1 |
Zhang X, Zhao Q, Yang J, Wang T, Chen F, Zhang K. Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coordination Chemistry Reviews 2023;484:215115. [DOI: 10.1016/j.ccr.2023.215115] [Reference Citation Analysis]
|
2 |
Shukla AK, Randhawa S, Saini TC, Acharya A. Carbon nanosphere based bifunctional oxidoreductase nano-catalytic agent to mitigate hypoxia in cancer cells. Int J Biol Macromol 2023;233:123466. [PMID: 36739044 DOI: 10.1016/j.ijbiomac.2023.123466] [Reference Citation Analysis]
|
3 |
Chen Y, Gu Y, Hu H, Liu H, Li W, Huang C, Chen J, Liang L, Liu Y. Design, synthesis and biological evaluation of liposome entrapped iridium(III) complexes toward SGC-7901 cells. J Inorg Biochem 2023;241:112134. [PMID: 36706490 DOI: 10.1016/j.jinorgbio.2023.112134] [Reference Citation Analysis]
|
4 |
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023;160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Reference Citation Analysis]
|
5 |
Chavda VP, Pandya A, Kumar L, Raval N, Vora LK, Pulakkat S, Patravale V, Salwa, Duo Y, Tang BZ. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today 2023;49:101771. [DOI: 10.1016/j.nantod.2023.101771] [Reference Citation Analysis]
|
6 |
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023;11:2568-613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Reference Citation Analysis]
|
7 |
Yan L, Mao J, Shi W, Ren L, Li J, Geng B, Wang H, Zhang J, Tian Y, Zhang B, Gao F, Zhang X, Chen J, Zhu J. Subchronic toxicity study of ferric oxide nanoparticles through intragastric administration: A 94-d, repeated dose study in Sprague Dawley rats. Regul Toxicol Pharmacol 2023;:105381. [PMID: 36963718 DOI: 10.1016/j.yrtph.2023.105381] [Reference Citation Analysis]
|
8 |
Shinde SS, Ahmed S, Malik JA, Hani U, Khanam A, Ashraf Bhat F, Ahmad Mir S, Ghazwani M, Wahab S, Haider N, Almehizia AA. Therapeutic Delivery of Tumor Suppressor miRNAs for Breast Cancer Treatment. Biology (Basel) 2023;12:467. [PMID: 36979159 DOI: 10.3390/biology12030467] [Reference Citation Analysis]
|
9 |
Doroudian M, Zanganeh S, Abbasgholinejad E, Donnelly SC. Nanomedicine in Lung Cancer Immunotherapy. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1144653] [Reference Citation Analysis]
|
10 |
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. Environ Res 2023;:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Reference Citation Analysis]
|
11 |
Chota A, George BP, Abrahamse H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023;24. [PMID: 36902238 DOI: 10.3390/ijms24054808] [Reference Citation Analysis]
|
12 |
Neelakandan M, Manoharan S, Muralinaidu R, Thara JM. Tumor preventive and antioxidant efficacy of chlorogenic acid-loaded chitosan nanoparticles in experimental skin carcinogenesis. Naunyn Schmiedebergs Arch Pharmacol 2023;396:533-46. [PMID: 36418466 DOI: 10.1007/s00210-022-02330-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Nguyen V, Dao TNT, Cho M, Jeong H, Nguyen-le M, Shin Y, Yoon J. Recent advances in extracellular vesicle-based organic nanotherapeutic drugs for precision cancer therapy. Coordination Chemistry Reviews 2023;479:215006. [DOI: 10.1016/j.ccr.2022.215006] [Reference Citation Analysis]
|
14 |
Ma B, Zhang K, Sun Z, Pan H, Yang K, Jiang B, Zhao B, Liang Z, Zhang Y, Zhang L. Pushpin-like nanozyme for plasmon-enhanced tumor targeted therapy. Acta Biomater 2023;158:673-85. [PMID: 36632878 DOI: 10.1016/j.actbio.2022.12.069] [Reference Citation Analysis]
|
15 |
Shelar SB, Barick K, Dutta B, Basu M, Hassan PA. Selective targeting of gold nanoparticles for radiosensitization of somatostatin 2 receptor-expressing cancer cells. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104381] [Reference Citation Analysis]
|
16 |
Wu W, Wu Q, Liu Q, Li Y, Ren P, Wu Y, Chen F. Identification and characterization of soft protein corona absorbed on iron oxide nanoparticles. Chinese Journal of Analytical Chemistry 2023. [DOI: 10.1016/j.cjac.2023.100246] [Reference Citation Analysis]
