BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021;8:48. [PMID: 34496967 DOI: 10.1186/s40779-021-00343-2] [Cited by in Crossref: 45] [Cited by in F6Publishing: 55] [Article Influence: 45.0] [Reference Citation Analysis]
Number Citing Articles
1 Mohammed EHM, Lohan S, Ghaffari T, Gupta S, Tiwari RK, Parang K. Membrane-Active Cyclic Amphiphilic Peptides: Broad-Spectrum Antibacterial Activity Alone and in Combination with Antibiotics. J Med Chem 2022. [DOI: 10.1021/acs.jmedchem.2c01469] [Reference Citation Analysis]
2 Casciaro B, Loffredo MR, Cappiello F, O’sullivan N, Tortora C, Manzer R, Karmakar S, Haskell A, Hasan SK, Mangoni ML. KDEON WK-11: A short antipseudomonal peptide with promising potential. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1000765] [Reference Citation Analysis]
3 V. Sunil S, Santosh Kumar HS, N. Pramod S, T. Prabhakar B, B.n. Naika M, G. Thippeswamy T, Niranjana P. Characterization and biochemical activities of novel functional antimicrobial peptide (AMP) from Trichogramma chilonis. Biomedicine 2022;42:887-897. [DOI: 10.51248/.v42i5.1946] [Reference Citation Analysis]
4 Ravichandran S, Avatapalli S, Narasimhan Y, Kaushik KS, Yennamalli RM. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets. Front Cell Infect Microbiol 2022;12:1020391. [DOI: 10.3389/fcimb.2022.1020391] [Reference Citation Analysis]
5 Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022;51:8696-755. [PMID: 36190355 DOI: 10.1039/d1cs00915j] [Reference Citation Analysis]
6 Di Somma A, Cané C, Moretta A, Illiano A, Pinto G, Cavasso D, Amoresano A, Paduano L, Duilio A. The antimicrobial peptide Magainin-2 interacts with BamA impairing folding of E. coli membrane proteins. Front Chem 2022;10:1013788. [DOI: 10.3389/fchem.2022.1013788] [Reference Citation Analysis]
7 Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022;11:1417. [PMID: 36290075 DOI: 10.3390/antibiotics11101417] [Reference Citation Analysis]
8 Kaur KD, Habimana O. Death at the interface: Nanotechnology’s challenging frontier against microbial surface colonization. Front Chem 2022;10:1003234. [DOI: 10.3389/fchem.2022.1003234] [Reference Citation Analysis]
9 Iram D, Kindarle UA, Sansi MS, Meena S, Puniya AK, Vij S. Peptidomics‐based identification of an antimicrobial peptide derived from goat milk fermented by Lactobacillus rhamnosus ( C25 ). Journal of Food Biochemistry. [DOI: 10.1111/jfbc.14450] [Reference Citation Analysis]
10 Hao Z, Chen R, Chai C, Wang Y, Chen T, Li H, Hu Y, Feng Q, Li J. Antimicrobial peptides for bone tissue engineering: Diversity, effects and applications. Front Bioeng Biotechnol 2022;10:1030162. [DOI: 10.3389/fbioe.2022.1030162] [Reference Citation Analysis]
11 Hoelscher MP, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun 2022;13:5856. [PMID: 36195597 DOI: 10.1038/s41467-022-33516-1] [Reference Citation Analysis]
12 Kang SJ, Nam SH, Lee BJ. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiotics (Basel) 2022;11:1338. [PMID: 36289996 DOI: 10.3390/antibiotics11101338] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Jariyarattanarach P, Klubthawee N, Wongchai M, Roytrakul S, Aunpad R. Novel D-form of hybrid peptide (D-AP19) rapidly kills Acinetobacter baumannii while tolerating proteolytic enzymes. Sci Rep 2022;12:15852. [PMID: 36151303 DOI: 10.1038/s41598-022-20236-1] [Reference Citation Analysis]
14 Lobognon VD, Alard J. Could AMPs and B-cells be the missing link in understanding periodontitis? Front Immunol 2022;13:887147. [DOI: 10.3389/fimmu.2022.887147] [Reference Citation Analysis]
