BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019;6:23. [PMID: 31304563 DOI: 10.1186/s40580-019-0193-2] [Cited by in Crossref: 149] [Cited by in F6Publishing: 201] [Article Influence: 49.7] [Reference Citation Analysis]
Number Citing Articles
1 Devi N, Cokca C, Sharma R, Kumar M, Peneva K, Sharma RK, Wangoo N. Fabrication of cell penetrating peptide labelled biodegradable poly(methacrylamide) nanoparticles for delivery of doxorubicin in HeLa cells. Materials Today Communications 2022;33:104233. [DOI: 10.1016/j.mtcomm.2022.104233] [Reference Citation Analysis]
2 Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022;6:400-23. [PMID: 36051855 DOI: 10.7150/ntno.74613] [Reference Citation Analysis]
3 Abadi B, Hosseinalipour S, Nikzad S, Pourshaikhali S, Fathalipour-rayeni H, Shafiei G, Adeli-sardou M, Shakibaie M, Forootanfar H. Capping Agents for Selenium Nanoparticles in Biomedical Applications. J Clust Sci. [DOI: 10.1007/s10876-022-02341-3] [Reference Citation Analysis]
4 Noubissi Nzeteu GA, Gibbs BF, Kotnik N, Troja A, Bockhorn M, Meyer NH. Nanoparticle-based immunotherapy of pancreatic cancer. Front Mol Biosci 2022;9:948898. [DOI: 10.3389/fmolb.2022.948898] [Reference Citation Analysis]
5 Ko C, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01582-8] [Reference Citation Analysis]
6 Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022;27:5236. [DOI: 10.3390/molecules27165236] [Reference Citation Analysis]
7 Ozaydin MS, Doganturk L, Ulucan-karnak F, Akdogan O, Erkoc P. Contemporary Tools for the Cure against Pernicious Microorganisms: Micro-/Nanorobots. Prosthesis 2022;4:424-43. [DOI: 10.3390/prosthesis4030034] [Reference Citation Analysis]
8 Uskoković V, Pejčić A, Koliqi R, Anđelković Z. Polymeric Nanotechnologies for the Treatment of Periodontitis: A Chronological Review. Int J Pharm 2022;:122065. [PMID: 35932930 DOI: 10.1016/j.ijpharm.2022.122065] [Reference Citation Analysis]
9 Sachdeva V, Monga A, Vashisht R, Singh D, Singh A, Bedi N. Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology 2022;74:103585. [DOI: 10.1016/j.jddst.2022.103585] [Reference Citation Analysis]
10 Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022. [PMID: 35876959 DOI: 10.1007/s12015-022-10426-9] [Reference Citation Analysis]
11 Tian C, Zheng S, Liu X, Kamei KI. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. J Nanobiotechnology 2022;20:338. [PMID: 35858898 DOI: 10.1186/s12951-022-01552-0] [Reference Citation Analysis]
12 Flores de los Rios PA, Casañas Pimentel RG, San Martín Martínez E. Nanodrugs against cancer: biological considerations in its redesign. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2097680] [Reference Citation Analysis]
13 Hou S, Hasnat M, Chen Z, Liu Y, Faran Ashraf Baig MM, Liu F, Chen Z. Application Perspectives of Nanomedicine in Cancer Treatment. Front Pharmacol 2022;13:909526. [DOI: 10.3389/fphar.2022.909526] [Reference Citation Analysis]
14 Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022;10:916952. [DOI: 10.3389/fbioe.2022.916952] [Reference Citation Analysis]
15 Cheng Z, Que H, Chen L, Sun Q, Wei X. Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022;14:1372. [DOI: 10.3390/pharmaceutics14071372] [Reference Citation Analysis]
16 Ejigah V, Owoseni O, Bataille-backer P, Ogundipe OD, Fisusi FA, Adesina SK. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers 2022;14:2601. [DOI: 10.3390/polym14132601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sangjan A, Boonsith S, Sansanaphongpricha K, Thinbanmai T, Ratchahat S, Laosiripojana N, Wu KC, Shin HS, Sakdaronnarong C. Facile preparation of aqueous-soluble fluorescent polyethylene glycol functionalized carbon dots from palm waste by one-pot hydrothermal carbonization for colon cancer nanotheranostics. Sci Rep 2022;12:10550. [PMID: 35732805 DOI: 10.1038/s41598-022-14704-x] [Reference Citation Analysis]
18 Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang SY, Asmatulu E. Polymeric biomaterials for wound healing applications: a comprehensive review. J Biomater Sci Polym Ed 2022;:1-53. [PMID: 35695023 DOI: 10.1080/09205063.2022.2088528] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022;14:1213. [PMID: 35745786 DOI: 10.3390/pharmaceutics14061213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sengupta P, Choudhury H, Dutta S, Jacob S, Kesharwani P, Gorain B. Current Strategies in Breast Cancer Therapy: Role of Epigenetics and Nanomedicine. Part & Part Syst Charact. [DOI: 10.1002/ppsc.202100276] [Reference Citation Analysis]
21 Li C, Zeng X, Qiu S, Gu Y, Zhang Y. Nanomedicine for urologic cancers: diagnosis and management. Semin Cancer Biol 2022:S1044-579X(22)00125-0. [PMID: 35660001 DOI: 10.1016/j.semcancer.2022.05.014] [Reference Citation Analysis]
22 Mehan S, Arora N, Bhalla S, Khan A, U Rehman M, Alghamdi BS, Zughaibi TA, Ashraf GM. Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. Molecules 2022;27:3561. [PMID: 35684498 DOI: 10.3390/molecules27113561] [Reference Citation Analysis]
23 Yadav S, Sadique MA, Pal M, Khan R, Srivastava AK. Cytotoxicity and DNA fragmentation-mediated apoptosis response of hexagonal ZnO nanorods against human prostate cancer cells. Applied Surface Science Advances 2022;9:100237. [DOI: 10.1016/j.apsadv.2022.100237] [Reference Citation Analysis]
24 Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Bioscience 2022;47:101695. [DOI: 10.1016/j.fbio.2022.101695] [Reference Citation Analysis]
25 Pandey J, Dubey R, Kate A, Prasad B, Sinha A, Mishra MS. Nanomedicines: A Focus on Nanomaterials as Drug Delivery System with Current Trends and Future Advancement. Drug Res (Stuttg). [DOI: 10.1055/a-1824-4619] [Reference Citation Analysis]
26 Shete MB, Deshpande AS, Shende P. Silybin-based herbal nanocarriers: an advancement in anticancer therapy. Materials Technology. [DOI: 10.1080/10667857.2022.2081286] [Reference Citation Analysis]
