BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tian J, Wang Y, Zhang X, Ren Q, Li R, Huang Y, Lu H, Chen J. Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 Signaling. J Exp Clin Cancer Res 2017;36:153. [PMID: 29096683 DOI: 10.1186/s13046-017-0625-y] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Yuan S, Li Z, Huang W, Chen K, Li J. The phytoestrogenic potential of flavonoid glycosides from Selaginella moellendorffii via ERα-dependent signaling pathway. J Ethnopharmacol 2023;:116174. [PMID: 36669597 DOI: 10.1016/j.jep.2023.116174] [Reference Citation Analysis]
2 Li Y, Miao H, Wei W, Tian J, Chen J. Inhibitory effect of calycosin on breast cancer cell progression through downregulating lncRNA HOTAIR and downstream targets: HuR and IGF2BP1. Acta Biochim Biophys Sin (Shanghai) 2022. [PMID: 36647722 DOI: 10.3724/abbs.2022197] [Reference Citation Analysis]
3 Qu N, Qu J, Huang N, Zhang K, Ye T, Shi J, Chen B, Kan C, Zhang J, Han F, Hou N, Sun X, Pan R. Calycosin induces autophagy and apoptosis via Sestrin2/AMPK/mTOR in human papillary thyroid cancer cells. Front Pharmacol 2022;13:1056687. [PMID: 36588732 DOI: 10.3389/fphar.2022.1056687] [Reference Citation Analysis]
4 Kiyama R. Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2022;114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Reference Citation Analysis]
5 Ji H, Guo L, Li Y, Jiang Y, Wang Y, Jin H. Calycosin Inhibits Pulmonary Fibrosis Through the Regulation of miR-375/YAP1 Signaling Pathway. Rev Bras Farmacogn 2022;32:953-961. [DOI: 10.1007/s43450-022-00326-x] [Reference Citation Analysis]
6 Tian J, Zhou D, Xiang L, Xie B, Wang B, Li Y, Liu X. Calycosin represses AIM2 inflammasome-mediated inflammation and pyroptosis to attenuate monosodium urate-induced gouty arthritis through NF-κB and p62-Keap1 pathways. Drug Dev Res 2022. [PMID: 36069386 DOI: 10.1002/ddr.21985] [Reference Citation Analysis]
7 Yin F, Zhang X, Li Y, Liang X, Li R, Chen J. In-silico analysis reveals the core targets and mechanisms of CA028, a new derivative of calycosin, in the treatment of colorectal cancer. Intelligent Medicine 2022;2:127-133. [DOI: 10.1016/j.imed.2022.03.002] [Reference Citation Analysis]
8 Lin Z, Zhang Z, Ye X, Zhu M, Li Z, Chen Y, Huang S. Based on network pharmacology and molecular docking to predict the mechanism of Huangqi in the treatment of castration-resistant prostate cancer. PLoS ONE 2022;17:e0263291. [DOI: 10.1371/journal.pone.0263291] [Reference Citation Analysis]
9 Murithi M, Wambugu E, Nyanjom S, Mobegi V, Shahin S, Makokha F. Molecular mechanisms of flavonoids and their modulatory effects against breast cancer: A scoping review. F1000Res 2022;11:293. [DOI: 10.12688/f1000research.108908.1] [Reference Citation Analysis]
10 Patrón-gonzález D, Rios MY. Monoterpene-stilbenes and other constituents from Machaerium isadelphum. Phytochemistry Letters 2021;45:161-7. [DOI: 10.1016/j.phytol.2021.08.013] [Reference Citation Analysis]
11 Lahm H, Jia M, Dreßen M, Wirth F, Puluca N, Gilsbach R, Keavney BD, Cleuziou J, Beck N, Bondareva O, Dzilic E, Burri M, König KC, Ziegelmüller JA, Abou-Ajram C, Neb I, Zhang Z, Doppler SA, Mastantuono E, Lichtner P, Eckstein G, Hörer J, Ewert P, Priest JR, Hein L, Lange R, Meitinger T, Cordell HJ, Müller-Myhsok B, Krane M. Congenital heart disease risk loci identified by genome-wide association study in European patients. J Clin Invest 2021;131:141837. [PMID: 33201861 DOI: 10.1172/JCI141837] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
12 Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA, Braga EA. Long Noncoding RNA GAS5 in Breast Cancer: Epigenetic Mechanisms and Biological Functions. Int J Mol Sci 2021;22:6810. [PMID: 34202777 DOI: 10.3390/ijms22136810] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
13 Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021;9:693. [PMID: 34207450 DOI: 10.3390/biomedicines9060693] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