15 Maleš M, Zoranić L. Simulation Study of the Effect of Antimicrobial Peptide Associations on the Mechanism of Action with Bacterial and Eukaryotic Membranes. Membranes (Basel) 2022;12:891. [PMID: 36135911 DOI: 10.3390/membranes12090891] [Reference Citation Analysis]
16 Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.950823] [Reference Citation Analysis]
17 Lei W, Hao L, You S, Yao H, Liu C, Zhou H. Partial purification and application of a bacteriocin produced by probiotic Lactococcus lactis C15 isolated from raw milk. LWT 2022. [DOI: 10.1016/j.lwt.2022.113917] [Reference Citation Analysis]
18 Agakidou E, Agakidis C, Kontou A, Chotas W, Sarafidis K. Antimicrobial Peptides in Early-Life Host Defense, Perinatal Infections, and Necrotizing Enterocolitis—An Update. JCM 2022;11:5074. [DOI: 10.3390/jcm11175074] [Reference Citation Analysis]
19 Carrera-aubesart A, Defaus S, Pérez-peinado C, Sandín D, Torrent M, Jiménez MÁ, Andreu D. Examining Topoisomers of a Snake-Venom-Derived Peptide for Improved Antimicrobial and Antitumoral Properties. Biomedicines 2022;10:2110. [DOI: 10.3390/biomedicines10092110] [Reference Citation Analysis]
20 Ravichandran S, Avatapalli SS, Narasimhan Y, Kaushik KS, Yennamalli RM. ‘Targeting’ the Search: An Upgraded Structural and Functional Repository of Antimicrobial Peptides for Biofilm Studies (B-AMP v2.0) with a Focus on Biofilm Protein Targets.. [DOI: 10.1101/2022.08.11.503698] [Reference Citation Analysis]
21 Baindara P, Mandal SM. Plant-Derived Antimicrobial Peptides: Novel Preservatives for the Food Industry. Foods 2022;11:2415. [DOI: 10.3390/foods11162415] [Reference Citation Analysis]
22 Getahun YA, Ali DA, Taye BW, Alemayehu YA. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. VMRR 2022;Volume 13:173-190. [DOI: 10.2147/vmrr.s366533] [Reference Citation Analysis]
23 Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. Front Oral Health 2022;3. [DOI: 10.3389/froh.2022.958480] [Reference Citation Analysis]
24 Ruczyński J, Parfianowicz B, Mucha P, Wiśniewska K, Piechowicz L, Rekowski P. Structure-Activity Relationship of New Chimeric Analogs of Mastoparan from the Wasp Venom Paravespula lewisii. Int J Mol Sci 2022;23:8269. [PMID: 35897844 DOI: 10.3390/ijms23158269] [Reference Citation Analysis]
25 Todorov P, Georgieva S, Staneva D, Peneva P, Grozdanov P, Nikolova I, Vasileva-Tonkova E, Grabchev I. Study of Novel Peptides for Antimicrobial Protection in Solution and on Cotton Fabric. Molecules 2022;27:4770. [PMID: 35897948 DOI: 10.3390/molecules27154770] [Reference Citation Analysis]
26 Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A. Mesenchymal Stem Cell-Derived Antimicrobial Peptides as Potential Anti-Neoplastic Agents: New Insight into Anticancer Mechanisms of Stem Cells and Exosomes. Front Cell Dev Biol 2022;10:900418. [PMID: 35874827 DOI: 10.3389/fcell.2022.900418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Edwin Paul, P. Ganesan, V. Jaisankar. Design and Synthesis of certain Novel Peptides for Dual Selective Activity of Specific Cells. IJSRSET 2022. [DOI: 10.32628/ijsrset229432] [Reference Citation Analysis]
28 Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics 2022;11:951. [DOI: 10.3390/antibiotics11070951] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Iannuzo N, Haller YA, Mcbride M, Mehari S, Lainson JC, Diehnelt CW, Haydel SE. High-Throughput Screening Identifies Synthetic Peptides with Antibacterial Activity against Mycobacterium abscessus and Serum Stability. ACS Omega. [DOI: 10.1021/acsomega.2c02844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 de Santana CJC, Pires Júnior OR, Fontes W, Palma MS, Castro MS. Mastoparans: A Group of Multifunctional α-Helical Peptides With Promising Therapeutic Properties. Front Mol Biosci 2022;9:824989. [DOI: 10.3389/fmolb.2022.824989] [Reference Citation Analysis]
