BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu Z, Ren J, Michail S, Sun F. MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations. Genome Biol 2019;20:154. [PMID: 31387630 DOI: 10.1186/s13059-019-1773-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Nogueira T, Botelho A. Metagenomics and Other Omics Approaches to Bacterial Communities and Antimicrobial Resistance Assessment in Aquacultures. Antibiotics (Basel) 2021;10:787. [PMID: 34203511 DOI: 10.3390/antibiotics10070787] [Reference Citation Analysis]
2 Wei ZG, Zhang XD, Cao M, Liu F, Qian Y, Zhang SW. Comparison of Methods for Picking the Operational Taxonomic Units From Amplicon Sequences. Front Microbiol 2021;12:644012. [PMID: 33841367 DOI: 10.3389/fmicb.2021.644012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Knight R, Ley RE, Raes J, Grice EA. Expanding the scope and scale of microbiome research. Genome Biol 2019;20:191. [PMID: 31488207 DOI: 10.1186/s13059-019-1804-2] [Reference Citation Analysis]
4 Ferravante C, Memoli D, Palumbo D, Ciaramella P, Di Loria A, D'Agostino Y, Nassa G, Rizzo F, Tarallo R, Weisz A, Giurato G. HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities): a specific and comprehensive pipeline for metagenomic shotgun sequencing data analysis. BMC Bioinformatics 2021;22:106. [PMID: 34225648 DOI: 10.1186/s12859-021-04004-y] [Reference Citation Analysis]
5 Lu C, Peng Y. Computational Viromics: Applications of the Computational Biology in Viromics Studies. Virol Sin 2021. [PMID: 34057678 DOI: 10.1007/s12250-021-00395-7] [Reference Citation Analysis]
6 Bai X, Ren J, Sun F. MLR-OOD: a Markov chain based Likelihood Ratio method for Out-Of-Distribution detection of genomic sequences. Journal of Molecular Biology 2022. [DOI: 10.1016/j.jmb.2022.167586] [Reference Citation Analysis]
7 Gao Y, Zhu Z, Sun F. Increasing prediction performance of colorectal cancer disease status using random forests classification based on metagenomic shotgun sequencing data. Synthetic and Systems Biotechnology 2022;7:574-85. [DOI: 10.1016/j.synbio.2022.01.005] [Reference Citation Analysis]
8 Zhu Z, Ren J, Michail S, Sun F. Correction to: MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations. Genome Biol 2019;20:214. [PMID: 31640754 DOI: 10.1186/s13059-019-1826-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
9 Dalal N, Jalandra R, Sharma M, Prakash H, Makharia GK, Solanki PR, Singh R, Kumar A. Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomed Pharmacother. 2020;131:110648. [PMID: 33152902 DOI: 10.1016/j.biopha.2020.110648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
10 Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform 2021;22:1639-55. [PMID: 32047891 DOI: 10.1093/bib/bbaa005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]