27 Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials (Basel) 2022;12:1807. [PMID: 35683663 DOI: 10.3390/nano12111807] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. Nano Convergence 2022;9. [DOI: 10.1186/s40580-022-00313-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Poonaki E, Nickel AC, Shafiee Ardestani M, Rademacher L, Kaul M, Apartsin E, Meuth SG, Gorji A, Janiak C, Kahlert UD. CD133-Functionalized Gold Nanoparticles as a Carrier Platform for Telaglenastat (CB-839) against Tumor Stem Cells. Int J Mol Sci 2022;23:5479. [PMID: 35628289 DOI: 10.3390/ijms23105479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Naki T, Aderibigbe BA. Efficacy of Polymer-Based Nanomedicine for the Treatment of Brain Cancer. Pharmaceutics 2022;14:1048. [DOI: 10.3390/pharmaceutics14051048] [Reference Citation Analysis]
31 Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022;:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Pahwa R, Chhabra J, Kumar R, Narang R. Melphalan: Recent insights on synthetic, analytical and medicinal aspects. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114494] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Mokhosi SR, Mdlalose W, Nhlapo A, Singh M. Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics 2022;14:937. [DOI: 10.3390/pharmaceutics14050937] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
34 Gowd V, Ahmad A, Tarique M, Suhail M, Zughaibi TA, Tabrez S, Khan R. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.03.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
35 Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, Singh N, Tiwari P, Aggarwal N, Kumar A, Mishra PR. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.04.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Xu M, Tao J, Wei Z, Cheng Q, Yang H, Lee SM, Luo KQ, Ge W, Wang R, Zheng Y. Visualization of host-guest interactions driven bioorthogonal homing effects at the single cell level in vivo. Nano Today 2022;43:101450. [DOI: 10.1016/j.nantod.2022.101450] [Reference Citation Analysis]
37 Khan N, Ruchika, Kumar Dhritlahre R, Saneja A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.04.011] [Reference Citation Analysis]
38 Kumar K, Rani V, Mishra M, Chawla R. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. Current Research in Pharmacology and Drug Discovery 2022. [DOI: 10.1016/j.crphar.2022.100103] [Reference Citation Analysis]
39 Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery. Materials (Basel) 2022;15:2374. [PMID: 35407706 DOI: 10.3390/ma15072374] [Reference Citation Analysis]
40 Baipaywad P, Hong SV, Kim JB, Hwang J, Choi J, Park H, Paik T. Single-step acid-catalyzed synthesis of luminescent colloidal organosilica nanobeads. Nano Convergence 2022;9. [DOI: 10.1186/s40580-022-00303-z] [Reference Citation Analysis]
41 Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022. [PMID: 35167255 DOI: 10.1021/acs.bioconjchem.1c00546] [Reference Citation Analysis]
42 Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
43 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
44 Bruinsmann FA, de Cristo Soares Alves A, de Fraga Dias A, Lopes Silva LF, Visioli F, Raffin Pohlmann A, Figueiró F, Sonvico F, Stanisçuaski Guterres S. Nose-to-brain delivery of simvastatin mediated by chitosan-coated lipid-core nanocapsules allows for the treatment of glioblastoma in vivo. Int J Pharm 2022;616:121563. [PMID: 35151819 DOI: 10.1016/j.ijpharm.2022.121563] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Mehanna MM, Abla KK. siRNA nanohybrid systems: false hope or feasible answer in cancer management. Ther Deliv 2022. [PMID: 35105155 DOI: 10.4155/tde-2021-0068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022;12:457. [DOI: 10.3390/nano12030457] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 20.0] [Reference Citation Analysis]
48 Yoong WC, Loke CF, Juan JC, Yusoff K, Mohtarrudin N, Tatsuma T, Xu Y, Lim TH. Alginate-enabled green synthesis of S/Ag1.93S nanoparticles, their photothermal property and in-vitro assessment of their anti-skin-cancer effects augmented by a NIR laser. Int J Biol Macromol 2022:S0141-8130(22)00078-2. [PMID: 35041888 DOI: 10.1016/j.ijbiomac.2022.01.062] [Reference Citation Analysis]
49 Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022;27:473. [PMID: 35056788 DOI: 10.3390/molecules27020473] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Tae H, Park S, Ma GJ, Cho NJ. Nanoarchitectured air-stable supported lipid bilayer incorporating sucrose-bicelle complex system. Nano Converg 2022;9:3. [PMID: 35015161 DOI: 10.1186/s40580-021-00292-5] [Reference Citation Analysis]
51 Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, S Abdalla M, Bechelany M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials (Basel) 2022;12:177. [PMID: 35055196 DOI: 10.3390/nano12020177] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 20.0] [Reference Citation Analysis]
52 Yurtdaş-kırımlıoğlu G, Görgülü Ş, Güleç K, Kıyan HT. Nanoarchitectonics of PLGA based polymeric nanoparticles with oseltamivir phosphate for lung cancer therapy: In vitro-in vivo evaluation. Journal of Drug Delivery Science and Technology 2022;67:102996. [DOI: 10.1016/j.jddst.2021.102996] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Ji W, Li Y, Peng H, Zhao R, Zhang X. Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Adv Drug Deliv Rev 2022;180:114029. [PMID: 34752841 DOI: 10.1016/j.addr.2021.114029] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022;11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Reference Citation Analysis]
55 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
56 Kaushik N, Oh H, Lim Y, Kumar Kaushik N, Nguyen LN, Choi EH, Kim JH. Screening of Hibiscus and Cinnamomum Plants and Identification of Major Phytometabolites in Potential Plant Extracts Responsible for Apoptosis Induction in Skin Melanoma and Lung Adenocarcinoma Cells. Front Bioeng Biotechnol 2021;9:779393. [PMID: 34957073 DOI: 10.3389/fbioe.2021.779393] [Reference Citation Analysis]