31 Vishnepolsky B, Grigolava M, Managadze G, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, Pirtskhalava M. Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction. Brief Bioinform 2022:bbac233. [PMID: 35724561 DOI: 10.1093/bib/bbac233] [Reference Citation Analysis]
32 Shen S, Hou N. Adverse Drug Reactions Caused by Antimicrobials Treatment for Ventilator-Associated Pneumonia. Front Pharmacol 2022;13:921307. [PMID: 35712710 DOI: 10.3389/fphar.2022.921307] [Reference Citation Analysis]
33 Atipairin A, Songnaka N, Krobthong S, Yingchutrakul Y, Chinnawong T, Wanganuttara T. Identification and Characterization of a Potential Antimicrobial Peptide Isolated from Soil Brevibacillus sp. WUL10 and Its Activity against MRSA Pathogens. Trop Med Infect Dis 2022;7:93. [PMID: 35736972 DOI: 10.3390/tropicalmed7060093] [Reference Citation Analysis]
34 Lin Y, Jiang Y, Zhao Z, Lu Y, Xi X, Ma C, Chen X, Zhou M, Chen T, Shaw C, Wang L. Discovery of a Novel Antimicrobial Peptide, Temporin-PKE, from the Skin Secretion of Pelophylax kl. esculentus, and Evaluation of Its Structure-Activity Relationships. Biomolecules 2022;12:759. [DOI: 10.3390/biom12060759] [Reference Citation Analysis]
35 Gaglione R, Pane K, De Luca M, Franzese M, Arciello A, Trama F, Brancorsini S, Salvatore M, Illiano E, Costantini E. Novel Antimicrobial Strategies to Prevent Biofilm Infections in Catheters after Radical Cystectomy: A Pilot Study. Life 2022;12:802. [DOI: 10.3390/life12060802] [Reference Citation Analysis]
36 Pandit G, Sarkar T, S R V, Debnath S, Satpati P, Chatterjee S. Delineating the Mechanism of Action of a Protease Resistant and Salt Tolerant Synthetic Antimicrobial Peptide against Pseudomonas aeruginosa. ACS Omega 2022;7:15951-68. [PMID: 35571791 DOI: 10.1021/acsomega.2c01089] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022;27:2675. [PMID: 35566025 DOI: 10.3390/molecules27092675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Feurstein C, Meyer V, Jung S. Structure–Activity Predictions From Computational Mining of Protein Databases to Assist Modular Design of Antimicrobial Peptides. Front Microbiol 2022;13:812903. [DOI: 10.3389/fmicb.2022.812903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Saeed SI, Mergani A, Aklilu E, Kamaruzzman NF. Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock. Front Vet Sci 2022;9:851052. [DOI: 10.3389/fvets.2022.851052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Mueller A, Brockmueller A, Fahimi N, Ghotbi T, Hashemi S, Sadri S, Khorshidi N, Kunnumakkara AB, Shakibaei M. Bacteria-Mediated Modulatory Strategies for Colorectal Cancer Treatment. Biomedicines 2022;10:832. [DOI: 10.3390/biomedicines10040832] [Reference Citation Analysis]
41 Cavaco M, Castanho MARB, Neves V. The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections. Front Microbiol 2022;13:835677. [PMID: 35330773 DOI: 10.3389/fmicb.2022.835677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Depta J, Małkowska P, Wysokińska M, Todorska K, Sierawska O, Hrynkiewicz R, Bębnowska D, Niedźwiedzka-rystwej P. Therapeutic Role of Antimicrobial Peptides in Diabetes Mellitus. Biologics 2022;2:92-106. [DOI: 10.3390/biologics2010008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022;12:819563. [PMID: 35280755 DOI: 10.3389/fonc.2022.819563] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
