 Chukwuemeka K, Louis H, Benjamin I, Nyong PA, Ejiofor EU, Eno EA, Manicum AE. Therapeutic Potential of B(12)N(12)-X (X = Au, Os, and Pt) Nanostructured as Effective Fluorouracil (5Fu) Drug Delivery Materials. ACS Appl Bio Mater 2023. [PMID: 36802290 DOI: 10.1021/acsabm.2c00986] [Reference Citation Analysis]
13 Guadarrama-Escobar OR, Serrano-Castañeda P, Anguiano-Almazán E, Vázquez-Durán A, Peña-Juárez MC, Vera-Graziano R, Morales-Florido MI, Rodriguez-Perez B, Rodriguez-Cruz IM, Miranda-Calderón JE, Escobar-Chávez JJ. Chitosan Nanoparticles as Oral Drug Carriers. Int J Mol Sci 2023;24. [PMID: 36901719 DOI: 10.3390/ijms24054289] [Reference Citation Analysis]
14 Bărăian AI, Iacob BC, Sorițău O, Tomuță I, Tefas LR, Barbu-Tudoran L, Șușman S, Bodoki E. Ruxolitinib-Loaded Imprinted Polymeric Drug Reservoir for the Local Management of Post-Surgical Residual Glioblastoma Cells. Polymers (Basel) 2023;15. [PMID: 36850247 DOI: 10.3390/polym15040965] [Reference Citation Analysis]
15 Pandey RP, Vidic J, Mukherjee R, Chang CM. Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks. Pharmaceutics 2023;15. [PMID: 36839932 DOI: 10.3390/pharmaceutics15020612] [Reference Citation Analysis]
16 Adu OT, Naidoo Y, Lin J, Dwarka D, Mellem J, Murthy HN, Dewir YH. Cytotoxic Potential of Diospyros villosa Leaves and Stem Bark Extracts and Their Silver Nanoparticles. Plants (Basel) 2023;12. [PMID: 36840116 DOI: 10.3390/plants12040769] [Reference Citation Analysis]
17 Chakraborty A, Mohapatra SS, Barik S, Roy I, Gupta B, Biswas A. Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023;43. [PMID: 36630532 DOI: 10.1042/BSR20220324] [Reference Citation Analysis]
18 Pauna AR, Mititelu Tartau L, Bogdan M, Meca AD, Popa GE, Pelin AM, Drochioi CI, Pricop DA, Pavel LL. Synthesis, Characterization and Biocompatibility Evaluation of Novel Chitosan Lipid Micro-Systems for Modified Release of Diclofenac Sodium. Biomedicines 2023;11. [PMID: 36830989 DOI: 10.3390/biomedicines11020453] [Reference Citation Analysis]
19 Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Sivakumar AS, Zhang X, Bin Choi H, Jeong MS, Choi M, Wang M. Cellulose-graphene oxide nanocomposites encapsulated with green synthesized silver nanoparticles as an effective antibacterial agent. Materials Today Communications 2023. [DOI: 10.1016/j.mtcomm.2023.105652] [Reference Citation Analysis]
20 Piri-gharaghie T, Ghajari G, Hassanpoor M, Jegargoshe-shirin N, Mona Soosanirad, Khayati S, Farhadi-biregani A, Mirzaei A. Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon 2023. [DOI: 10.1016/j.heliyon.2023.e14149] [Reference Citation Analysis]
21 Nordin AH, Ahmad Z, Husna SMN, Ilyas RA, Azemi AK, Ismail N, Nordin ML, Ngadi N, Siti NH, Nabgan W, Norfarhana AS, Azami MSM. The State of the Art of Natural Polymer Functionalized Fe(3)O(4) Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. Gels 2023;9. [PMID: 36826291 DOI: 10.3390/gels9020121] [Reference Citation Analysis]
22 Kumar VB, Sher I, Rencus-Lazar S, Rotenstreich Y, Gazit E. Functional Carbon Quantum Dots for Ocular Imaging and Therapeutic Applications. Small 2023;19:e2205754. [PMID: 36461689 DOI: 10.1002/smll.202205754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Sharma A, Harjai K, Ramniwas S, Singh D. Bioactivity of Citral and Its Nanoparticle in Attenuating Pathogenicity of Pseudomonas aeruginosa and Controlling Drosophila melanogaster. Journal of Nanomaterials 2023;2023:1-11. [DOI: 10.1155/2023/4703650] [Reference Citation Analysis]
24 Wardani G, Nugraha J, Kurnijasanti R, Mustafa MR, Sudjarwo SA. Molecular Mechanism of Fucoidan Nanoparticles as Protector on Endothelial Cell Dysfunction in Diabetic Rats' Aortas. Nutrients 2023;15. [PMID: 36771275 DOI: 10.3390/nu15030568] [Reference Citation Analysis]
25 Li X, Oh JS, Lee Y, Lee EC, Yang M, Kwon N, Ha TW, Hong D, Song Y, Kim HK, Song BH, Choi S, Yoon J, Lee MR. Albumin-binding photosensitizer capable of targeting glioma via the SPARC pathway.. [DOI: 10.21203/rs.3.rs-2437118/v1] [Reference Citation Analysis]
26 Pandey R, Yang FS, Sivasankaran VP, Lo YL, Wu YT, Chang CY, Chiu CC, Liao ZX, Wang LF. Comparing the Variants of Iron Oxide Nanoparticle-Mediated Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes in Cancer Cells. Pharmaceutics 2023;15. [PMID: 36678844 DOI: 10.3390/pharmaceutics15010215] [Reference Citation Analysis]
27 Das KP, J C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Front Med Technol 2022;4:1067144. [PMID: 36688144 DOI: 10.3389/fmedt.2022.1067144] [Reference Citation Analysis]
28 Yadav D, Puranik N, Meshram A, Chavda V, Lee PC, Jin JO. How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023;18:35-48. [PMID: 36636642 DOI: 10.2147/IJN.S388349] [Reference Citation Analysis]
29 Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023;22:1. [PMID: 36593487 DOI: 10.1186/s12938-022-01062-y] [Reference Citation Analysis]
30 Truong-thi N, Hoi Nguyen N, Tien Dung Nguyen D, Ngan Tang T, Hiep Nguyen T, Hai Nguyen D. pH-Responsive Delivery of Platinum-based Drugs through the Surface Modification of Heparin on Mesoporous Silica Nanoparticles. European Polymer Journal 2023. [DOI: 10.1016/j.eurpolymj.2023.111818] [Reference Citation Analysis]
31 Raval JB, Mehta VN, Kailasa SK. Carbon nanomaterials-based diagnostic tools. Carbon Dots in Analytical Chemistry 2023. [DOI: 10.1016/b978-0-323-98350-1.00019-0] [Reference Citation Analysis]
32 Tramontano C, Martins JP, De Stefano L, Kemell M, Correia A, Terracciano M, Borbone N, Rea I, Santos HA. Microfluidic-Assisted Production of Gastro-Resistant Active-Targeted Diatomite Nanoparticles for the Local Release of Galunisertib in Metastatic Colorectal Cancer Cells. Adv Healthc Mater 2023;12:e2202672. [PMID: 36459471 DOI: 10.1002/adhm.202202672] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Tata P, Bhavya KS, Ganesan R, Ray Dutta J. Nanoparticle-based treatment of bacterial biofilms. Viral, Parasitic, Bacterial, and Fungal Infections 2023. [DOI: 10.1016/b978-0-323-85730-7.00029-1] [Reference Citation Analysis]
34 Saha K, Ghosh A, Bhattacharya T, Ghosh S, Dey S, Chattopadhyay D. Ameliorative effects of clindamycin - nanoceria conjugate: A ROS responsive smart drug delivery system for diabetic wound healing study. J Trace Elem Med Biol 2023;75:127107. [PMID: 36427436 DOI: 10.1016/j.jtemb.2022.127107] [Reference Citation Analysis]
35 Afzal M, Kazmi I, Kaur R, Hosawi SBI, Kaleem M, Alzarea SI, Ahmad MM. Introduction to molecular pharmacology: basic concepts. How Synthetic Drugs Work 2023. [DOI: 10.1016/b978-0-323-99855-0.00001-4] [Reference Citation Analysis]
36 Thapa RK, Kim JO. Nanomedicine-based commercial formulations: current developments and future prospects. J Pharm Investig 2023;53:19-33. [PMID: 36568502 DOI: 10.1007/s40005-022-00607-6] [Reference Citation Analysis]
37 Deshmukh MA, Thorat HN, Shirsat MD, Ramanavicius A. Engineered nanostructures: an introduction. Engineered Nanostructures for Therapeutics and Biomedical Applications 2023. [DOI: 10.1016/b978-0-12-821240-0.00002-0] [Reference Citation Analysis]
38 Archana M, Sreekutty J, Syama H, Joseph MM, Anusree K, Unnikrishnan B, Preethi G, Reshma P, Sreelekha T. Polysaccharide guided tumor delivery of therapeutics: A bio-fabricated galactomannan-gold nanosystem for augmented cancer therapy. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104172] [Reference Citation Analysis]
39 Lopes LB, Apolinário AC, Salata GC, Malagó ID, Passos JS. Lipid Nanocarriers for Breast Cancer Treatment. Cancer Nanotechnology 2023. [DOI: 10.1007/978-3-031-17831-3_1] [Reference Citation Analysis]
40 Dahiya S, Dahiya R. An Overview on Nanocarriers for Nasal Delivery. Nasal Drug Delivery 2023. [DOI: 10.1007/978-3-031-23112-4_9] [Reference Citation Analysis]
41 Kotarkonda LK, Sinha TP, Bhoi S, Bharathala S. Role of nanocomposites for the prevention and treatment of viral infections in the health care system. Smart Nanomaterials to Combat the Spread of Viral Infections 2023. [DOI: 10.1016/b978-0-323-99148-3.00012-1] [Reference Citation Analysis]
42 Dhas N, Neyyar S, Garkal A, Kudarha R, Patel J, Mutalik S, Mehta T. Biomedical Applications of Nanocarriers in Nasal Delivery. Nasal Drug Delivery 2023. [DOI: 10.1007/978-3-031-23112-4_7] [Reference Citation Analysis]
43 Natesan V, Kim SJ. The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives. Biomol Ther (Seoul) 2023;31:16-26. [PMID: 36122910 DOI: 10.4062/biomolther.2022.080] [Reference Citation Analysis]
44 Gopal D, Skariyachan S, Melappa G. Molecular interaction modeling of carbon nanotubes and fullerene toward prioritized targets of SARS-CoV-2 by computer-aided screening and docking studies. Functionalized Carbon Nanomaterials for Theranostic Applications 2023. [DOI: 10.1016/b978-0-12-824366-4.00015-7] [Reference Citation Analysis]
45 Chan Y, Lim JS, Cui X, Ng SW, Lim XW, Chellappan DK, Dua K. Advanced nanomedicine-based therapeutics for targeting airway inflammatory diseases. Recent Developments in Anti-Inflammatory Therapy 2023. [DOI: 10.1016/b978-0-323-99988-5.00007-3] [Reference Citation Analysis]
46 Lechuga-Islas VD, Trejo-Maldonado M, Anufriev I, Nischang I, Terzioğlu İ, Ulbrich J, Guerrero-Santos R, Elizalde-Herrera LE, Schubert US, Guerrero-Sánchez C. All-Aqueous, Surfactant-Free, and pH-Driven Nanoformulation Methods of Dual-Responsive Polymer Nanoparticles and their Potential use as Nanocarriers of pH-Sensitive Drugs. Macromol Biosci 2023;23:e2200262. [PMID: 36259557 DOI: 10.1002/mabi.202200262] [Reference Citation Analysis]
47 Pramod RK, Mitra A. Advances in transgene delivery for the generation of transgenic livestock. Nanobiotechnology for the Livestock Industry 2023. [DOI: 10.1016/b978-0-323-98387-7.00002-1] [Reference Citation Analysis]
48 Saraswat AL, Vartak R, Hegazy R, Patel A, Patel K. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discov Today 2023;28:103387. [PMID: 36184017 DOI: 10.1016/j.drudis.2022.103387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Dahiya S, Dahiya R. Smart drug delivery systems and their clinical potential. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00007-6] [Reference Citation Analysis]
50 Sondhi P, Lingden D, Bhattarai JK, Demchenko AV, Stine KJ. Applications of Nanoporous Gold in Therapy, Drug Delivery, and Diagnostics. Metals 2022;13:78. [DOI: 10.3390/met13010078] [Reference Citation Analysis]
51 Lagarrigue P, Moncalvo F, Cellesi F. Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties. Pharmaceutics 2022;15. [PMID: 36678661 DOI: 10.3390/pharmaceutics15010032] [Reference Citation Analysis]
52 Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022;10:9944-67. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Reference Citation Analysis]
53 Kafle U, Agrawal S, Dash AK. Injectable Nano Drug Delivery Systems for the Treatment of Breast Cancer. Pharmaceutics 2022;14. [PMID: 36559276 DOI: 10.3390/pharmaceutics14122783] [Reference Citation Analysis]
54 Sandip K. Suryawanshi, Rahul V. Mali, Rakesh L. Patil, Sonia T. Sevlani. Nanoparticle. IJARSCT 2022. [DOI: 10.48175/ijarsct-7644] [Reference Citation Analysis]
55 Trac N, Oh HS, Jones LI, Caliliw R, Ohtake S, Shuch B, Chung EJ. CD70-Targeted Micelles Enhance HIF2α siRNA Delivery and Inhibit Oncogenic Functions in Patient-Derived Clear Cell Renal Carcinoma Cells. Molecules 2022;27. [PMID: 36500549 DOI: 10.3390/molecules27238457] [Reference Citation Analysis]
56 Pu Z, Wei Y, Sun Y, Wang Y, Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. IJN 2022;Volume 17:6157-6180. [DOI: 10.2147/ijn.s384592] [Reference Citation Analysis]