14 Zhang Z, Lin M, Wang J, Yang F, Yang P, Liu Y, Chen Z, Zheng Y. Calycosin inhibits breast cancer cell migration and invasion by suppressing EMT via BATF/TGF-β1. Aging (Albany NY) 2021;13:16009-23. [PMID: 34096887 DOI: 10.18632/aging.203093] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
15 Gong G, Zheng Y, Yang Y, Sui Y, Wen Z. Pharmaceutical Values of Calycosin: One Type of Flavonoid Isolated from Astragalus. Evid Based Complement Alternat Med 2021;2021:9952578. [PMID: 34035829 DOI: 10.1155/2021/9952578] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
16 Chen G, Hou Y, Li X, Pan R, Zhao D. Sepsis-induced acute lung injury in young rats is relieved by calycosin through inactivating the HMGB1/MyD88/NF-κB pathway and NLRP3 inflammasome. Int Immunopharmacol 2021;96:107623. [PMID: 33857805 DOI: 10.1016/j.intimp.2021.107623] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Foradori CD, Mackay L, Huang CJ, Kemppainen RJ. Expression of Rasd1 in mouse endocrine pituitary cells and its response to dexamethasone. Stress 2021;24:659-66. [PMID: 33840368 DOI: 10.1080/10253890.2021.1907340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Guan X, Shi A, Zou Y, Sun M, Zhan Y, Dong Y, Fan Z. EZH2-Mediated microRNA-375 Upregulation Promotes Progression of Breast Cancer via the Inhibition of FOXO1 and the p53 Signaling Pathway. Front Genet 2021;12:633756. [PMID: 33854524 DOI: 10.3389/fgene.2021.633756] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
19 Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021;13:1274. [PMID: 33805687 DOI: 10.3390/cancers13061274] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
20 Jiang Y, Sun-Waterhouse D, Chen Y, Li F, Li D. Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: are long non-coding RNAs rising stars? Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 33427492 DOI: 10.1080/10408398.2020.1870926] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Singhal S, Singh M, Singh RK, Tiwari VK, Bajpai S. Molecular Mechanisms Underlying Breast Cancer and Role of Plant Products in Targeted Therapy. Discovery and Development of Anti-Breast Cancer Agents from Natural Products 2021. [DOI: 10.1016/b978-0-12-821277-6.00011-8] [Reference Citation Analysis]
22 Liu LJ, Li HF, Xu F, Wang HY, Zhang YF, Liu GX, Shang MY, Wang X, Cai SQ. Exploring the In Vivo Existence Forms (23 Original Constituents and 147 Metabolites) of Astragali Radix Total Flavonoids and Their Distributions in Rats Using HPLC-DAD-ESI-IT-TOF-MSn. Molecules 2020;25:E5560. [PMID: 33256251 DOI: 10.3390/molecules25235560] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
23 Braga EA, Fridman MV, Moscovtsev AA, Filippova EA, Dmitriev AA, Kushlinskii NE. LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020;21:E8855. [PMID: 33238475 DOI: 10.3390/ijms21228855] [Cited by in Crossref: 42] [Cited by in F6Publishing: 51] [Article Influence: 14.0] [Reference Citation Analysis]
24 Kushlinskii NE, Fridman MV, Braga EA. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 2020;54:684-707. [DOI: 10.1134/s0026893320050052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yuan W, Chen Y, Zhou Y, Bao K, Yu X, Xu Y, Zhang Y, Zheng J, Jiang G, Hong M. Formononetin attenuates atopic dermatitis by upregulating A20 expression via activation of G protein-coupled estrogen receptor. J Ethnopharmacol 2021;266:113397. [PMID: 32971159 DOI: 10.1016/j.jep.2020.113397] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Zhang D, Sun G, Peng L, Tian J, Zhang H. Calycosin inhibits viability, induces apoptosis, and suppresses invasion of cervical cancer cells by upregulating tumor suppressor miR-375. Archives of Biochemistry and Biophysics 2020;691:108478. [DOI: 10.1016/j.abb.2020.108478] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