|
17 |
Alharbi N, Daraei A, Lee H, Guthold M. The Effect of Molecular Weight and Fiber Diameter on the Mechanical Properties of Single, Electrospun PCL Nanofibers. Materials Today Communications 2023. [DOI: 10.1016/j.mtcomm.2023.105773] [Reference Citation Analysis]
|
18 |
Motooka Y, Toyokuni S. Ferroptosis As Ultimate Target of Cancer Therapy. Antioxid Redox Signal 2023. [PMID: 35943875 DOI: 10.1089/ars.2022.0048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
19 |
Farasati Far B, Naimi-Jamal MR, Daneshgar H, Rabiee N. Co-delivery of doxorubicin/sorafenib by DNA-decorated green ZIF-67-based nanocarriers for chemotherapy and hepatocellular carcinoma treatment. Environ Res 2023;225:115589. [PMID: 36858304 DOI: 10.1016/j.envres.2023.115589] [Reference Citation Analysis]
|
20 |
Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev 2023. [PMID: 36826760 DOI: 10.1007/s10555-023-10086-2] [Reference Citation Analysis]
|
21 |
Chen C, Wang S, Wang J, Yao F, Tang X, Guo W. Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioeng 2023;7:011501. [PMID: 36845905 DOI: 10.1063/5.0137026] [Reference Citation Analysis]
|
22 |
Luiz MT, Dutra JAP, Viegas JSR, de Araújo JTC, Tavares Junior AG, Chorilli M. Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023;15:751. [DOI: 10.3390/pharmaceutics15030751] [Reference Citation Analysis]
|
23 |
Ndemazie NB, Bulusu R, Zhu XY, Frimpong EK, Inkoom A, Okoro J, Ebesoh D, Rogers S, Han B, Agyare E. Evaluation of Anticancer Activity of Zhubech, a New 5-FU Analog Liposomal Formulation, against Pancreatic Cancer. Int J Mol Sci 2023;24. [PMID: 36901721 DOI: 10.3390/ijms24054288] [Reference Citation Analysis]
|
24 |
Guo W, Chen M, Yang Y, Ge G, Tang L, He S, Zeng Z, Li X, Li G, Xiong W, Wu S. Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles. Molecules 2023;28. [PMID: 36903280 DOI: 10.3390/molecules28052034] [Reference Citation Analysis]
|
25 |
Wang S, Chen Q, Zhao T, Ai K, Hu C. Nanomedicine-based treatment: An emerging therapeutical strategy for pulmonary hypertension. Nano Res 2023. [DOI: 10.1007/s12274-022-5310-6] [Reference Citation Analysis]
|
26 |
Kah G, Chandran R, Abrahamse H. Curcumin a Natural Phenol and Its Therapeutic Role in Cancer and Photodynamic Therapy: A Review. Pharmaceutics 2023;15. [PMID: 36839961 DOI: 10.3390/pharmaceutics15020639] [Reference Citation Analysis]
|
27 |
Saranya J, Saminathan P, Ankireddy SR, Shaik MR, Khan M, Khan M, Shaik B. Cerium Oxide/Graphene Oxide Hybrid: Synthesis, Characterization, and Evaluation of Anticancer Activity in a Breast Cancer Cell Line (MCF-7). Biomedicines 2023;11. [PMID: 36831067 DOI: 10.3390/biomedicines11020531] [Reference Citation Analysis]
|
28 |
Budiarta M, Roy S, Katenkamp T, Feliu N, Beck T. Overcoming Non-Specific Interactions for Efficient Encapsulation of Doxorubicin in Ferritin Nanocages for Targeted Drug Delivery. Small 2023;:e2205606. [PMID: 36748864 DOI: 10.1002/smll.202205606] [Reference Citation Analysis]
|
29 |
Wicker CA, Petery T, Dubey P, Wise-Draper TM, Takiar V. Improving Radiotherapy Response in the Treatment of Head and Neck Cancer. Crit Rev Oncog 2022;27:73-84. [PMID: 36734873 DOI: 10.1615/CritRevOncog.2022044635] [Reference Citation Analysis]
|
30 |
Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics 2023;15. [PMID: 36839825 DOI: 10.3390/pharmaceutics15020504] [Reference Citation Analysis]
|
31 |
Awad NS, Salkho NM, Abuwatfa WH, Paul V, Alsawaftah NM, Husseini GA. Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OpenNano 2023. [DOI: 10.1016/j.onano.2023.100136] [Reference Citation Analysis]
|
32 |
Setia A, Mehata AK, Vikas, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104295] [Reference Citation Analysis]
|
33 |