57 Chauhan PS, Yadav D, Jin JO. The Therapeutic Potential of Algal Nanoparticles: A Brief Review. Comb Chem High Throughput Screen 2022;25:2443-51. [PMID: 34477514 DOI: 10.2174/1386207324666210903143832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chemico-Biological Interactions 2022;368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Reference Citation Analysis]
59 Rodrigues CF, Fernandes N, de Melo-Diogo D, Correia IJ, Moreira AF. Cell-Derived Vesicles for Nanoparticles' Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer Therapy. Adv Healthc Mater 2022;11:e2201214. [PMID: 36121767 DOI: 10.1002/adhm.202201214] [Reference Citation Analysis]
60 Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. Chem Rec 2022;22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Reference Citation Analysis]
61 Guler C, Gulcemal S, Guner A, Akgol S, Karabay Yavasoglu NU. Polymeric nanoparticles tryptophan-graft-p(HEMA): a study on synthesis, characterization, and toxicity. Polym Bull 2022. [DOI: 10.1007/s00289-022-04607-2] [Reference Citation Analysis]
62 Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022;10:1052436. [PMID: 36507266 DOI: 10.3389/fbioe.2022.1052436] [Reference Citation Analysis]
63 Hangad MV, Keshvani S, Kelpin N, Walters-shumka J, Hood M, Volk C, Pal D, Willerth SM. Using nanomaterials to address SARS-CoV-2 variants through development of vaccines and therapeutics. Front Mater 2022;9. [DOI: 10.3389/fmats.2022.1039247] [Reference Citation Analysis]
64 Eljack S, David S, Chourpa I, Faggad A, Allard-Vannier E. Formulation of Lipid-Based Nanoparticles for Simultaneous Delivery of Lapatinib and Anti-Survivin siRNA for HER2+ Breast Cancer Treatment. Pharmaceuticals (Basel) 2022;15. [PMID: 36558904 DOI: 10.3390/ph15121452] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022;14. [PMID: 36559049 DOI: 10.3390/pharmaceutics14122554] [Reference Citation Analysis]
66 Rafiemanzelat F, Tafazoli S, Hairi AA, Varshosaz J, Mirian M, Khodarahmi G, Hassanzadeh F, Rostami M. Peptide-based pegylated polyurethane nanoparticles for paclitaxel delivery in HeLa cancer cells: the art of the architecture design in nanocarriers. Polym Bull 2022. [DOI: 10.1007/s00289-022-04569-5] [Reference Citation Analysis]
67 Sinitsyna E, Bagaeva I, Gandalipov E, Fedotova E, Korzhikov-Vlakh V, Tennikova T, Korzhikova-Vlakh E. Nanomedicines Bearing an Alkylating Cytostatic Drug from the Group of 1,3,5-Triazine Derivatives: Development and Characterization. Pharmaceutics 2022;14. [PMID: 36432699 DOI: 10.3390/pharmaceutics14112506] [Reference Citation Analysis]
68 Bărăian AI, Iacob BC, Bodoki AE, Bodoki E. In Vivo Applications of Molecularly Imprinted Polymers for Drug Delivery: A Pharmaceutical Perspective. Int J Mol Sci 2022;23. [PMID: 36430548 DOI: 10.3390/ijms232214071] [Reference Citation Analysis]
69 Fahmi A, Abdur-rahman M, Mahareek O, shemis MA. Synthesis, characterization, and cytotoxicity of doxorubicin-loaded polycaprolactone nanocapsules as controlled anti-hepatocellular carcinoma drug release system. BMC Chemistry 2022;16:95. [DOI: 10.1186/s13065-022-00888-w] [Reference Citation Analysis]
70 Li Y, Su Y, Li Z, Chen Y. Supramolecular Combination Cancer Therapy Based on Macrocyclic Supramolecular Materials. Polymers (Basel) 2022;14. [PMID: 36432982 DOI: 10.3390/polym14224855] [Reference Citation Analysis]
71 Fuentes E, Gabaldón Y, Collado M, Dhiman S, Berrocal JA, Pujals S, Albertazzi L. Supramolecular Stability of Benzene-1,3,5-tricarboxamide Supramolecular Polymers in Biological Media: Beyond the Stability–Responsiveness Trade-off. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c08528] [Reference Citation Analysis]
72 Jacobs E, Qian K, Pietsch VL, Richter M, Jones DS, Andrews GP, Tian Y. Design and scale-up of amorphous drug nanoparticles production via a one-step anhydrous continuous process. International Journal of Pharmaceutics 2022;628:122304. [DOI: 10.1016/j.ijpharm.2022.122304] [Reference Citation Analysis]
73 Viana DB, Mathieu-gaedke M, Leao NM, Böker A, Ferreira Soares DC, Glebe U, Tebaldi ML. Hybrid protein-polymer nanoparticles based on P(NVCL-co-DMAEMA) loaded with cisplatin as a potential anti-cancer agent. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103995] [Reference Citation Analysis]
74 Caro C, Pourmadadi M, Eshaghi MM, Rahmani E, Shojaei S, Paiva-santos AC, Rahdar A, Behzadmehr R, García-martín ML, Díez-pascual AM. Nanomaterials loaded with Quercetin as an advanced tool for cancer treatment. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103938] [Reference Citation Analysis]
75 Acar M, Solak K, Yildiz S, Unver Y, Mavi A. Comparative heating efficiency and cytotoxicity of magnetic silica nanoparticles for magnetic hyperthermia treatment on human breast cancer cells. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03377-y] [Reference Citation Analysis]
76 Shahla Chaichian, Abolfazl Mehdizadeh Kashi, Kobra Tehermanesh, Vahid Pirhajati Mahabadi, Sara Minaeian, Neda Eslahi. Effect of PLGA Nanoparticle-Mediated Delivery of miRNA 503 on The Apoptosis of Ovarian Endometriosis Cells. Cell J 2022;24. [PMID: 36377220 DOI: 10.22074/CELLJ.2022.557554.1069] [Reference Citation Analysis]
77 Khatun S, Appidi T, Rengan AK. Casein nanoformulations - Potential biomaterials in theranostics. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.102200] [Reference Citation Analysis]
78 Dhatwalia J, Kumari A, Chauhan A, Batoo KM, Banerjee A, Radhakrishnan A, Thakur S, Guleria I, Lal S, Ghotekar S, Choi BH, Kumar R. Rubus ellipticus fruits extract-mediated cuprous oxide nanoparticles: in vitro antioxidant, antimicrobial, and toxicity study. Chem Pap 2022. [DOI: 10.1007/s11696-022-02551-z] [Reference Citation Analysis]
79 Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J Food Process Engineering. [DOI: 10.1111/jfpe.14167] [Reference Citation Analysis]
80 Chen Y, Cheng H, Yen W, Tsai J, Yeh C, Chen C, Liu JT, Chen S, Chang S. The Treatment of Keloid Scars via Modulating Heterogeneous Gelatin-Structured Composite Microneedles to Control Transdermal Dual-Drug Release. Polymers 2022;14:4436. [DOI: 10.3390/polym14204436] [Reference Citation Analysis]
81 Persano F, Leporatti S. Nano-Clays for Cancer Therapy: State-of-the Art and Future Perspectives. JPM 2022;12:1736. [DOI: 10.3390/jpm12101736] [Reference Citation Analysis]
82 Bardhan N. Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Communications. [DOI: 10.1557/s43579-022-00257-7] [Reference Citation Analysis]
83 Jangjou A, Zareshahrabadi Z, Abbasi M, Talaiekhozani A, Kamyab H, Chelliapan S, Vaez A, Golchin A, Tayebi L, Vafa E, Amani AM, Faramarzi H. Time to Conquer Fungal Infectious Diseases: Employing Nanoparticles as Powerful and Versatile Antifungal Nanosystems against a Wide Variety of Fungal Species. Sustainability 2022;14:12942. [DOI: 10.3390/su141912942] [Reference Citation Analysis]
84 Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022;12:997875. [DOI: 10.3389/fcimb.2022.997875] [Reference Citation Analysis]
85 Singh A, Singh P, Kumar R, Kaushik A. Exploring nanoselenium to tackle mutated SARS-CoV-2 for efficient COVID-19 management. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.1004729] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacology & Therapeutics 2022;238:108177. [DOI: 10.1016/j.pharmthera.2022.108177] [Reference Citation Analysis]
87 Masanam HB, Perumal G, Krishnan S, Singh SK, Jha NK, Chellappan DK, Dua K, Gupta PK, Narasimhan AK. Advances and opportunities in nanoimaging agents for the diagnosis of inflammatory lung diseases. Nanomedicine (Lond) 2022;17:1981-2005. [PMID: 36695290 DOI: 10.2217/nnm-2021-0427] [Reference Citation Analysis]
88 Warner JB, Guenthner SC, Hardesty JE, McClain CJ, Warner DR, Kirpich IA. Liver-specific drug delivery platforms: Applications for the treatment of alcohol-associated liver disease. World J Gastroenterol 2022; 28(36): 5280-5299 [DOI: 10.3748/wjg.v28.i36.5280] [Reference Citation Analysis]
89 Monika P, Chandraprabha MN, Hari Krishna R, Vittal M, Likhitha C, Pooja N, Chaudhary V, C M. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnology and Genetic Engineering Reviews. [DOI: 10.1080/02648725.2022.2122299] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Perumal S, Atchudan R, Lee YR. Synthesis of Water-Dispersed Sulfobetaine Methacrylate-Iron Oxide Nanoparticle-Coated Graphene Composite by Free Radical Polymerization. Polymers (Basel) 2022;14:3885. [PMID: 36146032 DOI: 10.3390/polym14183885] [Reference Citation Analysis]
91 Hernández-parra H, Cortés H, Avalos-fuentes JA, Del Prado-audelo M, Florán B, Leyva-gómez G, Sharifi-rad J, Cho WC. Repositioning of drugs for Parkinson’s disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01612-5] [Reference Citation Analysis]
92 Zheng S, Hameed Sultan A, Kurtas PT, Kareem LA, Akbari A. Comparison of the effect of vitamin C and selenium nanoparticles on gentamicin-induced renal impairment in male rats: A biochemical, molecular and histological study. Toxicology Mechanisms and Methods. [DOI: 10.1080/15376516.2022.2124136] [Reference Citation Analysis]
93 Khorshidi S, Younesi S, Karkhaneh A. Peroxide mediated oxygen delivery in cancer therapy. Colloids Surf B Biointerfaces 2022;219:112832. [PMID: 36137337 DOI: 10.1016/j.colsurfb.2022.112832] [Reference Citation Analysis]
94 Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022;6:400-23. [PMID: 36051855 DOI: 10.7150/ntno.74613] [Reference Citation Analysis]
95 Rhaman MM, Islam MR, Akash S, Mim M, Noor alam M, Nepovimova E, Valis M, Kuca K, Sharma R. Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance. Front Cell Dev Biol 2022;10:989471. [DOI: 10.3389/fcell.2022.989471] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Sharma R, Sharma KS, Kumar D. Introduction to Nanotechnology. Nanomaterials in Clinical Therapeutics 2022. [DOI: 10.1002/9781119857747.ch1] [Reference Citation Analysis]
97 Prasathkumar M, Sakthivel C, Becky R, Dhrisya C, Prabha I, Sadhasivam S. Phytofabrication of cost-effective selenium nanoparticles from edible and non-edible plant materials of Senna auriculata: Characterization, antioxidant, antidiabetic, antimicrobial, biocompatibility, and wound healing. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.120337] [Reference Citation Analysis]
98 Choi JK, Park J, Lee S, Choi Y, Kwon S, Shin MJ, Yun H, Jang YH, Kang J, Kim N, Khang D, Kim S. . IJN 2022;Volume 17:4599-617. [DOI: 10.2147/ijn.s383324] [Reference Citation Analysis]
99 Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. Adv Mater 2022;:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Sivasubramanian M, Lin L, Wang Y, Yang C, Lo L. Industrialization’s eye view on theranostic nanomedicine. Front Chem 2022;10:918715. [DOI: 10.3389/fchem.2022.918715] [Reference Citation Analysis]
101 Nitika, Wei J, Hui AM. The Delivery of mRNA Vaccines for Therapeutics. Life (Basel) 2022;12:1254. [PMID: 36013433 DOI: 10.3390/life12081254] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
102 Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022;27:5236. [DOI: 10.3390/molecules27165236] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Afolabi OB, Oloyede OI, Aluko BT, Johnson JA. Cytoprotective Effect of Biogenic Magnesium Hydroxide Nanoparticles Using Monodora myristica Aqueous Extract Against Oxidative Damage in Streptozotocin-Induced Diabetic Rats. BioNanoSci . [DOI: 10.1007/s12668-022-01025-6] [Reference Citation Analysis]
104 Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Carbon Nanoparticles and Their Biomedical Applications. Applied Sciences 2022;12:7865. [DOI: 10.3390/app12157865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Uskoković V, Pejčić A, Koliqi R, Anđelković Z. Polymeric Nanotechnologies for the Treatment of Periodontitis: A Chronological Review. Int J Pharm 2022;:122065. [PMID: 35932930 DOI: 10.1016/j.ijpharm.2022.122065] [Reference Citation Analysis]