27 Lian Y, Yan C, Lian Y, Yang R, Chen Q, Ma D, Lian W, Liu J, Luo C, Ren J, Xu H. Long intergenic non-protein-coding RNA 01446 facilitates the proliferation and metastasis of gastric cancer cells through interacting with the histone lysine-specific demethylase LSD1. Cell Death Dis 2020;11:522. [PMID: 32651355 DOI: 10.1038/s41419-020-2729-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
28 Li Y, Duan B, Li Y, Yu S, Wang Y. The isoflavonoid calycosin inhibits inflammation and enhances beta cell function in gestational diabetes mellitus by suppressing RNF38 expression. Immunopharmacol Immunotoxicol 2020;42:366-72. [PMID: 32538204 DOI: 10.1080/08923973.2020.1782426] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 You Q, Geng Y, Ye H, Zhu G, Gao X, Zhu H. HOPX Is an Epigenetically Inactivated Tumor Suppressor and Overexpression of HOPX Induce Apoptosis and Cell Cycle Arrest in Breast Cancer. Onco Targets Ther 2020;13:5955-65. [PMID: 32606804 DOI: 10.2147/OTT.S250404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
30 Lahm H, Jia M, Dreßen M, Wirth F, Puluca N, Gilsbach R, Keavney BD, Cleuziou J, Beck N, Bondareva O, Dzilic E, Burri M, König KC, Ziegelmüller JA, Abou-ajram C, Neb I, Zhang Z, Doppler SA, Mastantuono E, Lichtner P, Eckstein G, Hörer J, Ewert P, Priest JR, Hein L, Lange R, Meitinger T, Cordell HJ, Müller-myhsok B, Krane M. Genome-wide association study in European patients with congenital heart disease identifies risk loci for transposition of the great arteries and anomalies of the thoracic arteries and veins and expression of discovered candidate genes in the developing heart.. [DOI: 10.1101/2020.06.19.161067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
31 Cheng X, Liu N, Liu H, Huang N, Sun X, Zhang G. Bioinformatic and biochemical findings disclosed anti-hepatic steatosis mechanism of calycosin. Bioorg Chem 2020;100:103914. [PMID: 32417523 DOI: 10.1016/j.bioorg.2020.103914] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
32 Liu X, Sun X, Deng X, Lv X, Wang J. Calycosin enhances the bactericidal efficacy of polymyxin B by inhibiting MCR-1 in vitro. J Appl Microbiol 2020;129:532-40. [PMID: 32160376 DOI: 10.1111/jam.14635] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
33 Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020;19:61. [PMID: 32188472 DOI: 10.1186/s12943-020-01181-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
34 Tan J, Qin X, Liu B, Mo H, Wu Z, Yuan Z. Integrative findings indicate anti-tumor biotargets and molecular mechanisms of calycosin against osteosarcoma. Biomed Pharmacother 2020;126:110096. [PMID: 32179199 DOI: 10.1016/j.biopha.2020.110096] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
35 Liu X, Xie ZH, Liu CY, Zhang Y. Effect of Chinese Herbal Monomer Hairy Calycosin on Nonalcoholic Fatty Liver Rats and its Mechanism. Comb Chem High Throughput Screen 2019;22:194-200. [PMID: 30973105 DOI: 10.2174/1386207322666190411112814] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Chen X, Wu Y, Gu J, Liang P, Shen M, Xi J, Qin J. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. Biofactors 2020;46:620-8. [PMID: 32078221 DOI: 10.1002/biof.1627] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
37 Zakłos-Szyda M, Budryn G. The Effects of Trifolium pratense L. Sprouts' Phenolic Compounds on Cell Growth and Migration of MDA-MB-231, MCF-7 and HUVEC Cells. Nutrients 2020;12:E257. [PMID: 31963833 DOI: 10.3390/nu12010257] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
38 Ranganathan P, Nadig N, Nambiar S. Non-canonical Estrogen Signaling in Endocrine Resistance. Front Endocrinol (Lausanne) 2019;10:708. [PMID: 31749762 DOI: 10.3389/fendo.2019.00708] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
39 Wang C, Chen Y, Wang Y, Liu X, Liu Y, Li Y, Chen H, Fan C, Wu D, Yang J. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J Exp Clin Cancer Res 2019;38:371. [PMID: 31438982 DOI: 10.1186/s13046-019-1361-2] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