Ahmadi M, Khoramjouy M, Dadashzadeh S, Asadian E, Mosayebnia M, Geramifar P, Shahhosseini S, Ghorbani-bidkorpeh F. Pharmacokinetics and biodistribution studies of [99mTc]-Labeled ZIF-8 nanoparticles to pave the way for image-guided drug delivery and theranostics. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104249] [Reference Citation Analysis]
|
34 |
Lin L, Zheng Y, Wang C, Li P, Xu D, Zhao W. Concentration-Dependent Cellular Uptake of Graphene Oxide Quantum Dots Promotes the Odontoblastic Differentiation of Dental Pulp Cells via the AMPK/mTOR Pathway. ACS Omega 2023;8:5393-405. [PMID: 36816699 DOI: 10.1021/acsomega.2c06508] [Reference Citation Analysis]
|
35 |
Majeed S, Saravanan M, Danish M, Zakariya NA, Ibrahim MNM, Rizvi EH, Nisaandrabi SU, Barabadi H, Mohanta YK, Mostafavi E. Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta 2023;253:124026. [DOI: 10.1016/j.talanta.2022.124026] [Reference Citation Analysis]
|
36 |
Gautier L. Nanotechnology and cancer therapeutics: delivering on the hype? Biotechniques 2023;74:63-7. [PMID: 36856138 DOI: 10.2144/btn-2022-0123] [Reference Citation Analysis]
|
37 |
Quintana-Contardo S, Donoso-González O, Lang E, Guerrero AR, Noyong M, Simon U, Kogan MJ, Yutronic N, Sierpe R. Optimizing Dacarbazine Therapy: Design of a Laser-Triggered Delivery System Based on β-Cyclodextrin and Plasmonic Gold Nanoparticles. Pharmaceutics 2023;15. [PMID: 36839779 DOI: 10.3390/pharmaceutics15020458] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
38 |
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023;11. [PMID: 36830926 DOI: 10.3390/biomedicines11020389] [Reference Citation Analysis]
|
39 |
Liu Q, Tan Z, Zheng D, Qiu X. pH-responsive magnetic Fe(3)O(4)/carboxymethyl chitosan/aminated lignosulfonate nanoparticles with uniform size for targeted drug loading. Int J Biol Macromol 2023;225:1182-92. [PMID: 36423809 DOI: 10.1016/j.ijbiomac.2022.11.179] [Reference Citation Analysis]
|
40 |
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023;15. [PMID: 36678868 DOI: 10.3390/pharmaceutics15010236] [Reference Citation Analysis]
|
41 |
Jiang A, Guan X, He L, Guan X. Engineered elastin-like polypeptides: An efficient platform for enhanced cancer treatment. Front Pharmacol 2022;13:1113079. [PMID: 36699056 DOI: 10.3389/fphar.2022.1113079] [Reference Citation Analysis]
|
42 |
Shunaev VV, Bobenko NG, Korusenko PM, Egorushkin VE, Glukhova OE. Carboxyl Functionalization of N-MWCNTs with Stone-Wales Defects and Possibility of HIF-1α Wave-Diffusive Delivery. Int J Mol Sci 2023;24:1296. [PMID: 36674808 DOI: 10.3390/ijms24021296] [Reference Citation Analysis]
|
43 |
Cui D, Han L, Jiang W, Chen L, Niu N. Ag2–3xBixS Quantum Dots as Single-Component Theranostic Agents for Second Near-Infrared Fluorescence Imaging-Guided Photothermal Therapy. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c04944] [Reference Citation Analysis]
|
44 |
He Q, Zheng R, Ma J, Zhao L, Shi Y, Qiu J. Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy.. [DOI: 10.21203/rs.3.rs-2400247/v1] [Reference Citation Analysis]
|
45 |
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Reference Citation Analysis]
|
46 |
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. J Biomater Sci Polym Ed 2023;:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Reference Citation Analysis]
|
47 |
Saleh MA, Antar SA, Abdo W, Ashour A, Zaki AA. Genistin modulates high-mobility group box protein 1 (HMGB1) and nuclear factor kappa-B (NF-κB) in Ehrlich-ascites-carcinoma-bearing mice. Environ Sci Pollut Res Int 2023;30:966-78. [PMID: 35907070 DOI: 10.1007/s11356-022-22268-6] [Reference Citation Analysis]
|
48 |
Behl A, Solanki S, Paswan SK, Datta TK, Saini AK, Saini RV, Parmar VS, Thakur VK, Malhotra S, Chhillar AK. Biodegradable PEG-PCL Nanoparticles for Co-delivery of MUC1 Inhibitor and Doxorubicin for the Confinement of Triple-Negative Breast Cancer. J Polym Environ 2023;31:999-1018. [PMID: 36405816 DOI: 10.1007/s10924-022-02654-4] [Reference Citation Analysis]
|
49 |