106 Henrique Marcondes Sari M, Mota Ferreira L, Costa Prado V, Wayne Nogueira C, Cruz L. Nano-based formulations as an approach for providing a novel identity for organoselenium compounds. Eur J Pharm Biopharm 2022:S0939-6411(22)00156-4. [PMID: 35932964 DOI: 10.1016/j.ejpb.2022.07.018] [Reference Citation Analysis]
107 Zare M, Pemmada R, Madhavan M, Shailaja A, Ramakrishna S, Kandiyil SP, Donahue JM, Thomas V. Encapsulation of miRNA and siRNA into Nanomaterials for Cancer Therapeutics. Pharmaceutics 2022;14. [PMID: 36015246 DOI: 10.3390/pharmaceutics14081620] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
108 Maity S, Acharyya A, Sankar Chakraborti A. Flavonoid-based Polymeric Nanoparticles: A Promising Approach for Cancer and Diabetes Treatment. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111455] [Reference Citation Analysis]
109 Dezfouli EA, Kiaie SH, Danafar H, Nomani A, Sadeghizadeh M. BTN-PEG-PCL nanoparticles for targeted delivery of curcumin: In vitro and in Ovo assessment. Journal of Drug Delivery Science and Technology 2022;74:103382. [DOI: 10.1016/j.jddst.2022.103382] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
110 Chan Y, Singh SK, Gulati M, Wadhwa S, Prasher P, Kumar D, Kumar AP, Gupta G, Kuppusamy G, Haghi M, George Oliver BG, Adams J, Chellappan DK, Dua K. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. J Drug Deliv Sci Technol 2022;74:103541. [PMID: 35774068 DOI: 10.1016/j.jddst.2022.103541] [Reference Citation Analysis]
111 Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García BE, Morales-Ávila E. Nanocarriers for delivery of siRNA as gene silencing mediator. EXCLI J 2022;21:1028-52. [PMID: 36110562 DOI: 10.17179/excli2022-4975] [Reference Citation Analysis]
112 Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S. Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: A multifunctional targeted drug delivery approach. Journal of Drug Delivery Science and Technology 2022;74:103545. [DOI: 10.1016/j.jddst.2022.103545] [Reference Citation Analysis]
113 Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022;17:1375-95. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Reference Citation Analysis]
114 Ban E, Kim A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. Int J Pharm 2022;:122058. [PMID: 35905931 DOI: 10.1016/j.ijpharm.2022.122058] [Reference Citation Analysis]
115 Zare-Zardini H, Soltaninejad H, Ghorani-Azam A, Nafisi-Moghadam R, Haddadzadegan N, Ansari M, Saeed-Banadaki SH, Sobhan MR, Mozafari S, Zahedi M. Slow release curcumin-containing soy protein nanoparticles as anticancer agents for osteosarcoma: synthesis and characterization. Prog Biomater 2022. [PMID: 35877026 DOI: 10.1007/s40204-022-00197-4] [Reference Citation Analysis]
116 Taşkor Önel G, Saygılı N. Synthesis and Cyclooxygenase Enzyme Inhibitory Activity of Flurbiprofen Analogues: Simple Methodology of Their Nanoemulsion Systems. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201654] [Reference Citation Analysis]
117 Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle–Protein Interactions. IJMS 2022;23:7962. [DOI: 10.3390/ijms23147962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
118 Karthick V, Kumar Shrestha L, Kumar VG, Pranjali P, Kumar D, Pal A, Ariga K. Nanoarchitectonics horizons: materials for life sciences. Nanoscale 2022. [PMID: 35842941 DOI: 10.1039/d2nr02293a] [Reference Citation Analysis]
119 Lv Q, Ma B, Li W, Fu G, Wang X, Xiao Y. Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Front Chem 2022;10:943009. [DOI: 10.3389/fchem.2022.943009] [Reference Citation Analysis]
120 Chauhan S, Jaiswal V, Cho Y, Lee H. Biological Activities and Phytochemicals of Lungworts (Genus Pulmonaria) Focusing on Pulmonaria officinalis. Applied Sciences 2022;12:6678. [DOI: 10.3390/app12136678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Waglewska E, Pucek-Kaczmarek A, Bazylińska U. Self-assembled bilosomes with stimuli-responsive properties as bioinspired dual-tunable nanoplatform for pH/temperature-triggered release of hybrid cargo. Colloids Surf B Biointerfaces 2022;215:112524. [PMID: 35500532 DOI: 10.1016/j.colsurfb.2022.112524] [Reference Citation Analysis]
122 Martínez-esquivias F, Guzmán-flores JM, Perez-larios A. Antimicrobial activity of green synthesized Se nanoparticles using ginger and onion extract: a laboratory and in silico analysis. Particulate Science and Technology. [DOI: 10.1080/02726351.2022.2088432] [Reference Citation Analysis]
123 Alves Rodrigues Santos SA, de Barros Mamede Vidal Damasceno M, Alves Magalhães FE, Sessle BJ, Amaro de Oliveira B, Alves Batista FL, Vieira-Neto AE, Rolim Campos A. Transient receptor potential channel involvement in antinociceptive effect of citral in orofacial acute and chronic pain models. EXCLI J 2022;21:869-87. [PMID: 36172071 DOI: 10.17179/excli2022-5042] [Reference Citation Analysis]
124 Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 2022. [PMID: 35739369 DOI: 10.1007/s11095-022-03301-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Rachamalla H, Mukherjee A, K. Paul M. Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture. Cell Culture - Advanced Technology and Applications in Medical and Life Sciences 2022. [DOI: 10.5772/intechopen.99146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Abu-el-rub E, Zegallai HM, Aloud BM, Sekaran S, Miller DW. Magnetic Nanoparticles for Imaging, Diagnosis, and Drug-Delivery Applications. Bionanotechnology: Next-Generation Therapeutic Tools 2022. [DOI: 10.2174/9789815051278122010007] [Reference Citation Analysis]
127 Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han D. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022;10:1374. [DOI: 10.3390/biomedicines10061374] [Reference Citation Analysis]
128 Zhou L, Zou M, Xu Y, Lin P, Lei C, Xia X. Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Front Oncol 2022;12:864301. [PMID: 35664731 DOI: 10.3389/fonc.2022.864301] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Manocha S, Dhiman S, Grewal AS, Guarve K. Nanotechnology: An approach to overcome bioavailability challenges of nutraceuticals. Journal of Drug Delivery Science and Technology 2022;72:103418. [DOI: 10.1016/j.jddst.2022.103418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon M. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022;14:1189. [DOI: 10.3390/pharmaceutics14061189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
131 Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, Rezayat SM, Seifalian AM. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnology Reports 2022;34:e00730. [DOI: 10.1016/j.btre.2022.e00730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Mehan S, Arora N, Bhalla S, Khan A, U Rehman M, Alghamdi BS, Zughaibi TA, Ashraf GM. Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. Molecules 2022;27:3561. [PMID: 35684498 DOI: 10.3390/molecules27113561] [Reference Citation Analysis]
133 Mîndrilă B, Buteică S, Mîndrilă I, Mihaiescu D, Mănescu M, Rogoveanu I. Administration Routes as Modulators of the Intrahepatic Distribution and Anti-Anemic Activity of Salicylic Acid/Fe3O4 Nanoparticles. Biomedicines 2022;10:1213. [DOI: 10.3390/biomedicines10051213] [Reference Citation Analysis]
134 Bao J, Jiang Z, Ding W, Cao Y, Yang L, Liu J. Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells. Nanotechnology Reviews 2022;11:1911-26. [DOI: 10.1515/ntrev-2022-0114] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
135 Desai AS, Singh A, Edis Z, Haj Bloukh S, Shah P, Pandey B, Agrawal N, Bhagat N. An In Vitro and In Vivo Study of the Efficacy and Toxicity of Plant-Extract-Derived Silver Nanoparticles. JFB 2022;13:54. [DOI: 10.3390/jfb13020054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
136 Joseph X, Akhil V, Arathi A, Mohanan P. Nanobiomaterials in support of drug delivery related issues. Materials Science and Engineering: B 2022;279:115680. [DOI: 10.1016/j.mseb.2022.115680] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
137 dos Santos Macêdo DC, Cavalcanti IDL, de Fátima Ramos dos Santos Medeiros SM, de Souza JB, de Britto Lira Nogueira MC, Cavalcanti IMF. Nanotechnology and tuberculosis: An old disease with new treatment strategies. Tuberculosis 2022. [DOI: 10.1016/j.tube.2022.102208] [Reference Citation Analysis]
138 Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. Journal of Drug Delivery Science and Technology 2022;71:103315. [DOI: 10.1016/j.jddst.2022.103315] [Reference Citation Analysis]
139 Allemailem KS, Khadri H, Azam M, Khan MA, Rahmani AH, Alrumaihi F, Khateef R, Ansari MA, Alatawi EA, Alsugoor MH, Almansour NM, Alhatlani BY, Almatroudi A. Ajwa-Dates (Phoenix dactylifera)-Mediated Synthesis of Silver Nanoparticles and Their Anti-Bacterial, Anti-Biofilm, and Cytotoxic Potential. Applied Sciences 2022;12:4537. [DOI: 10.3390/app12094537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
140 Mondal A, Sen K, Mondal A, Mishra D, Debnath P, Mondal NK. Bio-fabricated silver nanoparticles for controlling dengue and filaria vectors and their characterization, as well as toxicological risk assessment in aquatic mesocosms. Environ Res 2022;:113309. [PMID: 35487260 DOI: 10.1016/j.envres.2022.113309] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Mokhosi SR, Mdlalose W, Nhlapo A, Singh M. Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics 2022;14:937. [DOI: 10.3390/pharmaceutics14050937] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
142 Del Prado-audelo ML, Bernal-chávez SA, Gutiérrez-ruíz SC, Hernández-parra H, Kerdan IG, Reyna-gonzález JM, Sharifi-rad J, Leyva-gómez G, Abdennour C. Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/5766199] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
143 Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. Nanomaterials (Basel) 2022;12:1376. [PMID: 35458084 DOI: 10.3390/nano12081376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
144 Basir KS, Mufida H, Ismail NI. Synthesis and Physicochemical Characterization of Naringeninand Gallic Acid-Loaded Polymeric Micelles for Cancer Drug Delivery. MJMHS 2022. [DOI: 10.47836/mjmhs.18.s6.7] [Reference Citation Analysis]
145 Almostafa MM, Elsewedy HS, Shehata TM, Soliman WE. Novel Formulation of Fusidic Acid Incorporated into a Myrrh-Oil-Based Nanoemulgel for the Enhancement of Skin Bacterial Infection Treatment. Gels 2022;8. [PMID: 35448146 DOI: 10.3390/gels8040245] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
146 Comparetti EJ, Lins PMP, Quitiba J, Zucolotto V. Cancer cell membrane‐derived nanoparticles block the expression of immune checkpoint proteins on cancer cells and coordinate modulatory activity on immunosuppressive macrophages. J Biomedical Materials Res. [DOI: 10.1002/jbm.a.37387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
147 Shahcheraghi SN, Sadat Shandiz SA, Pakpour B. An Eco-friendly Fabrication of Silver Chloride Nanoparticles (AgClNPs) using Onopordum acanthium L. extract Induces Apoptosis in Breast Cancer MDA-MB-232 Cells. BioNanoSci . [DOI: 10.1007/s12668-022-00970-6] [Reference Citation Analysis]
148 Feitosa RC, Ishikawa ESA, Silva MFAD, Silva-júnior AAD, Oliveira-nascimento L. Five decades of doxycycline: Does nanotechnology improve its properties? International Journal of Pharmaceutics 2022;618:121655. [DOI: 10.1016/j.ijpharm.2022.121655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
149 Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100249] [Reference Citation Analysis]