40 Nie X, Zhou Y, Li X, Xu J, Pan X, Yin R, Lu B. Calycosin down-regulates c-Met to suppress development of glioblastomas. J Biosci 2019;44. [DOI: 10.1007/s12038-019-9904-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
41 Ren H, Ma X, Shao Y, Han J, Yang M, Wang Q. Correlation Between Serum miR-154-5p and Osteocalcin in Males and Postmenopausal Females of Type 2 Diabetes With Different Urinary Albumin Creatinine Ratios. Front Endocrinol (Lausanne) 2019;10:542. [PMID: 31447785 DOI: 10.3389/fendo.2019.00542] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
42 Wu G, Niu M, Qin J, Wang Y, Tian J. Inactivation of Rab27B-dependent signaling pathway by calycosin inhibits migration and invasion of ER-negative breast cancer cells. Gene 2019;709:48-55. [DOI: 10.1016/j.gene.2019.04.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
43 Fang H, Jiang W, Jing Z, Mu X, Xiong Z. miR-937 regulates the proliferation and apoptosis via targeting APAF1 in breast cancer. Onco Targets Ther 2019;12:5687-99. [PMID: 31410016 DOI: 10.2147/OTT.S207091] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
44 Wang Q, Lu W, Yin T, Lu L. Calycosin suppresses TGF-β-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI-1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. J Exp Clin Cancer Res 2019;38:240. [PMID: 31174572 DOI: 10.1186/s13046-019-1243-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
45 Li R, Qin X, Liang X, Liu M, Zhang X. Lipidomic characteristics and clinical findings of epileptic patients treated with valproic acid. J Cell Mol Med 2019;23:6017-23. [PMID: 31162795 DOI: 10.1111/jcmm.14464] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
46 Liang C, Zhou A, Sui C, Huang Z. The effect of formononetin on the proliferation and migration of human umbilical vein endothelial cells and its mechanism. Biomedicine & Pharmacotherapy 2019;111:86-90. [DOI: 10.1016/j.biopha.2018.12.049] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
47 Molina L, Bustamante FA, Bhoola KD, Figueroa CD, Ehrenfeld P. Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin Sci (Lond) 2018;132:2583-98. [PMID: 30545896 DOI: 10.1042/CS20180885] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
48 Xin M, Wang Y, Ren Q, Guo Y. Formononetin and metformin act synergistically to inhibit growth of MCF-7 breast cancer cells in vitro. Biomed Pharmacother 2019;109:2084-9. [PMID: 30551465 DOI: 10.1016/j.biopha.2018.09.033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
49 Li Z, Zeng G, Zheng X, Wang W, Ling Y, Tang H, Zhang J. Neuroprotective effect of formononetin against TBI in rats via suppressing inflammatory reaction in cortical neurons. Biomedicine & Pharmacotherapy 2018;106:349-54. [DOI: 10.1016/j.biopha.2018.06.041] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
50 Kong L, Li X, Wang H, He G, Tang A. Calycosin inhibits nasopharyngeal carcinoma cells by influencing EWSAT1 expression to regulate the TRAF6-related pathways. Biomed Pharmacother 2018;106:342-8. [PMID: 29966979 DOI: 10.1016/j.biopha.2018.06.143] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
51 Ma R, Yuan F, Wang S, Liu Y, Fan T, Wang F. Calycosin alleviates cerulein-induced acute pancreatitis by inhibiting the inflammatory response and oxidative stress via the p38 MAPK and NF-κB signal pathways in mice. Biomed Pharmacother 2018;105:599-605. [PMID: 29890468 DOI: 10.1016/j.biopha.2018.05.080] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
52 Han F, Li K, Pan R, Xu W, Han X, Hou N, Sun X. Calycosin directly improves perivascular adipose tissue dysfunction by upregulating the adiponectin/AMPK/eNOS pathway in obese mice. Food Funct 2018;9:2409-15. [DOI: 10.1039/c8fo00328a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
53 Tian J, Wang Y, Zhang X, Ren Q, Li R, Huang Y, Lu H, Chen J. Correction to: Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 Signaling. J Exp Clin Cancer Res 2017;36:184. [PMID: 29298702 DOI: 10.1186/s13046-017-0660-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]