57 Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021;57:13662-77. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Reference Citation Analysis]
58 Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021;23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Barathan M, Zulpa AK, Mee Hoong S, Vellasamy KM, Vadivelu J. Synergistic effect of hyperforin and paclitaxel on growth inhibition, apoptotic mediator activation in MCF-7 human breast cancer cells. Journal of Taibah University for Science 2021;15:918-27. [DOI: 10.1080/16583655.2021.2010910] [Reference Citation Analysis]
60 Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. Curr Res Microb Sci 2021;2:100078. [PMID: 34841367 DOI: 10.1016/j.crmicr.2021.100078] [Reference Citation Analysis]
61 Darroudi M, Gholami M, Rezayi M, Khazaei M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J Nanobiotechnology 2021;19:399. [PMID: 34844632 DOI: 10.1186/s12951-021-01150-6] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
62 Demirtürk N, Bilensoy E. Nanocarriers targeting the diseases of the pancreas. Eur J Pharm Biopharm 2021:S0939-6411(21)00337-4. [PMID: 34852262 DOI: 10.1016/j.ejpb.2021.11.006] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
63 Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021;26:7134. [PMID: 34885716 DOI: 10.3390/molecules26237134] [Reference Citation Analysis]
64 Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021;:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
65 Ling D. Dynamic nanoassembly-based drug delivery systems on the horizon. J Control Release 2021;339:547-52. [PMID: 34478749 DOI: 10.1016/j.jconrel.2021.08.045] [Reference Citation Analysis]
66 Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. Nano Converg 2021;8:34. [PMID: 34727233 DOI: 10.1186/s40580-021-00282-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
67 Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J. Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2021;13:1829. [PMID: 34834243 DOI: 10.3390/pharmaceutics13111829] [Reference Citation Analysis]
68 Low SS, Lim CN, Yew M, Chai WS, Low LE, Manickam S, Tey BT, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. Ultrason Sonochem 2021;80:105805. [PMID: 34706321 DOI: 10.1016/j.ultsonch.2021.105805] [Reference Citation Analysis]
69 Giordano F, Lenna S, Rampado R, Brozovich A, Hirase T, Tognon MG, Martini F, Agostini M, Yustein JT, Taraballi F. Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. Adv Therap 2021;4:2100152. [DOI: 10.1002/adtp.202100152] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
71 Puccini J, Badgley MA, Bar-Sagi D. Exploiting cancer's drinking problem: regulation and therapeutic potential of macropinocytosis. Trends Cancer 2021:S2405-8033(21)00194-1. [PMID: 34649835 DOI: 10.1016/j.trecan.2021.09.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
72 Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials (Basel) 2021;14:5978. [PMID: 34683568 DOI: 10.3390/ma14205978] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Marsili L, Dal Bo M, Berti F, Toffoli G. Thermoresponsive Chitosan-Grafted-Poly(N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics 2021;13:1654. [PMID: 34683947 DOI: 10.3390/pharmaceutics13101654] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release 2021;338:367-93. [PMID: 34461174 DOI: 10.1016/j.jconrel.2021.08.044] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021;296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
76 Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. Nanomaterials (Basel) 2021;11:2579. [PMID: 34685018 DOI: 10.3390/nano11102579] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Sharifi-Rad J, Quispe C, Mukazhanova Z, Knut E, Turgumbayeva A, Kipchakbayeva A, Seitimova G, Mahomoodally MF, Lobine D, Koay A, Wang J, Sheridan H, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Rescigno A, Zucca P, Sytar O, Imran M, Rodrigues CF, Cruz-Martins N, Ekiert H, Kumar M, Abdull Razis AF, Sunusi U, Kamal RM, Szopa A. Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Front Mol Biosci 2021;8:649395. [PMID: 34540888 DOI: 10.3389/fmolb.2021.649395] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Gursu BY, Dag İ, Dikmen G. Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. Int Microbiol 2021. [PMID: 34528147 DOI: 10.1007/s10123-021-00210-z] [Reference Citation Analysis]
79 Chiang CJ, Hong YH. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep 2021;11:18172. [PMID: 34518590 DOI: 10.1038/s41598-021-97457-3] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
80 Yurtdaş-Kırımlıoğlu G, Güleç K, Görgülü Ş, Kıyan HT. Oseltamivir phosphate loaded pegylated-Eudragit nanoparticles for lung cancer therapy: Characterization, prolonged release, cytotoxicity profile, apoptosis pathways and in vivo anti-angiogenic effect by using CAM assay. Microvasc Res 2021;139:104251. [PMID: 34520775 DOI: 10.1016/j.mvr.2021.104251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021;13:1391. [PMID: 34575464 DOI: 10.3390/pharmaceutics13091391] [Reference Citation Analysis]
82 Abu Lila AS, Abdallah MH, Wani SUD, Gangadharappa H, Younes KM, Khafagy E, Shehata TM, Soliman MS. Folic acid-conjugated raloxifene-loaded graphene-based nanocarrier: Fabrication, characterization and antitumor screening. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;625:126971. [DOI: 10.1016/j.colsurfa.2021.126971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
83 Murugan B, Sagadevan S, Fatimah I, Oh W, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. Nanotechnology Reviews 2021;10:933-53. [DOI: 10.1515/ntrev-2021-0067] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Umapathi A, Kumawat M, Daima HK. Engineered nanomaterials for biomedical applications and their toxicity: a review. Environ Chem Lett. [DOI: 10.1007/s10311-021-01307-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