150 Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022;281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
151 Burdușel A, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022;14:770. [DOI: 10.3390/pharmaceutics14040770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
152 Anwar MM, Shalaby MA, Saeed H, Mostafa HM, Hamouda DG, Nounou H. Theophylline-encapsulated Nile Tilapia fish scale-based collagen nanoparticles effectively target the lungs of male Sprague-Dawley rats. Sci Rep 2022;12:4871. [PMID: 35319009 DOI: 10.1038/s41598-022-08880-z] [Reference Citation Analysis]
153 Phan H, Cossutta M, Houppe C, Le Cœur C, Prevost S, Cascone I, Courty J, Penelle J, Couturaud B. Polymerization-Induced Self-Assembly (PISA) for in situ drug encapsulation or drug conjugation in cancer application. J Colloid Interface Sci 2022;618:173-84. [PMID: 35338924 DOI: 10.1016/j.jcis.2022.03.044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Kakade P, Chatterjee A, Pandya A, Disouza J, Patravale V. Carbohydrate anchored lipid nanoparticles. Int J Pharm 2022;618:121681. [PMID: 35307469 DOI: 10.1016/j.ijpharm.2022.121681] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
155 Vallorz EL, Encinas-basurto D, Schnellmann RG, Mansour HM. Design, Development, Physicochemical Characterization, and In Vitro Drug Release of Formoterol PEGylated PLGA Polymeric Nanoparticles. Pharmaceutics 2022;14:638. [DOI: 10.3390/pharmaceutics14030638] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
156 Wang Q, Liu J. Medulloblastoma: Immune microenvironment and targeted nano-therapy. OpenNano 2022;6:100035. [DOI: 10.1016/j.onano.2022.100035] [Reference Citation Analysis]
157 Wei X, Li M, Zheng Z, Ma J, Gao Y, Chen L, Peng Y, Yu S, Yang L. Senescence in chronic wounds and potential targeted therapies. Burns Trauma 2022;10:tkab045. [PMID: 35187179 DOI: 10.1093/burnst/tkab045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
158 Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022;23:2408. [PMID: 35269550 DOI: 10.3390/ijms23052408] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
159 Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022;10:486. [DOI: 10.3390/biomedicines10020486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
160 Sahare P, Alvarez PG, Yanez JMS, Bárcenas JGL, Chakraborty S, Paul S, Estevez M. Engineered titania nanomaterials in advanced clinical applications. Beilstein J Nanotechnol 2022;13:201-18. [DOI: 10.3762/bjnano.13.15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
161 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
162 Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022;20:75. [PMID: 35135581 DOI: 10.1186/s12951-022-01279-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
163 Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. Nanomaterials (Basel) 2022;12:576. [PMID: 35159921 DOI: 10.3390/nano12030576] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
164 Yu C, Zhang Y, Wang N, Wei W, Cao K, Zhang Q, Ma P, Xie D, Wu P, Liu B, Liu J, Xiang W, Hu X, Liu X, Xie J, Tang J, Long Z, Wang L, Zeng H, Liu J. Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA. Biomater Res 2022;26:6. [PMID: 35123588 DOI: 10.1186/s40824-022-00251-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
165 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
166 He E, Serpelloni S, Alvear P, Rahimi M, Taraballi F. Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers. Fibers 2022;10:12. [DOI: 10.3390/fib10020012] [Reference Citation Analysis]
167 Li T, Shi W, Yao J, Hu J, Sun Q, Meng J, Wan J, Song H, Wang H. Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy. Biomater Res 2022;26. [DOI: 10.1186/s40824-022-00249-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
168 Remya RR, Julius A, Suman TY, Mohanavel V, Karthick A, Pazhanimuthu C, Samrot AV, Muhibbullah M, Tapia Hernández JA. Role of Nanoparticles in Biodegradation and Their Importance in Environmental and Biomedical Applications. Journal of Nanomaterials 2022;2022:1-15. [DOI: 10.1155/2022/6090846] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
169 Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. Small 2022;:e2106342. [PMID: 35088534 DOI: 10.1002/smll.202106342] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
170 Kebede L, Masoomi Dezfooli S, Seyfoddin A. Medicinal Cannabis Pharmacokinetics and Potential Methods of Delivery. Pharm Dev Technol 2022;:1-49. [PMID: 35084279 DOI: 10.1080/10837450.2022.2035748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 de Lima LS, Mortari MR. Therapeutic nanoparticles in the brain: A review of types, physicochemical properties and challenges. Int J Pharm 2022;612:121367. [PMID: 34896565 DOI: 10.1016/j.ijpharm.2021.121367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
172 Ramos TI, Villacis-aguirre CA, López-aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022;14:247. [DOI: 10.3390/pharmaceutics14020247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
173 El-Deeb NM, Abo-Eleneen MA, Awad OA, Abo-Shady AM. Arthrospira platensis-Mediated Green Biosynthesis of Silver Nano-particles as Breast Cancer Controlling Agent: In Vitro and In Vivo Safety Approaches. Appl Biochem Biotechnol 2022. [PMID: 35048281 DOI: 10.1007/s12010-021-03751-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
174 A P, Agrawal M, Dethe MR, Ahmed H, Yadav A, Gupta U, Alexander A. Nose-to-brain drug delivery for the treatment of Alzheimer's Disease: Current advancements and challenges. Expert Opin Drug Deliv 2022. [PMID: 35040728 DOI: 10.1080/17425247.2022.2029845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
175 St-Denis-Bissonnette F, Khoury R, Mediratta K, El-Sahli S, Wang L, Lavoie JR. Applications of Extracellular Vesicles in Triple-Negative Breast Cancer. Cancers (Basel) 2022;14:451. [PMID: 35053616 DOI: 10.3390/cancers14020451] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
176 Bassiony H, El-Ghor AA, Salaheldin TA, Sabet S, Mohamed MM. Tissue Distribution, Histopathological and Genotoxic Effects of Magnetite Nanoparticles on Ehrlich Solid Carcinoma. Biol Trace Elem Res 2022. [PMID: 35032291 DOI: 10.1007/s12011-022-03102-z] [Reference Citation Analysis]
177 Ibrahim A, El-Fakharany EM, Abu-Serie MM, ElKady MF, Eltarahony M. Methyl Orange Biodegradation by Immobilized Consortium Microspheres: Experimental Design Approach, Toxicity Study and Bioaugmentation Potential. Biology (Basel) 2022;11:76. [PMID: 35053074 DOI: 10.3390/biology11010076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
178 Alarfaj RE, Alkhulaifi MM, Al-Fahad AJ, Aljihani S, Yassin AEB, Alghoribi MF, Halwani MA. Antibacterial Efficacy of Liposomal Formulations Containing Tobramycin and N-Acetylcysteine against Tobramycin-Resistant Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Pharmaceutics 2022;14:130. [PMID: 35057026 DOI: 10.3390/pharmaceutics14010130] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
179 Al-Joufi FA, Setia A, Salem-Bekhit MM, Sahu RK, Alqahtani FY, Widyowati R, Aleanizy FS. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. Nanomaterials (Basel) 2022;12:169. [PMID: 35010119 DOI: 10.3390/nano12010169] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 19.0] [Reference Citation Analysis]
180 Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H, Kaushik P. Dodging blood brain barrier with "nano" warriors: Novel strategy against ischemic stroke. Theranostics 2022;12:689-719. [PMID: 34976208 DOI: 10.7150/thno.64806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
181 Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nanomicro Lett 2022;14:41. [PMID: 34981278 DOI: 10.1007/s40820-021-00771-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
182 Xu Q, Rajendrakumar SK, Khirallah J. Role of protein corona on nanoparticle-mediated organ and cell-targeted delivery. Reference Module in Materials Science and Materials Engineering 2022. [DOI: 10.1016/b978-0-12-822425-0.00052-x] [Reference Citation Analysis]
183 Chan Y, Ng SW, Soon L. Polymeric and Inorganic Nanoparticles Targeting Chronic Respiratory Diseases. Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases 2022. [DOI: 10.1007/978-981-16-4392-7_18] [Reference Citation Analysis]
184 Ganjali M, Ganjali M, Adib Sereshki MM, Ahmadinasab N, Ghalandarzadeh A, Aljabali AA, Barhoum A. Bionanomaterials for cancer therapy. Bionanotechnology : Emerging Applications of Bionanomaterials 2022. [DOI: 10.1016/b978-0-12-823915-5.00015-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
185 Lodhi MS, Khalid F, Khan MT, Samra ZQ, Muhammad S, Zhang YJ, Mou K. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022;27:261. [PMID: 35011493 DOI: 10.3390/molecules27010261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
186 Yang Y, Phang YS, Zhao Y. Nanotechnology for stroke treatment. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood 2022. [DOI: 10.1016/b978-0-12-823971-1.00008-8] [Reference Citation Analysis]
187 Fernández-bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/978-3-030-88071-2_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
188 Tambe P, Mane S, Chaudhari BP, Kulabhusan PK. Carbon nanomaterials for therapeutic applications. Fundamentals of Bionanomaterials 2022. [DOI: 10.1016/b978-0-12-824147-9.00011-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Balakrishnan K, Arumugam S, Ezhumalai D, Karthikeyan R, Magesan G. Antimicrobial Activity of Synthesized Multi-Metallic Nanoparticles using Traditional Indian Siddha Method. Asian J Chem 2022;34:443-447. [DOI: 10.14233/ajchem.2022.23602] [Reference Citation Analysis]
190 Garg A, Bhalla A. Green Synthesis and Fabrication of Nanomaterials: Unique Scaffolds for Biomedical Applications. Handbook of Green and Sustainable Nanotechnology 2022. [DOI: 10.1007/978-3-030-69023-6_68-1] [Reference Citation Analysis]
191 Zaabalawi A, Azzawi M. Cellular interactions of nanoparticles within the vasculature. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00013-2] [Reference Citation Analysis]
192 Parmar K, Patel J, Pathak Y. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems 2022. [DOI: 10.1007/978-3-030-83395-4_14] [Reference Citation Analysis]
193 Sahoo D, Mandal A, Mandal P, Set J. Quest for the quenching and binding mode of functionalized ZnO QDs with calf thymus DNA: Biophysical and in silico molecular modelling approach. Journal of Photochemistry and Photobiology A: Chemistry 2022;422:113562. [DOI: 10.1016/j.jphotochem.2021.113562] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
194 Misra C, Paul RK, Thotakura N, Raza K. Biodegradable self-assembled nanocarriers as the drug delivery vehicles. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00007-7] [Reference Citation Analysis]
195 Muthukrishnan S, Anand AV, Palanisamy K, Gunasangkaran G, Ravi AK, Balasubramanian B. Novel Organic and Inorganic Nanoparticles as a Targeted Drug Delivery Vehicle in Cancer Treatment. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-030-80371-1_4] [Reference Citation Analysis]
196 Lagopati N, Efstathopoulos EP, Veroutis D, Katifelis H, Theocharous G, Pantelis P, Evangelou K, Gorgoulis VG, Gazouli M. Hybrid Multifunctional Nanomaterials for Diagnostic and Therapeutic Applications. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-031-12658-1_17] [Reference Citation Analysis]
197 Gautam N, Kulkarni A, Dutta D, Talegaonkar S. Pharmacokinetics of Long Circulating Inorganic Nanoparticulate Drug Delivery Systems. Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems 2022. [DOI: 10.1007/978-3-030-83395-4_10] [Reference Citation Analysis]