44 Stuart BAR, Franitza AL, E L. Regulatory Roles of Antimicrobial Peptides in the Nervous System: Implications for Neuronal Aging. Front Cell Neurosci 2022;16:843790. [DOI: 10.3389/fncel.2022.843790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Mir Derikvand R, Sohrabi SS, Sohrabi SM, Samiei K, Department of Plant Genetics and Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran, Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran, Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran, Department of Agriculture, Kangavar Branch, Islamic Azad University, Kangavar, Iran. Identification, Isolation and Expression Analysis of Hevein gene Family in Barley (Hordeum vulgar). pgr 2022;8:83-102. [DOI: 10.52547/pgr.8.2.7] [Reference Citation Analysis]
46 Magda M, Bettoni S, Laabei M, Fairley D, Russo TA, Riesbeck K, Blom AM. Clinical Isolates of Acinetobacter spp. Are Highly Serum Resistant Despite Efficient Recognition by the Complement System. Front Immunol 2022;13:814193. [DOI: 10.3389/fimmu.2022.814193] [Reference Citation Analysis]
47 Kaur R, Arora N, Nair MG, Prasad A. The interplay of helminthic neuropeptides and proteases in parasite survival and host immunomodulation. Biochemical Society Transactions 2022. [DOI: 10.1042/bst20210405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Tong X, Li J, Wei R, Gong L, Ji X, He T, Wang R. RW-BP100-4D, a Promising Antimicrobial Candidate With Broad-Spectrum Bactericidal Activity. Front Microbiol 2022;12:815980. [DOI: 10.3389/fmicb.2021.815980] [Reference Citation Analysis]
49 Wu X, Jin S, Ding C, Wang Y, He D, Liu Y. Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Front Microbiol 2021;12:804813. [PMID: 35046923 DOI: 10.3389/fmicb.2021.804813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Bolatchiev A. Antimicrobial Peptides Epinecidin-1 and Beta-Defesin-3 Are Effective against a Broad Spectrum of Antibiotic-Resistant Bacterial Isolates and Increase Survival Rate in Experimental Sepsis. Antibiotics (Basel) 2022;11:76. [PMID: 35052952 DOI: 10.3390/antibiotics11010076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
51 Kravchenko SV, Domnin PA, Grishin SY, Panfilov AV, Azev VN, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Glyakina AV, Fadeev RS, Ermolaeva SA, Galzitskaya OV. Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. Int J Mol Sci 2022;23:524. [PMID: 35008951 DOI: 10.3390/ijms23010524] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
52 Mao Y, Zhou S, Xu M, Zeng S, Fan W, Yu L, Lin N. The Metabolic Stability of Antimicrobial Peptides IK8 in Plasma and Liver S9. Applied Sciences 2021;11:11661. [DOI: 10.3390/app112411661] [Reference Citation Analysis]
53 Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2021;:1-24. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Reference Citation Analysis]
54 Mendes RJ, Sario S, Luz JP, Tassi N, Teixeira C, Gomes P, Tavares F, Santos C. Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. Plants (Basel) 2021;10:2637. [PMID: 34961108 DOI: 10.3390/plants10122637] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Mastore M, Quadroni S, Caramella S, Brivio MF. The Silkworm as a Source of Natural Antimicrobial Preparations: Efficacy on Various Bacterial Strains. Antibiotics (Basel) 2021;10:1339. [PMID: 34827277 DOI: 10.3390/antibiotics10111339] [Reference Citation Analysis]