85 Hussein HA, Abdullah MA. Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Appl Nanosci. [DOI: 10.1007/s13204-021-02018-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS Appl Bio Mater 2021;4:5908-25. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
87 Fröhlich E, Wahl R. Nanoparticles: Promising Auxiliary Agents for Diagnosis and Therapy of Thyroid Cancers. Cancers (Basel) 2021;13:4063. [PMID: 34439219 DOI: 10.3390/cancers13164063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Štefík P, Annušová A, Lakatoš B, Elefantová K, Čepcová L, Hofbauerová M, Kálosi A, Jergel M, Majková E, Šiffalovič P. Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS2-based nanoconjugates. Biomed Mater 2021;16. [PMID: 34280914 DOI: 10.1088/1748-605X/ac15b1] [Reference Citation Analysis]
89 Mao Y, Qamar M, Qamar SA, Khan MI, Bilal M, Iqbal HM. Insight of nanomedicine strategies for a targeted delivery of nanotherapeutic cues to cope with the resistant types of cancer stem cells. Journal of Drug Delivery Science and Technology 2021;64:102681. [DOI: 10.1016/j.jddst.2021.102681] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
90 Alalaiwe A. Bioconjugated nanometals and cancer therapy: a pharmaceutical perspective. Nanomedicine (Lond) 2021;16:1791-811. [PMID: 34296631 DOI: 10.2217/nnm-2021-0010] [Reference Citation Analysis]
91 Patel G, Patra C, Srinivas SP, Kumawat M, Navya PN, Daima HK. Methods to evaluate the toxicity of engineered nanomaterials for biomedical applications: a review. Environ Chem Lett 2021;19:4253-74. [DOI: 10.1007/s10311-021-01280-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
92 Xavierselvan M, Divecha HR, Hajra M, Silwal S, Macwan I. Towards Tumor Targeting via Invasive Assay Using Magnetospirillum magneticum. Front Microbiol 2021;12:697132. [PMID: 34367097 DOI: 10.3389/fmicb.2021.697132] [Reference Citation Analysis]
93 Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021;11:682. [PMID: 34357054 DOI: 10.3390/life11070682] [Reference Citation Analysis]
94 Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of Olmesartan Medoxomil-Loaded Nanosponges for Hypertension and Lung Cancer Treatments. Polymers (Basel) 2021;13:2272. [PMID: 34301030 DOI: 10.3390/polym13142272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Skopinska-Wisniewska J, De la Flor S, Kozlowska J. From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances. Int J Mol Sci 2021;22:7402. [PMID: 34299020 DOI: 10.3390/ijms22147402] [Reference Citation Analysis]
96 Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021;191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Reference Citation Analysis]
97 Gunathilake TMSU, Ching YC, Uyama H, Chuah CH. Nanotherapeutics for treating coronavirus diseases. J Drug Deliv Sci Technol 2021;64:102634. [PMID: 34127930 DOI: 10.1016/j.jddst.2021.102634] [Reference Citation Analysis]
98 Swaminathan G, Shigna A, Kumar A, Byroju VV, Durgempudi VR, Dinesh Kumar L. RNA Interference and Nanotechnology: A Promising Alliance for Next Generation Cancer Therapeutics. Front Nanotechnol 2021;3:694838. [DOI: 10.3389/fnano.2021.694838] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
99 Trivedi S, Wadher K, Umekar M. Development of topical thymoquinone loaded polymer-lipid hybrid vesicular gel: in-vitro and ex-vivo evaluation. J Liposome Res 2021;:1-13. [PMID: 34003069 DOI: 10.1080/08982104.2021.1929311] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Mai NXD, Nguyen TT, Vong LB, Dang MD, Nguyen TTT, Nguyen LHT, Ta HKT, Nguyen TH, Phan TB, Doan TLH. Tailoring chemical compositions of biodegradable mesoporous organosilica nanoparticles for controlled slow release of chemotherapeutic drug. Mater Sci Eng C Mater Biol Appl 2021;127:112232. [PMID: 34225873 DOI: 10.1016/j.msec.2021.112232] [Reference Citation Analysis]
101 More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, Naik JB, Kulkarni AD. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Medicine in Drug Discovery 2021;10:100082. [DOI: 10.1016/j.medidd.2021.100082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
102 Shi L, Devanathadesikan Seshadri V, Mustafa Poyil M, Karrar Alsharif MH, Kaveriyappan Govindarajan R, Ock Kim Y, Won Na S, Kim H, Gabr GA, Mohammed Zaki R. Therapeutic potential of galactosamine-modified hollow silica nanoparticle for improved drug targeting to liver cancer. Journal of King Saud University - Science 2021;33:101434. [DOI: 10.1016/j.jksus.2021.101434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S. Graphene Oxide Loaded with Protocatechuic Acid and Chlorogenic Acid Dual Drug Nanodelivery System for Human Hepatocellular Carcinoma Therapeutic Application. Int J Mol Sci 2021;22:5786. [PMID: 34071389 DOI: 10.3390/ijms22115786] [Reference Citation Analysis]
104 Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers (Basel) 2021;13:1717. [PMID: 34074020 DOI: 10.3390/polym13111717] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021;9:3576-602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Li D, Wang G, Mei X. Diagnosis of cancer at early stages based on the multiplex detection of tumor markers using metal nanoclusters. Analyst 2020;145:7150-61. [PMID: 33020766 DOI: 10.1039/d0an01538e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
107 Lima‐sousa R, Melo BL, Alves CG, Moreira AF, Mendonça AG, Correia IJ, de Melo‐diogo D. Combining Photothermal‐Photodynamic Therapy Mediated by Nanomaterials with Immune Checkpoint Blockade for Metastatic Cancer Treatment and Creation of Immune Memory. Adv Funct Mater 2021;31:2010777. [DOI: 10.1002/adfm.202010777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
108 Abbasi M, Ghoran SH, Niakan MH, Jamali K, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials 2021;319:110967. [DOI: 10.1016/j.micromeso.2021.110967] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