198 Orlova M, Spiridonov V, Orlov A, Zolotova N, Lupatov A, Trofimova T, Kalmykov S, Yaroslavov A. Complexes of сarboxymethylcellulose with Cu2+-ions as a prototype of antitumor agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;632:127814. [DOI: 10.1016/j.colsurfa.2021.127814] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
199 Raja A, Mahendiratta S, Singh H, Shekhar N, Prakash A, Medhi B. Nanoparticles in Chronic Respiratory Diseases. Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases 2022. [DOI: 10.1007/978-981-16-4392-7_8] [Reference Citation Analysis]
200 Varan G, Varan C, Erdoğar N, Bilensoy E. Folate receptor-mediated targeted breast cancer nanomedicine. Targeted Nanomedicine for Breast Cancer Therapy 2022. [DOI: 10.1016/b978-0-12-824476-0.00012-7] [Reference Citation Analysis]
201 Haas SE, Carreño F, Dalla Costa T. Pharmaceutical Nanocarriers: Absorption. The ADME Encyclopedia 2022. [DOI: 10.1007/978-3-030-84860-6_111] [Reference Citation Analysis]
202 Palmieri V, Caracciolo G. Tuning the immune system by nanoparticle–biomolecular corona. Nanoscale Adv . [DOI: 10.1039/d2na00290f] [Reference Citation Analysis]
203 Vellingiri S, Rejeeth C, Varukattu NB, Sharma A, Kumar RS, Almansour AI, Arumugam N, Afewerki S, Kannan S. In vivo delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. New J Chem . [DOI: 10.1039/d1nj05867c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
204 Bicak B, Gok B, Kecel-gunduz S, Budama-kilinc Y. Molecular Modeling of Nanoparticles. Computer Aided Pharmaceutics and Drug Delivery 2022. [DOI: 10.1007/978-981-16-5180-9_23] [Reference Citation Analysis]
205 Neves AR, Faria R, Albuquerque T, Quintela T, Sousa Â, Costa D. Future perspectives of biological macromolecules in biomedicine. Biological Macromolecules 2022. [DOI: 10.1016/b978-0-323-85759-8.00026-9] [Reference Citation Analysis]
206 Robert B, Chenthamara D, Subramaniam S. Fabrication and biomedical applications of Arabinoxylan, Pectin, Chitosan, Soy protein, and Silk fibroin hydrogels via laccase - ferulic acid redox chemistry. Int J Biol Macromol 2021:S0141-8130(21)02733-1. [PMID: 34973987 DOI: 10.1016/j.ijbiomac.2021.12.103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
207 Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS Nano 2021;15:18794-821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
208 Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Brar B, Pal Y, Tripathi BN, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep 2021;8:1970-8. [PMID: 34934635 DOI: 10.1016/j.toxrep.2021.11.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
209 Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021;8:783831. [PMID: 34926557 DOI: 10.3389/fnut.2021.783831] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
210 Khan T, Nabi B, Rehman S, Akhtar M, Ali J, Najmi AK. Quality by Design Approach to Formulate Empagliflozin-Loaded Chitosan Nanoparticles: In Vitro, In Vivo and Pharmacokinetic Evaluation of Anti-Diabetic Drugs. NANO 2021;16. [DOI: 10.1142/s1793292021501496] [Reference Citation Analysis]
211 Bukhari B, Naveed M, Makhdoom SI, Jabeen K, Asif MF, Batool H, Ahmed N, Chan YY. A Comparison Between Organic and Inorganic Nanoparticles: Prime Nanoparticles for Tumor Curation. NANO 2021;16:2130011. [DOI: 10.1142/s1793292021300115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
212 Shurygina IA, Trukhan IS, Dremina NN, Shurygin MG. Selenium Nanoparticles. Nanotechnology in Medicine 2021. [DOI: 10.1002/9781119769897.ch3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
213 Omer AM, Sadik WA, El-demerdash AM, Hassan HS. Formulation of pH-sensitive aminated chitosan–gelatin crosslinked hydrogel for oral drug delivery. Journal of Saudi Chemical Society 2021;25:101384. [DOI: 10.1016/j.jscs.2021.101384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
214 M'bitsi-ibouily GC, Marimuthu T, du Toit LC, Kumar P, Choonara YE. In vitro, ex vivo and in vivo evaluation of a novel metal-liganded nanocomposite for the controlled release and improved oral bioavailability of sulpiride. Journal of Drug Delivery Science and Technology 2021;66:102909. [DOI: 10.1016/j.jddst.2021.102909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021;341:227-46. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
216 Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021;26:7031. [PMID: 34834124 DOI: 10.3390/molecules26227031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
217 Sayyad N, Maji R, Omolo CA, Ganai AM, Ibrahim UH, Pathan TK, Devnarain N, Karpoormath R, Dhawan S, Obakachi VA, Merugu SR, Kayamba F, Mahlalela M, Govender T, Tzakos AG, Singh S. Development of niosomes for encapsulating captopril-quercetin prodrug to combat hypertension. Int J Pharm 2021;609:121191. [PMID: 34670120 DOI: 10.1016/j.ijpharm.2021.121191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
218 Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2021. [PMID: 34762084 DOI: 10.1039/d1cs00686j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
219 Rahiman N, Zamani P, Badiee A, Arabi L, Alavizadeh SH, Jaafari MR. An insight into the role of liposomal therapeutics in the reversion of Multiple Sclerosis. Expert Opin Drug Deliv 2021. [PMID: 34747298 DOI: 10.1080/17425247.2021.2003327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
220 Naskar A, Cho H, Lee S, Kim KS. Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics 2021;13:1887. [PMID: 34834302 DOI: 10.3390/pharmaceutics13111887] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
221 Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol 2021;910:174464. [PMID: 34474029 DOI: 10.1016/j.ejphar.2021.174464] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
222 Adeel M, Parisi S, Mauceri M, Asif K, Bartoletti M, Puglisi F, Caligiuri I, Rahman MM, Canzonieri V, Rizzolio F. Self-Therapeutic Cobalt Hydroxide Nanosheets (Co(OH)2 NS) for Ovarian Cancer Therapy. ACS Omega 2021;6:28611-9. [PMID: 34746556 DOI: 10.1021/acsomega.1c03010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
223 Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. Journal of Drug Delivery Science and Technology 2021. [DOI: 10.1016/j.jddst.2021.102987] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Siddiqui MA, Akhter J, Aarzoo, Junaid Bashir D, Manzoor S, Rastogi S, Arora I, Aggarwal NB, Samim M. Resveratrol loaded nanoparticles attenuate cognitive impairment and inflammatory markers in PTZ-induced kindled mice. Int Immunopharmacol 2021;101:108287. [PMID: 34731689 DOI: 10.1016/j.intimp.2021.108287] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
225 Bentley ER, Little SR. Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev 2021;178:113971. [PMID: 34530013 DOI: 10.1016/j.addr.2021.113971] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
226 Ahmed-Farid OA, Taha M, Bakeer RM, Radwan OK, Hendawy HAM, Soliman AS, Yousef E. Effects of bee venom and dopamine-loaded nanoparticles on reserpine-induced Parkinson's disease rat model. Sci Rep 2021;11:21141. [PMID: 34707203 DOI: 10.1038/s41598-021-00764-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
227 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
228 Ravichandran V, Lee M, Nguyen Cao TG, Shim MS. Polysorbate-Based Drug Formulations for Brain-Targeted Drug Delivery and Anticancer Therapy. Applied Sciences 2021;11:9336. [DOI: 10.3390/app11199336] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
229 Liu Y, Sukumar UK, Kanada M, Krishnan A, Massoud TF, Paulmurugan R. Camouflaged Hybrid Cancer Cell-Platelet Fusion Membrane Nanovesicles Deliver Therapeutic MicroRNAs to Presensitize Triple-Negative Breast Cancer to Doxorubicin. Adv Funct Mater 2021;31:2103600. [PMID: 34899115 DOI: 10.1002/adfm.202103600] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
230 Zare-zardini H, Vojdani Nejad Yazdi S, Zandian A, Zare F, Miresmaeili SM, Dehghan-manshadi M, Fesahat F. Synthesis, characterization, and biological evaluation of doxorubicin containing silk fibroin micro- and nanoparticles. Journal of the Indian Chemical Society 2021;98:100161. [DOI: 10.1016/j.jics.2021.100161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
231 Behroozi Z, Rahimi B, Kookli K, Safari MS, Hamblin MR, Razmgir M, Janzadeh A, Ramezani F. Distribution of gold nanoparticles into the brain: a systematic review and meta-analysis. Nanotoxicology 2021;15:1059-72. [PMID: 34591733 DOI: 10.1080/17435390.2021.1966116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
232 Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Progress in Polymer Science 2021;121:101432. [DOI: 10.1016/j.progpolymsci.2021.101432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
233 Baschieri A, Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH. A Review. Antioxidants (Basel) 2021;10:1551. [PMID: 34679687 DOI: 10.3390/antiox10101551] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
234 Morărașu Ș, Iacob Ș, Tudorancea I, Luncă S, Dimofte M. Targeted Chemotherapy Delivery via Gold Nanoparticles: A Scoping Review of In Vivo Studies. Crystals 2021;11:1169. [DOI: 10.3390/cryst11101169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
235 Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021;26:5823. [PMID: 34641367 DOI: 10.3390/molecules26195823] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
236 Ramos TI, Villacis-Aguirre CA, Santiago Vispo N, Santiago Padilla L, Pedroso Santana S, Parra NC, Alonso JRT. Forms and Methods for Interferon's Encapsulation. Pharmaceutics 2021;13:1533. [PMID: 34683824 DOI: 10.3390/pharmaceutics13101533] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
237 Ali M, Ijaz M, Ikram M, Ul-Hamid A, Avais M, Anjum AA. Biogenic Synthesis, Characterization and Antibacterial Potential Evaluation of Copper Oxide Nanoparticles Against Escherichia coli. Nanoscale Res Lett 2021;16:148. [PMID: 34542713 DOI: 10.1186/s11671-021-03605-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
238 Padmanabhan P, Palanivel M, Kumar A, Máthé D, Radda GK, Lim KL, Gulyás B. Nanotheranostic agents for neurodegenerative diseases. Emerg Top Life Sci 2020;4:645-75. [PMID: 33320185 DOI: 10.1042/ETLS20190141] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
239 Barik D, Dash P, Uma PI, Kumari S, Dash M. A Review on Re-Packaging of Bisphosphonates Using Biomaterials. J Pharm Sci 2021;110:3757-72. [PMID: 34474062 DOI: 10.1016/j.xphs.2021.08.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
240 Betancourt P, Brocal N, Sans-Serramitjana E, Zaror C. Functionalized Nanoparticles Activated by Photodynamic Therapy as an Antimicrobial Strategy in Endodontics: A Scoping Review. Antibiotics (Basel) 2021;10:1064. [PMID: 34572645 DOI: 10.3390/antibiotics10091064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
241 Ali A, Zaman A, Sayed E, Evans D, Morgan S, Samwell C, Hall J, Arshad MS, Singh N, Qutachi O, Chang MW, Ahmad Z. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Adv Drug Deliv Rev 2021;176:113788. [PMID: 33957180 DOI: 10.1016/j.addr.2021.04.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
242 Murugan B, Sagadevan S, Fatimah I, Oh W, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. Nanotechnology Reviews 2021;10:933-53. [DOI: 10.1515/ntrev-2021-0067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
243 Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021;26:5119. [PMID: 34500560 DOI: 10.3390/molecules26175119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
244 Faria MJ, Lopes CM, das Neves J, Lúcio M. Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021;13:1294. [PMID: 34452255 DOI: 10.3390/pharmaceutics13081294] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
245 Mohammed AE, Al-Megrin WA. Biological Potential of Silver Nanoparticles Mediated by Leucophyllum frutescens and Russelia equisetiformis Extracts. Nanomaterials (Basel) 2021;11:2098. [PMID: 34443930 DOI: 10.3390/nano11082098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
246 Han Z, Tu X, Qiao L, Sun Y, Li Z, Sun X, Wu Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J Mater Chem B 2021;9:6751-69. [PMID: 34346475 DOI: 10.1039/d1tb00554e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
247 Crapanzano R, Secchi V, Villa I. Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Applied Sciences 2021;11:7073. [DOI: 10.3390/app11157073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
248 Lee J, Yang C, Ahn S, Choi Y, Lee K. Enhanced NO-induced angiogenesis via NO/H2S co-delivery from self-assembled nanoparticles. Biomater Sci 2021;9:5150-9. [PMID: 33949445 DOI: 10.1039/d1bm00448d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
249 Vassal M, Rebelo S, Pereira ML. Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021;22:8061. [PMID: 34360825 DOI: 10.3390/ijms22158061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
250 Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021;9:876. [PMID: 34440080 DOI: 10.3390/biomedicines9080876] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
251 Park JY, Hyun JS, Jee JG, Park SJ, Khang D. Structural Deformation of MTX Induced by Nanodrug Conjugation Dictate Intracellular Drug Transport and Drug Efficacy. Int J Nanomedicine 2021;16:4943-57. [PMID: 34326636 DOI: 10.2147/IJN.S317231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
252 Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021;11:682. [PMID: 34357054 DOI: 10.3390/life11070682] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
253 Najafi A, Ghazvini K, Sankian M, Gholami L, Amini Y, Zare S, Khademi F, Tafaghodi M. T helper type 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sci 2021;282:119806. [PMID: 34252419 DOI: 10.1016/j.lfs.2021.119806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
254 Motawea A, Ahmed DAM, El-Mansy AA, Saleh NM. Crucial Role of PLGA Nanoparticles in Mitigating the Amiodarone-Induced Pulmonary Toxicity. Int J Nanomedicine 2021;16:4713-37. [PMID: 34267519 DOI: 10.2147/IJN.S314074] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
255 Mititelu-Tartau L, Bogdan M, Pricop DA, Buca BR, Pauna AM, Dijmarescu LA, Pelin AM, Pavel LL, Popa GE. Assessment of the In Vivo Release and Biocompatibility of Novel Vesicles Containing Zinc in Rats. Molecules 2021;26:4101. [PMID: 34279441 DOI: 10.3390/molecules26134101] [Reference Citation Analysis]
256 Niyom Y, Crespy D, Flood AE. Compatibility between Drugs and Polymer in Nanoparticles Produced by the Miniemulsion‐Solvent Evaporation Technique. Macromol Mater Eng 2021;306:2100102. [DOI: 10.1002/mame.202100102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
257 Zhang Y, Sun M, Jian S, Huang J, Xiao C, Zhang X, Hu R, Si L. mPEG2k-PCLx Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm 2021;18:2586-99. [PMID: 34102842 DOI: 10.1021/acs.molpharmaceut.1c00078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
258 Jeandupeux E, Alameh MG, Ghattas M, De Crescenzo G, Lavertu M. Poly(2-Propylacrylic Acid) Increases In Vitro Bioactivity of Chitosan/mRNA Nanoparticles. J Pharm Sci 2021:S0022-3549(21)00293-8. [PMID: 34090900 DOI: 10.1016/j.xphs.2021.06.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
259 Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: A multifunctional delivery system. J Control Release 2021;335:481-97. [PMID: 34087250 DOI: 10.1016/j.jconrel.2021.05.043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
260 Ejeromedoghene O, Orege JI, Onwuka JU, Adebule PA, Ehianeta T, Okonkwo BO, Akinyeye RO. The Role of Nanoparticles as Nanocarriers for the Controlled Release of some Potential Existing Antiviral Drugs for SARS-CoV-2 Management: A Review. COVID 2021;2. [DOI: 10.2174/2666796701999201209142419] [Reference Citation Analysis]
261 Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology 2021;63:102487. [DOI: 10.1016/j.jddst.2021.102487] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
262 Shi L, Devanathadesikan Seshadri V, Mustafa Poyil M, Karrar Alsharif MH, Kaveriyappan Govindarajan R, Ock Kim Y, Won Na S, Kim H, Gabr GA, Mohammed Zaki R. Therapeutic potential of galactosamine-modified hollow silica nanoparticle for improved drug targeting to liver cancer. Journal of King Saud University - Science 2021;33:101434. [DOI: 10.1016/j.jksus.2021.101434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
263 Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021;605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
264 Lee C, Kang S. Development of HER2-Targeting-Ligand-Modified Albumin Nanoparticles Based on the SpyTag/SpyCatcher System for Photothermal Therapy. Biomacromolecules 2021;22:2649-58. [PMID: 34060808 DOI: 10.1021/acs.biomac.1c00336] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
265 de Menezes BRC, Rodrigues KF, Schatkoski VM, Pereira RM, Ribas RG, Montanheiro TLDA, Thim GP. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 2021;9:1745-61. [PMID: 33508058 DOI: 10.1039/d0tb01783c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
266 Gong K, Jiao J, Xu C, Dong Y, Li D, He D, Zhao, Yu J, Sun Y, Zhang W, Bai M, Duan Y. The targetable nanoparticle BAF312@cRGD-CaP-NP represses tumor growth and angiogenesis by downregulating the S1PR1/P-STAT3/VEGFA axis in triple-negative breast cancer. J Nanobiotechnology 2021;19:165. [PMID: 34059068 DOI: 10.1186/s12951-021-00904-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
267 Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021;164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
268 Gandhi AD, Miraclin PA, Abilash D, Sathiyaraj S, Velmurugan R, Zhang Y, Soontarapa K, Sen P, Sridharan TB. Nanosilver reinforced Parmelia sulcata extract efficiently induces apoptosis and inhibits proliferative signalling in MCF-7 cells. Environ Res 2021;199:111375. [PMID: 34048745 DOI: 10.1016/j.envres.2021.111375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
269 Jain S, Gorantla S, Singhvi G. Nanomaterials for Drug Delivery. Nanotoxicology 2021. [DOI: 10.1201/9780429299742-3] [Reference Citation Analysis]
270 Arnold F, Muzzio N, Patnaik SS, Finol EA, Romero G. Pentagalloyl Glucose-Laden Poly(lactide-co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model. ACS Appl Mater Interfaces 2021;13:25771-82. [PMID: 34030437 DOI: 10.1021/acsami.1c05344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
271 Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers (Basel) 2021;13:1717. [PMID: 34074020 DOI: 10.3390/polym13111717] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
272 Adel RM, Lotfy RA, Darwish AS, Amer AS. Destructive effect of iron overload in brain tissue of albino rats: Ameliorative role of silver immobilized organo-modified casein nanocomposite as co-treating agent with Deferasirox. J Trace Elem Med Biol 2021;67:126794. [PMID: 34052583 DOI: 10.1016/j.jtemb.2021.126794] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
273 Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett R, Lucero-Saucedo SL, Parra-Saldívar R, Sosa-Hernández JE. Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19. Front Bioeng Biotechnol 2021;9:597958. [PMID: 34055754 DOI: 10.3389/fbioe.2021.597958] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
274 Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021;165:219-43. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
275 Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, Gălățeanu B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. Materials (Basel) 2021;14:2440. [PMID: 34066710 DOI: 10.3390/ma14092440] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
276 Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021;164:1-12. [PMID: 33882301 DOI: 10.1016/j.ejpb.2021.03.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
277 Patel P, Ibrahim NM, Cheng K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021;42:448-60. [PMID: 33875229 DOI: 10.1016/j.tips.2021.03.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
278 Sharma A, De Rosa M, Singla N, Singh G, Barnwal RP, Pandey A. Tuberculosis: An Overview of the Immunogenic Response, Disease Progression, and Medicinal Chemistry Efforts in the Last Decade toward the Development of Potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. J Med Chem 2021;64:4359-95. [PMID: 33826327 DOI: 10.1021/acs.jmedchem.0c01833] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
279 Prakash S, Kumbhojkar N, Clegg JR, Mitragotri S. Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Current Opinion in Colloid & Interface Science 2021;52:101408. [DOI: 10.1016/j.cocis.2020.101408] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
280 Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 2021;9:2756-84. [PMID: 33596293 DOI: 10.1039/d0tb02957b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
281 Vinod C, Jena S. Nano-Neurotheranostics: Impact of Nanoparticles on Neural Dysfunctions and Strategies to Reduce Toxicity for Improved Efficacy. Front Pharmacol 2021;12:612692. [PMID: 33841144 DOI: 10.3389/fphar.2021.612692] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
282 Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021;7:33. [PMID: 33804970 DOI: 10.3390/gels7020033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
283 Yadav K, Soni A, Singh D, Singh MR. Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog Biomater 2021;10:1-17. [PMID: 33738750 DOI: 10.1007/s40204-021-00154-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
284 Rodenak-Kladniew B, Noacco N, Pérez de Berti I, Stewart SJ, Cabrera AF, Alvarez VA, García de Bravo M, Durán N, Castro GR, Islan GA. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf B Biointerfaces 2021;202:111710. [PMID: 33765626 DOI: 10.1016/j.colsurfb.2021.111710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
285 Alper Öztürk A, Namlı İ, Aygül A. Cefaclor Monohydrate-Loaded Colon-Targeted Nanoparticles for Use in COVID-19 Dependent Coinfections and Intestinal Symptoms: Formulation, Characterization, Release Kinetics, and Antimicrobial Activity. Assay Drug Dev Technol 2021;19:156-75. [PMID: 33728979 DOI: 10.1089/adt.2020.1014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
286 Ribeiro IS, Pontes FJG, Carneiro MJM, Sousa NA, Pinto VPT, Ribeiro FOS, Silva DA, Araújo GS, Marinho Filho JDB, Araújo AJ, Paula HCB, Feitosa JPA, de Paula RCM. Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. Int J Biol Macromol 2021;179:314-23. [PMID: 33675833 DOI: 10.1016/j.ijbiomac.2021.03.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
287 Romero MP, Buzza HH, Stringasci MD, Estevão BM, Silva CCC, Pereira-da-Silva MA, Inada NM, Bagnato VS. Graphene Oxide Theranostic Effect: Conjugation of Photothermal and Photodynamic Therapies Based on an in vivo Demonstration. Int J Nanomedicine 2021;16:1601-16. [PMID: 33688181 DOI: 10.2147/IJN.S287415] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
288 Dölen Y, Gileadi U, Chen JL, Valente M, Creemers JHA, Van Dinther EAW, van Riessen NK, Jäger E, Hruby M, Cerundolo V, Diken M, Figdor CG, de Vries IJM. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front Immunol 2021;12:641703. [PMID: 33717196 DOI: 10.3389/fimmu.2021.641703] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
289 Chaudhury A, Debnath K, Bu W, Jana NR, Basu JK. Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. Soft Matter 2021;17:1963-74. [PMID: 33427839 DOI: 10.1039/d0sm01945c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