109 Kang ES, Kim H, Han Y, Cho YW, Son H, Luo Z, Kim TH. Enhancing osteogenesis of adipose-derived mesenchymal stem cells using gold nanostructure/peptide-nanopatterned graphene oxide. Colloids Surf B Biointerfaces 2021;204:111807. [PMID: 33964530 DOI: 10.1016/j.colsurfb.2021.111807] [Reference Citation Analysis]
110 Taritla S, Kumari M, Kamat S, Bhat SG, Jayabaskaran C. Optimization of PhysicoChemical Parameters for Production of Cytotoxic Secondary Metabolites and Apoptosis Induction Activities in the Culture Extract of a Marine Algal-Derived Endophytic Fungus Aspergillus sp. Front Pharmacol 2021;12:542891. [PMID: 33981211 DOI: 10.3389/fphar.2021.542891] [Reference Citation Analysis]
111 Nocito G, Calabrese G, Forte S, Petralia S, Puglisi C, Campolo M, Esposito E, Conoci S. Carbon Dots as Promising Tools for Cancer Diagnosis and Therapy. Cancers (Basel) 2021;13:1991. [PMID: 33919096 DOI: 10.3390/cancers13091991] [Reference Citation Analysis]
112 Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021;13:1896. [PMID: 33920840 DOI: 10.3390/cancers13081896] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
113 Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021;18:1261-90. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Reference Citation Analysis]
114 Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules 2021;11:564. [PMID: 33921379 DOI: 10.3390/biom11040564] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
115 Naz S, Shah FA, Nadeem H, Sarwar S, Tan Z, Imran M, Ali T, Li JB, Li S. Amino Acid Conjugates of Aminothiazole and Aminopyridine as Potential Anticancer Agents: Synthesis, Molecular Docking and in vitro Evaluation. Drug Des Devel Ther 2021;15:1459-76. [PMID: 33833504 DOI: 10.2147/DDDT.S297013] [Reference Citation Analysis]
116 Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021;20:55. [PMID: 33761944 DOI: 10.1186/s12943-021-01346-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
117 Cho HY, Choi JH, Lim J, Lee SN, Choi JW. Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. Cancers (Basel) 2021;13:1385. [PMID: 33803846 DOI: 10.3390/cancers13061385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Ex 2021;2:012006. [DOI: 10.1088/2632-959x/abeb4b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
119 Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021;600:120485. [PMID: 33744447 DOI: 10.1016/j.ijpharm.2021.120485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
120 Haque F, Khan MSA, AlQurashi N. ROS-Mediated Necrosis by Glycolipid Biosurfactants on Lung, Breast, and Skin Melanoma Cells. Front Oncol 2021;11:622470. [PMID: 33796459 DOI: 10.3389/fonc.2021.622470] [Reference Citation Analysis]
121 Chiu HI, Samad NA, Fang L, Lim V. Cytotoxicity of targeted PLGA nanoparticles: a systematic review. RSC Adv 2021;11:9433-49. [PMID: 35423427 DOI: 10.1039/d1ra00074h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
122 de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021;29:808-21. [PMID: 33645369 DOI: 10.1080/1061186X.2021.1892121] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
123 Oh DK, Jeong H, Kim J, Kim Y, Kim I, Ok JG, Rho J. Top-down nanofabrication approaches toward single-digit-nanometer scale structures. J Mech Sci Technol 2021;35:837-59. [DOI: 10.1007/s12206-021-0243-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
124 Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Panchu SJ, Swart HC, Savariroyan SRI. Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. Int J Biol Macromol 2021;178:270-82. [PMID: 33647336 DOI: 10.1016/j.ijbiomac.2021.02.127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
125 Notabi MK, Arnspang EC, Andersen MØ. Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. Eur J Pharm Sci 2021;161:105777. [PMID: 33647401 DOI: 10.1016/j.ejps.2021.105777] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
126 Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB. Surface peptide functionalization of zeolitic imidazolate framework-8 for autonomous homing and enhanced delivery of chemotherapeutic agent to lung tumor cells. Dalton Trans 2021;50:2375-86. [PMID: 33555001 DOI: 10.1039/d1dt00116g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021;26:1169. [PMID: 33671796 DOI: 10.3390/molecules26041169] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
128 Jana B, Kim D, Choi H, Kim M, Kim K, Kim S, Jin S, Park MH, Lee KH, Yoon C, Lee BS, Kang MS, Lim HJ, Park EJ, Jeong Y, Ryu JH, Kim C. Drug resistance-free cytotoxic nanodrugs in composites for cancer therapy. J Mater Chem B 2021;9:3143-52. [PMID: 33586760 DOI: 10.1039/d0tb02850a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Angeline N, Choo S, Kim C, Bhang SH, Kim T. Precise Electrical Detection of Curcumin Cytotoxicity in Human Liver Cancer Cells. BioChip J 2021;15:52-60. [DOI: 10.1007/s13206-021-00002-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Dacoba TG, Anthiya S, Berrecoso G, Fernández‐mariño I, Fernández‐varela C, Crecente‐campo J, Teijeiro‐osorio D, Torres Andón F, Alonso MJ. Nano‐Oncologicals: A Tortoise Trail Reaching New Avenues. Adv Funct Mater 2021;31:2009860. [DOI: 10.1002/adfm.202009860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
131 Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. Nanomaterials (Basel) 2021;11:460. [PMID: 33670161 DOI: 10.3390/nano11020460] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
132 Buskaran K, Bullo S, Hussein MZ, Masarudin MJ, Mohd Moklas MA, Fakurazi S. Anticancer Molecular Mechanism of Protocatechuic Acid Loaded on Folate Coated Functionalized Graphene Oxide Nanocomposite Delivery System in Human Hepatocellular Carcinoma. Materials (Basel) 2021;14:817. [PMID: 33572054 DOI: 10.3390/ma14040817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Powsner EH, Harris JC, Day ES. Biomimetic Nanoparticles for the Treatment of Hematologic Malignancies. Adv NanoBio Res 2021;1:2000047. [DOI: 10.1002/anbr.202000047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Kutsevol N, Kuziv Y, Bezugla T, Virych P, Marynin A, Borikun T, Lukianova N, Virych P, Chekhun V. Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy. Appl Nanosci 2022;12:427-37. [DOI: 10.1007/s13204-020-01653-y] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