290 Nabil G, Alzhrani R, Alsaab HO, Atef M, Sau S, Iyer AK, Banna HE. CD44 Targeted Nanomaterials for Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2021;13:898. [PMID: 33672756 DOI: 10.3390/cancers13040898] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
291 Varan G, Varan C, Öztürk SC, Benito JM, Esendağlı G, Bilensoy E. Therapeutic Efficacy and Biodistribution of Paclitaxel-Bound Amphiphilic Cyclodextrin Nanoparticles: Analyses in 3D Tumor Culture and Tumor-Bearing Animals In Vivo. Nanomaterials (Basel) 2021;11:515. [PMID: 33670527 DOI: 10.3390/nano11020515] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
292 Costa C, Oliveira IS, Silva JPN, Silva SG, Botelho C, do Vale MLC, Real Oliveira MECD, Gomes AC, Marques EF. Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. J Colloid Interface Sci 2021;584:34-44. [PMID: 33039681 DOI: 10.1016/j.jcis.2020.09.077] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
293 Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2021;16:1083-102. [PMID: 33603370 DOI: 10.2147/IJN.S290438] [Cited by in Crossref: 47] [Cited by in F6Publishing: 57] [Article Influence: 23.5] [Reference Citation Analysis]
294 Cyboran-Mikołajczyk S, Sareło P, Pasławski R, Pasławska U, Przybyło M, Nowak K, Płóciennik M, Podbielska H, Kopaczyńska M, Wawrzyńska M. Impact of Liposomal Drug Formulations on the RBCs Shape, Transmembrane Potential, and Mechanical Properties. Int J Mol Sci 2021;22:1710. [PMID: 33567766 DOI: 10.3390/ijms22041710] [Reference Citation Analysis]
295 Jiang L, Gong X, Liao W, Lv N, Yan R. Molecular targeted treatment and drug delivery system for gastric cancer. J Cancer Res Clin Oncol 2021;147:973-86. [PMID: 33550445 DOI: 10.1007/s00432-021-03520-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
296 Mahmoudian M, Valizadeh H, Löbenberg R, Zakeri-Milani P. Bortezomib-loaded lipidic-nano drug delivery systems; formulation, therapeutic efficacy, and pharmacokinetics. J Microencapsul 2021;38:192-202. [PMID: 33530812 DOI: 10.1080/02652048.2021.1876175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
297 Armanetti P, Chillà A, Margheri F, Biagioni A, Menichetti L, Margheri G, Ratto F, Centi S, Bianchini F, Severi M, Traversi R, Bani D, Lulli M, Del Rosso T, Mocali A, Rovida E, Del Rosso M, Fibbi G, Laurenzana A. Enhanced Antitumoral Activity and Photoacoustic Imaging Properties of AuNP-Enriched Endothelial Colony Forming Cells on Melanoma. Adv Sci (Weinh) 2021;8:2001175. [PMID: 33643785 DOI: 10.1002/advs.202001175] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
298 Faouzi A, Roullin VG. Think Big, Start Small: How Nanomedicine Could Alleviate the Burden of Rare CNS Diseases. Pharmaceuticals (Basel) 2021;14:109. [PMID: 33573213 DOI: 10.3390/ph14020109] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
299 Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021;556:39-61. [PMID: 33545555 DOI: 10.1016/j.virol.2021.01.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
300 Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem Pharmacol 2021;189:114432. [PMID: 33513339 DOI: 10.1016/j.bcp.2021.114432] [Cited by in Crossref: 90] [Cited by in F6Publishing: 105] [Article Influence: 45.0] [Reference Citation Analysis]
301 Bart VMT, Pickering RJ, Taylor PR, Ipseiz N. Macrophage reprogramming for therapy. Immunology 2021;163:128-44. [PMID: 33368269 DOI: 10.1111/imm.13300] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
302 Ribarič S. Nanotechnology Therapy for Alzheimer's Disease Memory Impairment Attenuation. Int J Mol Sci 2021;22:1102. [PMID: 33499311 DOI: 10.3390/ijms22031102] [Reference Citation Analysis]
303 Chibh S, Mishra J, Kour A, Chauhan VS, Panda JJ. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures. Nanomedicine (Lond) 2021;16:139-63. [PMID: 33480272 DOI: 10.2217/nnm-2020-0314] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
304 Song X, Ma J, Long T, Xu X, Zhao S, Liu H. Mechanochemical Cellular Membrane Internalization of Nanohydrogels: A Large-Scale Mesoscopic Simulation. ACS Appl Mater Interfaces 2021;13:123-34. [PMID: 33307670 DOI: 10.1021/acsami.0c16688] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
305 Pandey A, Nikam AN, Mutalik SP, Fernandes G, Shreya AB, Padya BS, Raychaudhuri R, Kulkarni S, Prassl R, Subramanian S, Korde A, Mutalik S. Architectured Therapeutic and Diagnostic Nanoplatforms for Combating SARS-CoV-2: Role of Inorganic, Organic, and Radioactive Materials. ACS Biomater Sci Eng 2021;7:31-54. [PMID: 33371667 DOI: 10.1021/acsbiomaterials.0c01243] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
306 Placha D, Jampilek J. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics 2021;13:64. [PMID: 33419176 DOI: 10.3390/pharmaceutics13010064] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
307 Mustfa SA, Maurizi E, Mcgrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. Adv Therap 2021;4:2000160. [DOI: 10.1002/adtp.202000160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
308 Cavalcanti IDL, Soares JCS. Application of Pharmaceutical Nanotechnology in the Treatment of Cancer. Advances in Cancer Treatment 2021. [DOI: 10.1007/978-3-030-68334-4_7] [Reference Citation Analysis]
309 Lal SM, Kamath A, Parida A, Shenoy S. Nanopharmacokinetics assessment. Nano-Pharmacokinetics and Theranostics 2021. [DOI: 10.1016/b978-0-323-85050-6.00015-3] [Reference Citation Analysis]
310 Sábio RM, Meneguin AB, Martins dos Santos A, Monteiro AS, Chorilli M. Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration. Microporous and Mesoporous Materials 2021;312:110774. [DOI: 10.1016/j.micromeso.2020.110774] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
311 Haas SE, Carreño F, Dalla Costa T. Pharmaceutical Nanocarriers: Absorption. The ADME Encyclopedia 2021. [DOI: 10.1007/978-3-030-51519-5_111-1] [Reference Citation Analysis]
312 Dhanjal DS, Mehta M, Chopra C, Singh R, Sharma P, Chellappan DK, Tambuwala MM, Bakshi HA, Aljabali AA, Gupta G, Nammi S, Prasher P, Dua K, Satija S. Novel Controlled Release Pulmonary Drug Delivery Systems: Current updates and Challenges. Modeling and Control of Drug Delivery Systems 2021. [DOI: 10.1016/b978-0-12-821185-4.00001-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
313 Pedro SN, Freire CSR, Silvestre AJD, Freire MG. Advances Brought by Ionic Liquids in the Development of Polymer-Based Drug Delivery Systems. Application of Ionic Liquids in Drug Delivery 2021. [DOI: 10.1007/978-981-16-4365-1_7] [Reference Citation Analysis]
314 Murugan B. Skin Cancer Treatment with Emphasis on Nanotechnology. Skin Cancer: Pathogenesis and Diagnosis 2021. [DOI: 10.1007/978-981-16-0364-8_11] [Reference Citation Analysis]
315 Shetty V, Jakhade A, Shinde K, Chikate R, Kaul-ghanekar R. Folate mediated targeted delivery of cinnamaldehyde loaded and FITC functionalized magnetic nanoparticles in breast cancer: in vitro , in vivo and pharmacokinetic studies. New J Chem 2021;45:1500-15. [DOI: 10.1039/d0nj04319b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
316 Jain S, Raza K, Agrawal AK, Vaidya A. Inorganic nanoparticles: A new avenue in improving diagnostics. Nanotechnology Applications for Cancer Chemotherapy 2021. [DOI: 10.1016/b978-0-12-817846-1.00011-4] [Reference Citation Analysis]
317 Ramalingam S, Janardhanan Sreeram K, Raghava Rao J. Green light-emitting BSA-conjugated dye supported silica nanoparticles for bio-imaging applications. New J Chem 2021;45:17116-30. [DOI: 10.1039/d1nj03848f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
318 T. D. Potential Therapeutic Approaches for SARS CoV2 Infection. Nanotechnology-COVID-19 Interface 2021. [DOI: 10.1007/978-981-33-6300-7_6] [Reference Citation Analysis]
319 Qorri B, Decarlo A, Mellon M, Szewczuk MR. Drug delivery systems in cancer therapy. Drug Delivery Devices and Therapeutic Systems 2021. [DOI: 10.1016/b978-0-12-819838-4.00016-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
320 A N, Kovooru L, Behera AK, Kumar KPP, Srivastava P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci 2021;287:102318. [PMID: 33242713 DOI: 10.1016/j.cis.2020.102318] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 19.5] [Reference Citation Analysis]
321 Espinar Buitrago MDLS, Muñoz Fernández MÁ. Dendrimers and their applications in biomedicine: Dendrimer-drug interaction, a new therapeutic alternative. Dendrimer-Based Nanotherapeutics 2021. [DOI: 10.1016/b978-0-12-821250-9.00019-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
322 Das S, Das MK. Technological challenges of theranostics in oncology. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00014-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
323 Jena L, Dunne NJ, Mccarthy HO. Nanoparticles beyond the blood-brain barrier for glioblastoma. Glioblastoma Resistance to Chemotherapy: Molecular Mechanisms and Innovative Reversal Strategies 2021. [DOI: 10.1016/b978-0-12-821567-8.00027-0] [Reference Citation Analysis]
324 Kalita S, Dhayani A, Kumar V, Sujanthi E, Vemula PK. Fate of Biomaterials Post Payload Delivery: Current Understanding and Future Perspectives. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-61021-0_9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
325 Pang C, Fan KS, Wei L, Kolar MK. Gene therapy in wound healing using nanotechnology. Wound Repair Regen 2021;29:225-39. [PMID: 33377593 DOI: 10.1111/wrr.12881] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
326 Munawar K, Alahmed AM, Khalil SMS. Delivery Methods for RNAi in Mosquito Larvae. J Insect Sci 2020;20:12. [PMID: 32725159 DOI: 10.1093/jisesa/ieaa074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
327 Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020;8:608050. [PMID: 33363134 DOI: 10.3389/fbioe.2020.608050] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
328 Adamczyk-Grochala J, Lewinska A. Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells. Cells 2020;9:E2659. [PMID: 33322013 DOI: 10.3390/cells9122659] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
329 El-fakharany EM. Nanoformulation of lactoferrin potentiates its activity and enhances novel biotechnological applications. International Journal of Biological Macromolecules 2020;165:970-84. [DOI: 10.1016/j.ijbiomac.2020.09.235] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
330 Iqbal S, Qu Y, Dong Z, Zhao J, Rauf Khan A, Rehman S, Zhao Z. Poly (β‐amino esters) based potential drug delivery and targeting polymer; an overview and perspectives (review). European Polymer Journal 2020;141:110097. [DOI: 10.1016/j.eurpolymj.2020.110097] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
331 Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Adv Therap 2021;4:2000076. [DOI: 10.1002/adtp.202000076] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
332 Essa ML, El-Kemary MA, Ebrahem Saied EM, Leporatti S, Nemany Hanafy NA. Nano targeted Therapies Made of Lipids and Polymers have Promising Strategy for the Treatment of Lung Cancer. Materials (Basel) 2020;13:E5397. [PMID: 33261031 DOI: 10.3390/ma13235397] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
333 Lan H, Huang T, Xiao J, Liao Z, Ouyang J, Dong J, Xian CJ, Hu J, Wang L, Ke Y, Liao H. The immuno-reactivity of polypseudorotaxane functionalized magnetic CDMNP-PEG-CD nanoparticles. J Cell Mol Med 2021;25:561-74. [PMID: 33210833 DOI: 10.1111/jcmm.16109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