135 Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. Adv Funct Mater 2021;31:2007096. [PMID: 34366761 DOI: 10.1002/adfm.202007096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
136 Abbaszadeh N, Jaahbin N, Pouraei A, Mehraban F, Hedayati M, Majlesi A, Akbari F, Sadat Shandiz SA, Salehzadeh A. Preparation of Novel Nickel Oxide@ Glutamic/Thiosemicarbazide Nanoparticles: Implications for Cytotoxic and Anti-cancer Studies in MCF-7 Breast Cancer Cells. J Clust Sci 2022;33:457-65. [DOI: 10.1007/s10876-021-01995-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Patel P, Umapathy D, Manivannan S, Nadar VM, Venkatesan R, Joseph Arokiyam VA, Pappu S, Ponnuchamy K. A doxorubicin-platinum conjugate system: impacts on PI3K/AKT actuation and apoptosis in breast cancer cells. RSC Adv 2021;11:4818-28. [PMID: 35424411 DOI: 10.1039/d0ra06708c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
138 Woo HY, Lee DW, Yoon TY, Kim JB, Chae JY, Paik T. Sub-100-nm Nearly Monodisperse n-Paraffin/PMMA Phase Change Nanobeads. Nanomaterials (Basel) 2021;11:204. [PMID: 33466841 DOI: 10.3390/nano11010204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Guglielmelli A, Rosa P, Contardi M, Prato M, Mangino G, Miglietta S, Petrozza V, Pani R, Calogero A, Athanassiou A, Perotto G, De Sio L. Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine (Lond) 2021;16:121-38. [PMID: 33426900 DOI: 10.2217/nnm-2020-0349] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
140 Wang W, Zhang Q, Zhang M, Liu Y, Shen J, Zhou N, Lu X, Zhao C. Multifunctional red carbon dots: a theranostic platform for magnetic resonance imaging and fluorescence imaging-guided chemodynamic therapy. Analyst 2020;145:3592-7. [PMID: 32319476 DOI: 10.1039/d0an00267d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
141 Espinola-portilla F, Serrano-torres O, Hurtado-lópez GF, Sierra U, Varenne A, d’Orlyé F, Trapiella-alfonso L, Gutiérrez-granados S, Ramírez-garcía G. Superparamagnetic iron oxide nanoparticles functionalized with a binary alkoxysilane array and poly(4-vinylpyridine) for magnetic targeting and pH-responsive release of doxorubicin. New J Chem 2021;45:3600-9. [DOI: 10.1039/d0nj05227b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
142 Purushothaman B, Song JM. Ag 2 S quantum dot theragnostics. Biomater Sci 2021;9:51-69. [DOI: 10.1039/d0bm01576h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
143 Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics 2021;11:579-601. [PMID: 33391494 DOI: 10.7150/thno.48811] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
144 Dovizio M, Ballerini P, Fullone R, Tacconelli S, Contursi A, Patrignani P. Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. Int J Mol Sci 2020;21:E9585. [PMID: 33339204 DOI: 10.3390/ijms21249585] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
145 Buocikova V, Rios-Mondragon I, Pilalis E, Chatziioannou A, Miklikova S, Mego M, Pajuste K, Rucins M, Yamani NE, Longhin EM, Sobolev A, Freixanet M, Puntes V, Plotniece A, Dusinska M, Cimpan MR, Gabelova A, Smolkova B. Epigenetics in Breast Cancer Therapy-New Strategies and Future Nanomedicine Perspectives. Cancers (Basel) 2020;12:E3622. [PMID: 33287297 DOI: 10.3390/cancers12123622] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
146 Umapathi A, Pn N, Madhyastha H, Singh M, Madhyastha R, Maruyama M, Daima HK. Curcumin and isonicotinic acid hydrazide functionalized gold nanoparticles for selective anticancer action. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;607:125484. [DOI: 10.1016/j.colsurfa.2020.125484] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
147 Wang H, Yang J, Cao P, Guo N, Li Y, Zhao Y, Zhou S, Ouyang R, Miao Y. Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics. Chinese Chemical Letters 2020;31:3015-26. [DOI: 10.1016/j.cclet.2020.05.003] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
148 Adrita S, Tasnim K, Ryu J, Sharker S. Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. JNT 2020;1:58-77. [DOI: 10.3390/jnt1010006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
149 Vo TS, Hossain MM, Jeong HM, Kim K. Heavy metal removal applications using adsorptive membranes. Nano Converg 2020;7:36. [PMID: 33191443 DOI: 10.1186/s40580-020-00245-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 41] [Article Influence: 4.0] [Reference Citation Analysis]
150 Matur M, Madhyastha H, Shruthi TS, Madhyastha R, Srinivas SP, Navya PN, Daima HK. Engineering bioactive surfaces on nanoparticles and their biological interactions. Sci Rep 2020;10:19713. [PMID: 33184324 DOI: 10.1038/s41598-020-75465-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
151 Deveci P. Synthesis, optical properties and photherapy applications of gold nanostars. J Incl Phenom Macrocycl Chem 2021;99:23-31. [DOI: 10.1007/s10847-020-01035-5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
152 Andraos C, Gulumian M. Intracellular and extracellular targets as mechanisms of cancer therapy by nanomaterials in relation to their physicochemical properties. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1680. [PMID: 33111484 DOI: 10.1002/wnan.1680] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
153 Hoang QT, Heo T, Choi DG, Choi S, Shim MS. Guanidinium-Incorporated Micelleplexes for Low Toxic and Efficient siRNA Delivery. Macromol Res 2020;28:1160-5. [DOI: 10.1007/s13233-020-8152-7] [Reference Citation Analysis]
154 Zhang P, Li T, Liu C, Sindi M, Cheng X, Qi S, Liu X, Yan Y, Bao Y, Brand-Saberi B, Yang W, Wang G, Yang X. Nano-sulforaphane attenuates PhIP-induced early abnormal embryonic neuro-development. Ann Anat 2021;233:151617. [PMID: 33098981 DOI: 10.1016/j.aanat.2020.151617] [Reference Citation Analysis]
155 Song C, Gao C, Zhao J, Wang Z. Construction of long-circulation EpCAM targeted drug delivery system and its application in the diagnosis and treatment of breast cancer. J Biomater Appl 2021;35:947-57. [PMID: 33081605 DOI: 10.1177/0885328220965135] [Reference Citation Analysis]
156 Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials (Basel) 2020;10:E2019. [PMID: 33066127 DOI: 10.3390/nano10102019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
157 H M, S H, N QI, R M, A M, R S, L S S, K B, P B, H D, P N N, M M, Y N. Surface refined AuQuercetin nanoconjugate stimulates dermal cell migration: possible implication in wound healing. RSC Adv 2020;10:37683-94. [PMID: 35515178 DOI: 10.1039/d0ra06690g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
158 Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2021;329:805-32. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
159 Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020;10:E1429. [PMID: 33050144 DOI: 10.3390/biom10101429] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 15.5] [Reference Citation Analysis]
160 Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. CTMC 2020;20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
161 Deepak P, Siddalingam R, Kumar P, Anand S, Thakur S, Jagdish B, Jaiswal S. Gene based nanocarrier delivery for the treatment of hepatocellular carcinoma. Journal of Drug Delivery Science and Technology 2020;59:101837. [DOI: 10.1016/j.jddst.2020.101837] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
162 Liao Z, Wong SW, Yeo HL, Zhao Y. Smart nanocarriers for cancer treatment: Clinical impact and safety. NanoImpact 2020;20:100253. [DOI: 10.1016/j.impact.2020.100253] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
163 Wang K, Zhu X, Yu E, Desai P, Wang H, Zhang C, Zhuge Q, Yang J, Hu J. Therapeutic Nanomaterials for Neurological Diseases and Cancer Therapy. Journal of Nanomaterials 2020;2020:1-18. [DOI: 10.1155/2020/2047379] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines 2020;8:E347. [PMID: 32932737 DOI: 10.3390/biomedicines8090347] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
165 Ahmed MM, Fatima F, Anwer MK, Ansari MJ, Das SS, Alshahrani SM. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. Journal of Polymer Engineering 2020;40:823-32. [DOI: 10.1515/polyeng-2019-0365] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
166 Kim CH, Kim TH. Graphene Hybrid Materials for Controlling Cellular Microenvironments. Materials (Basel) 2020;13:E4008. [PMID: 32927729 DOI: 10.3390/ma13184008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
167 Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci 2020;21:E6280. [PMID: 32872646 DOI: 10.3390/ijms21176280] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
168 Wang J, Bhargava P, Yu Y, Sari AN, Zhang H, Ishii N, Yan K, Zhang Z, Ishida Y, Terao K, Kaul SC, Miyako E, Wadhwa R. Novel Caffeic Acid Phenethyl Ester-Mortalin Antibody Nanoparticles Offer Enhanced Selective Cytotoxicity to Cancer Cells. Cancers (Basel) 2020;12:E2370. [PMID: 32825706 DOI: 10.3390/cancers12092370] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
169 Choi J, Choi J. Metal-Enhanced Fluorescence by Bifunctional Au Nanoparticles for Highly Sensitive and Simple Detection of Proteolytic Enzyme. Nano Lett 2020;20:7100-7. [DOI: 10.1021/acs.nanolett.0c02343] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
170 Castro KCD, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1798436] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
171 Yoon MS. Nanotechnology-Based Targeting of mTOR Signaling in Cancer. Int J Nanomedicine 2020;15:5767-81. [PMID: 32821100 DOI: 10.2147/IJN.S254574] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
172 Low LE, Wu J, Lee J, Tey BT, Goh B, Gao J, Li F, Ling D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. Journal of Controlled Release 2020;324:69-103. [DOI: 10.1016/j.jconrel.2020.05.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
173 Khudair N, Agouni A, Elrayess MA, Najlah M, Younes HM, Elhissi A. Letrozole-loaded nonionic surfactant vesicles prepared via a slurry-based proniosome technology: Formulation development and characterization. Journal of Drug Delivery Science and Technology 2020;58:101721. [DOI: 10.1016/j.jddst.2020.101721] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
174 Lim JH, Choi HW, Mo SJ, Chung BG. Dual-stimuli responsive mesoporous copper (II) sulfide nanocomposite for chemo-photothermal synergistic therapy. Microporous and Mesoporous Materials 2020;302:110228. [DOI: 10.1016/j.micromeso.2020.110228] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
175 Alyassin Y, Sayed EG, Mehta P, Ruparelia K, Arshad MS, Rasekh M, Shepherd J, Kucuk I, Wilson PB, Singh N, Chang M, Fatouros DG, Ahmad Z. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discovery Today 2020;25:1513-20. [DOI: 10.1016/j.drudis.2020.06.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 12.5] [Reference Citation Analysis]
176 Hamida RS, Albasher G, Bin-Meferij MM. Oxidative Stress and Apoptotic Responses Elicited by Nostoc-Synthesized Silver Nanoparticles against Different Cancer Cell Lines. Cancers (Basel) 2020;12:E2099. [PMID: 32731591 DOI: 10.3390/cancers12082099] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
177 Afreen A, Ahmed R, Mehboob S, Tariq M, Alghamdi HA, Zahid AA, Ali I, Malik K, Hasan A. Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. Mater Res Express 2020;7:075404. [DOI: 10.1088/2053-1591/aba5d0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
178 Obuobi S, Škalko-Basnet N. Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers. Pharmaceutics 2020;12:E643. [PMID: 32650506 DOI: 10.3390/pharmaceutics12070643] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
179 Lee JM, Choi JW, Ahrberg CD, Choi HW, Ha JH, Mun SG, Mo SJ, Chung BG. Generation of tumor spheroids using a droplet-based microfluidic device for photothermal therapy. Microsyst Nanoeng 2020;6:52. [PMID: 34567663 DOI: 10.1038/s41378-020-0167-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