334 Khan I, Joshi G, Sarkar B, Nakhate KT, Ajazuddin, Mantha AK, Kumar R, Kaul A, Chaturvedi S, Mishra AK, Gupta U. Doxorubicin and Crocin Co-delivery by Polymeric Nanoparticles for Enhanced Anticancer Potential In Vitro and In Vivo. ACS Appl Bio Mater 2020;3:7789-99. [PMID: 35019519 DOI: 10.1021/acsabm.0c00974] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
335 Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clin Exp Reprod Med 2020;47:245-62. [PMID: 33227186 DOI: 10.5653/cerm.2020.03650] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
336 Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020;694:108592. [PMID: 32971033 DOI: 10.1016/j.abb.2020.108592] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
337 Gao R, van der Mei HC, Ren Y, Chen H, Chen G, Busscher HJ, Peterson BW. Thermo-resistance of ESKAPE-panel pathogens, eradication and growth prevention of an infectious biofilm by photothermal, polydopamine-nanoparticles in vitro. Nanomedicine 2021;32:102324. [PMID: 33181276 DOI: 10.1016/j.nano.2020.102324] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
338 Racoviceanu R, Trandafirescu C, Voicu M, Ghiulai R, Borcan F, Dehelean C, Watz C, Aigner Z, Ambrus R, Coricovac DE, Cîrcioban D, Mioc A, Szuhanek CA, Şoica C. Solid Polymeric Nanoparticles of Albendazole: Synthesis, Physico-Chemical Characterization and Biological Activity. Molecules 2020;25:E5130. [PMID: 33158183 DOI: 10.3390/molecules25215130] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
339 Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. J Biophotonics 2021;14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
340 Ibrahim EA, Moawed FSM, Moustafa EM. Suppression of inflammatory cascades via novel cinnamic acid nanoparticles in acute hepatitis rat model. Arch Biochem Biophys 2020;696:108658. [PMID: 33144082 DOI: 10.1016/j.abb.2020.108658] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
341 Shurygina IA, Shurygin MG. Use of Nanoselenium in Chemotherapy Drug Delivery Systems. Nanotechnol Russia 2020;15:679-685. [DOI: 10.1134/s199507802006018x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
342 Rathore P, Arora I, Rastogi S, Akhtar M, Singh S, Samim M. Collagen Nanoparticle-Mediated Brain Silymarin Delivery: An Approach for Treating Cerebral Ischemia and Reperfusion-Induced Brain Injury. Front Neurosci 2020;14:538404. [PMID: 33192240 DOI: 10.3389/fnins.2020.538404] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
343 Rajan A, Sahu NK. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05045-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 10.7] [Reference Citation Analysis]
344 Baranyai Z, Soria‐carrera H, Alleva M, Millán‐placer AC, Lucía A, Martín‐rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Adv Therap 2021;4:2000113. [DOI: 10.1002/adtp.202000113] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
345 Helmbrecht H, Joseph A, McKenna M, Zhang M, Nance E. Governing Transport Principles for Nanotherapeutic Application in the Brain. Curr Opin Chem Eng 2020;30:112-9. [PMID: 33304774 DOI: 10.1016/j.coche.2020.08.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
346 Moraru C, Mincea M, Menghiu G, Ostafe V. Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules 2020;25:E4758. [PMID: 33081296 DOI: 10.3390/molecules25204758] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
347 Manspeaker MP, Thomas SN. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Adv Drug Deliv Rev 2020;160:19-35. [PMID: 33058931 DOI: 10.1016/j.addr.2020.10.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
348 Liao Z, Wong SW, Yeo HL, Zhao Y. Smart nanocarriers for cancer treatment: Clinical impact and safety. NanoImpact 2020;20:100253. [DOI: 10.1016/j.impact.2020.100253] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
349 Venditti I, Iucci G, Fratoddi I, Cipolletti M, Montalesi E, Marino M, Secchi V, Battocchio C. Direct Conjugation of Resveratrol on Hydrophilic Gold Nanoparticles: Structural and Cytotoxic Studies for Biomedical Applications. Nanomaterials (Basel) 2020;10:E1898. [PMID: 32977463 DOI: 10.3390/nano10101898] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
350 Meenambal R, Srinivas Bharath MM. Nanocarriers for effective nutraceutical delivery to the brain. Neurochem Int 2020;140:104851. [PMID: 32976906 DOI: 10.1016/j.neuint.2020.104851] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
351 Haque ST, Islam RA, Gan SH, Chowdhury EH. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Int J Mol Sci 2020;21:E6721. [PMID: 32937817 DOI: 10.3390/ijms21186721] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
352 Balanta-melo J, Gutiérrez A, Sinisterra G, Díaz-posso MDM, Gallego D, Villavicencio J, Contreras A. Rubber Dam Isolation and High-Volume Suction Reduce Ultrafine Dental Aerosol Particles: An Experiment in a Simulated Patient. Applied Sciences 2020;10:6345. [DOI: 10.3390/app10186345] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
353 Teng CW, Amirshaghaghi A, Cho SS, Cai SS, De Ravin E, Singh Y, Miller J, Sheikh S, Delikatny E, Cheng Z, Busch TM, Dorsey JF, Singhal S, Tsourkas A, Lee JYK. Combined fluorescence-guided surgery and photodynamic therapy for glioblastoma multiforme using cyanine and chlorin nanocluster. J Neurooncol 2020;149:243-52. [PMID: 32914293 DOI: 10.1007/s11060-020-03618-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
354 de Souza C, Carvalho JA, Abreu AS, de Paiva LP, Ambrósio JAR, Junior MB, de Oliveira MA, Mittmann J, Simioni AR. Polyelectrolytic gelatin nanoparticles as a drug delivery system for the promastigote form of Leishmania amazonensis treatment. J Biomater Sci Polym Ed 2021;32:1-21. [PMID: 32847485 DOI: 10.1080/09205063.2020.1815495] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
355 Patil KD, Bagade SB, Bonde SC. Biodistribution, pharmacokinetics and toxicity evaluation of mannosylated gelatin nanoparticles of linezolid for anti-tubercular therapy. Materials Technology 2022;37:95-103. [DOI: 10.1080/10667857.2020.1816021] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
356 Su S, M Kang P. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics 2020;12:E837. [PMID: 32882875 DOI: 10.3390/pharmaceutics12090837] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
357 Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci 2020;21:E6280. [PMID: 32872646 DOI: 10.3390/ijms21176280] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 13.7] [Reference Citation Analysis]
358 Acter S, Vidallon MLP, Crawford S, Tabor RF, Teo BM. Efficient Cellular Internalization and Transport of Bowl‐Shaped Polydopamine Particles. Part Part Syst Charact 2020;37:2000166. [DOI: 10.1002/ppsc.202000166] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
359 Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020;25:E3731. [PMID: 32824172 DOI: 10.3390/molecules25163731] [Cited by in Crossref: 242] [Cited by in F6Publishing: 258] [Article Influence: 80.7] [Reference Citation Analysis]
360 Shende P, Mallick C. Nanonutraceuticals: A way towards modern therapeutics in healthcare. Journal of Drug Delivery Science and Technology 2020;58:101838. [DOI: 10.1016/j.jddst.2020.101838] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
361 Pechanova O, Dayar E, Cebova M. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System. Molecules 2020;25:E3322. [PMID: 32707934 DOI: 10.3390/molecules25153322] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
362 Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020;12:E616. [PMID: 32630625 DOI: 10.3390/pharmaceutics12070616] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
363 Pucek A, Tokarek B, Waglewska E, Bazylińska U. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using "Soft" Colloidal Nanocarriers. Pharmaceutics 2020;12:E587. [PMID: 32599791 DOI: 10.3390/pharmaceutics12060587] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
364 Willis AJ, Pernal SP, Gaertner ZA, Lakka SS, Sabo ME, Creighton FM, Engelhard HH. Rotating Magnetic Nanoparticle Clusters as Microdevices for Drug Delivery. Int J Nanomedicine 2020;15:4105-23. [PMID: 32606667 DOI: 10.2147/IJN.S247985] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
365 Micheletti G, Boga C, Telese D, Cassani MC, Boanini E, Nitti P, Ballarin B, Ghirri A, Barucca G, Rinaldi D. Magnetic Nanoparticles Coated with (R)-9-Acetoxystearic Acid for Biomedical Applications. ACS Omega 2020;5:12707-15. [PMID: 32548454 DOI: 10.1021/acsomega.0c00163] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
366 Hernández-hernández AA, Aguirre-álvarez G, Cariño-cortés R, Mendoza-huizar LH, Jiménez-alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem Pap 2020;74:3809-24. [DOI: 10.1007/s11696-020-01229-8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
367 Cano-Cortes MV, Laz-Ruiz JA, Diaz-Mochon JJ, Sanchez-Martin RM. Characterization and Therapeutic Effect of a pH Stimuli Responsive Polymeric Nanoformulation for Controlled Drug Release. Polymers (Basel) 2020;12:E1265. [PMID: 32492910 DOI: 10.3390/polym12061265] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
368 Barcelo-Bovea V, Dominguez-Martinez I, Joaquin-Ovalle F, Amador LA, Castro-Rivera E, Medina-Álvarez K, McGoron A, Griebenow K, Ferrer-Acosta Y. Optimization and Characterization of Protein Nanoparticles for the Targeted and Smart Delivery of Cytochrome c to Non-Small Cell Lung Carcinoma. Cancers (Basel) 2020;12:E1215. [PMID: 32413975 DOI: 10.3390/cancers12051215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
369 Barcelo-bovea V, Dominguez-martinez I, Joaquin-ovalle F, Amador LA, Castro-rivera E, Medina-álvarez K, Mcgoron A, Griebenow K, Ferrer-acosta Y. Optimization and Characterization of Protein Nanoparticles for the Targeted and Smart Delivery of Cytochrome c to Non-Small Cell Lung Carcinoma. Cancers 2020;12:1215. [DOI: 10.3390/cancers12051215] [Reference Citation Analysis]
370 Bonferoni MC, Gavini E, Rassu G, Maestri M, Giunchedi P. Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. Nanomaterials (Basel) 2020;10:E870. [PMID: 32365938 DOI: 10.3390/nano10050870] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
371 An YH, Lee J, Son DU, Kang DH, Park MJ, Cho KW, Kim S, Kim SH, Ko J, Jang MH, Lee JY, Kim DH, Hwang NS. Facilitated Transdermal Drug Delivery Using Nanocarriers-Embedded Electroconductive Hydrogel Coupled with Reverse Electrodialysis-Driven Iontophoresis. ACS Nano 2020;14:4523-35. [PMID: 32191436 DOI: 10.1021/acsnano.0c00007] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
372 Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F, Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front Bioeng Biotechnol 2020;8:323. [PMID: 32391340 DOI: 10.3389/fbioe.2020.00323] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
373 de Souza ML, Dos Santos WM, de Sousa ALMD, de Albuquerque Wanderley Sales V, Nóbrega FP, de Oliveira MVG, Rolim-Neto PJ. Lipid Nanoparticles as a Skin Wound Healing Drug Delivery System: Discoveries and Advances. Curr Pharm Des 2020;26:4536-50. [PMID: 32303163 DOI: 10.2174/1381612826666200417144530] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
374 Li X, Zhang Y, Li B, Yang H, Cui J, Li X, Zhang X, Sun H, Meng Q, Wu S, Li S, Wang J, Aschner M, Chen R. Activation of NLRP3 in microglia exacerbates diesel exhaust particles-induced impairment in learning and memory in mice. Environ Int 2020;136:105487. [PMID: 31999974 DOI: 10.1016/j.envint.2020.105487] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
375 Bueno J. ADMETox: Bringing Nanotechnology Closer to Lipinski’s Rule of Five. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
376 Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020;10:19089-105. [DOI: 10.1039/d0ra02801k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]