180 Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020;156:188-213. [PMID: 32610061 DOI: 10.1016/j.addr.2020.06.020] [Cited by in Crossref: 66] [Cited by in F6Publishing: 52] [Article Influence: 33.0] [Reference Citation Analysis]
181 Piktel E, Markiewicz KH, Wilczewska AZ, Daniluk T, Chmielewska S, Niemirowicz-Laskowska K, Mystkowska J, Paprocka P, Savage PB, Bucki R. Quantification of Synergistic Effects of Ceragenin CSA-131 Combined with Iron Oxide Magnetic Nanoparticles Against Cancer Cells. Int J Nanomedicine 2020;15:4573-89. [PMID: 32606693 DOI: 10.2147/IJN.S255170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
182 Yurtdaş-kırımlıoğlu G, Görgülü Ş, Berkman MS. Novel approaches to cancer therapy with ibuprofen-loaded Eudragit ® RS 100 and/or octadecylamine-modified PLGA nanoparticles by assessment of their effects on apoptosis. Drug Development and Industrial Pharmacy 2020;46:1133-49. [DOI: 10.1080/03639045.2020.1776319] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
183 Montaseri H, Kruger CA, Abrahamse H. Review: Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells. Oncotarget 2020;11:2120-36. [PMID: 32547709 DOI: 10.18632/oncotarget.27596] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
184 Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal 2020;10:221-32. [PMID: 32612868 DOI: 10.1016/j.jpha.2020.05.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
185 Xu C, Zhang T, Lu G, Chen K, Tao J, Zhang Y, Teng Z, Yang B. Disulfiram-gold-nanorod integrate for effective tumor targeting and photothermal-chemical synergistic therapy. Biomater Sci 2020;8:3310-9. [PMID: 32400782 DOI: 10.1039/d0bm00062k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
186 Rama Krishna AG, Espenti CS, Rami Reddy YV, Obbu A, Satyanarayana MV. Green Synthesis of Silver Nanoparticles by Using Sansevieria Roxburghiana, Their Characterization and Antibacterial Activity. J Inorg Organomet Polym 2020;30:4155-9. [DOI: 10.1007/s10904-020-01567-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
187 Ruidas B, Sur TK, Pal K, Som Chaudhury S, Prasad P, Sinha K, Sarkar PK, Das P, Das Mukhopadhyay C. Herbometallic nano-drug inducing metastatic growth inhibition in breast cancer through intracellular energy depletion. Mol Biol Rep 2020;47:3745-63. [PMID: 32361897 DOI: 10.1007/s11033-020-05467-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
188 Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. Journal of Biomaterials Science, Polymer Edition 2020;31:1107-26. [DOI: 10.1080/09205063.2020.1743946] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
189 Kim CH, Suhito IR, Angeline N, Han Y, Son H, Luo Z, Kim TH. Vertically Coated Graphene Oxide Micro-Well Arrays for Highly Efficient Cancer Spheroid Formation and Drug Screening. Adv Healthc Mater 2020;9:e1901751. [PMID: 32134570 DOI: 10.1002/adhm.201901751] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
190 Hashemi MS, Gharbi S, Jafarinejad-Farsangi S, Ansari-Asl Z, Dezfuli AS. Secondary toxic effect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines. Toxicol In Vitro 2020;65:104796. [PMID: 32070776 DOI: 10.1016/j.tiv.2020.104796] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
191 Houshmand M, Garello F, Circosta P, Stefania R, Aime S, Saglio G, Giachino C. Nanocarriers as Magic Bullets in the Treatment of Leukemia. Nanomaterials (Basel) 2020;10:E276. [PMID: 32041219 DOI: 10.3390/nano10020276] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
192 Ahrberg CD, Wook Choi J, Geun Chung B. Automated droplet reactor for the synthesis of iron oxide/gold core-shell nanoparticles. Sci Rep 2020;10:1737. [PMID: 32015417 DOI: 10.1038/s41598-020-58580-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
193 El-Said WA, Abdelshakour M, Choi JH, Choi JW. Application of Conducting Polymer Nanostructures to Electrochemical Biosensors. Molecules 2020;25:E307. [PMID: 31940924 DOI: 10.3390/molecules25020307] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
194 Mousavi SM, Low FW, Hashemi SA, Samsudin NA, Shakeri M, Yusoff Y, Rahsepar M, Lai CW, Babapoor A, Soroshnia S, Goh SM, Tiong SK, Amin N. Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy. RSC Adv 2020;10:12851-63. [DOI: 10.1039/d0ra00186d] [Cited by in Crossref: 11] [Article Influence: 5.5] [Reference Citation Analysis]
195 Choi JH, Santhosh M, Choi JW. In Vitro Blood-Brain Barrier-Integrated Neurological Disorder Models Using a Microfluidic Device. Micromachines (Basel) 2019;11:E21. [PMID: 31878184 DOI: 10.3390/mi11010021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
196 Khan H, Mirzaei HR, Amiri A, Kupeli Akkol E, Ashhad Halimi SM, Mirzaei H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2021;69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
197 Steinbach OC. An industry update: the latest developments in therapeutic delivery covering July 2019. Ther Deliv 2019;10:753-6. [PMID: 31847797 DOI: 10.4155/tde-2019-0088] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
198 Kavanaugh WM. Antibody prodrugs for cancer. Expert Opin Biol Ther 2020;20:163-71. [PMID: 31779489 DOI: 10.1080/14712598.2020.1699053] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
199 Madamsetty VS, Paul MK, Mukherjee A, Mukherjee S. Functionalization of Nanomaterials and Their Application in Melanoma Cancer Theranostics. ACS Biomater Sci Eng 2020;6:167-81. [PMID: 33463233 DOI: 10.1021/acsbiomaterials.9b01426] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
200 Wei QY, He KM, Chen JL, Xu YM, Lau ATY. Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019;24:E4246. [PMID: 31766544 DOI: 10.3390/molecules24234246] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
201 Domingues C, Alvarez-lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharmaceutics 2019;16:4757-74. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]