Yang J, Dai D, Zhang X, Teng L, Ma L, Yang YW. Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: from single to combination therapy. Theranostics 2023;13:295-323. [PMID: 36593957 DOI: 10.7150/thno.80687] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
50 |
Minassian G, Ghanem E, Hage RE, Rahme K. Gold Nanoparticles Conjugated with Dendrigraft Poly-L-lysine and Folate-Targeted Poly(ethylene glycol) for siRNA Delivery to Prostate cancer. Nanotheranostics 2023;7:152-66. [PMID: 36793347 DOI: 10.7150/ntno.79050] [Reference Citation Analysis]
|
51 |
Liu J, Zhang L, Zeng W, Zhang L, He N, Lu Z. High-throughput quantitative detection of triple-negative breast cancer-associated expressed miRNAs by rolling circle amplification on fluorescence-encoded microspheres. Chinese Chemical Letters 2023. [DOI: 10.1016/j.cclet.2023.108141] [Reference Citation Analysis]
|
52 |
Dhas N, Neyyar S, Garkal A, Kudarha R, Patel J, Mutalik S, Mehta T. Biomedical Applications of Nanocarriers in Nasal Delivery. Nasal Drug Delivery 2023. [DOI: 10.1007/978-3-031-23112-4_7] [Reference Citation Analysis]
|
53 |
Sadeghzadeh F, Motavalizadehkakhky A, Mehrzad J, Zhiani R, Homayouni Tabrizi M. Folic acid Conjugated-Chitosan Modified nanostructured lipid carriers as promising carriers for delivery of Umbelliprenin to cancer cells: In vivo and In vitro. European Polymer Journal 2023. [DOI: 10.1016/j.eurpolymj.2023.111849] [Reference Citation Analysis]
|
54 |
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. All Life 2022;15:843-869. [DOI: 10.1080/26895293.2022.2103592] [Reference Citation Analysis]
|
55 |
Alafaleq NO, Alomari A, Khan MS, Shaik GM, Hussain A, Ahmed F, Hassan I, M. Alhazza I, Alokail MS, Alenad AMH, Jabir NR, Tabrez S. Anticancer potential of gold nanoparticles (AuNPs) using a battery of in vitro tests. Nanotechnology Reviews 2022;11:3292-3304. [DOI: 10.1515/ntrev-2022-0502] [Reference Citation Analysis]
|
56 |
Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers (Basel) 2022;15. [PMID: 36612158 DOI: 10.3390/cancers15010162] [Reference Citation Analysis]
|
57 |
Khanam A, Kottilil S. New Therapeutics for HCC: Does Tumor Immune Microenvironment Matter? Int J Mol Sci 2022;24. [PMID: 36613878 DOI: 10.3390/ijms24010437] [Reference Citation Analysis]
|
58 |
Abdullah SA, Hassan SA, Al-Shammari AM. Anticancer activity of retinoic acid against breast cancer cells derived from an Iraqi patient. J Taibah Univ Med Sci 2023;18:579-86. [PMID: 36818177 DOI: 10.1016/j.jtumed.2022.12.002] [Reference Citation Analysis]
|
59 |
Singh DD, Lee HJ, Yadav DK. Clinical updates on tyrosine kinase inhibitors in HER2-positive breast cancer. Front Pharmacol 2022;13:1089066. [PMID: 36578543 DOI: 10.3389/fphar.2022.1089066] [Reference Citation Analysis]
|
60 |
Duan Y, Shen C, Zhang Y, Luo Y. Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer. Front Oncol 2022;12:1031000. [PMID: 36568152 DOI: 10.3389/fonc.2022.1031000] [Reference Citation Analysis]
|
61 |
Shao Y, Xiang L, Zhang W, Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J Control Release 2022;352:600-18. [PMID: 36341936 DOI: 10.1016/j.jconrel.2022.10.046] [Reference Citation Analysis]
|
62 |
Panda S, Hajra S, Kaushik A, Rubahn H, Mishra Y, Kim H. Smart nanomaterials as the foundation of a combination approach for efficient cancer theranostics. Materials Today Chemistry 2022;26:101182. [DOI: 10.1016/j.mtchem.2022.101182] [Reference Citation Analysis]
|
63 |
Giordano F, Lenna S, Baudo G, Rampado R, Massaro M, De Rosa E, Ewing A, Kurenbekova L, Agostini M, Yustein JT, Taraballi F. Tyrosine kinase inhibitor-loaded biomimetic nanoparticles as a treatment for osteosarcoma. Cancer Nano 2022;13:40. [DOI: 10.1186/s12645-022-00146-7] [Reference Citation Analysis]
|
64 |
Mdlovu NV, Lin K, Weng M, Lin Y, Liu S. Preparation and in-vitro/in-vivo evaluation of doxorubicin-loaded magnetic SBA-15 nanocomposites from rice husk for enhancing therapeutic efficacy. Colloids and Surfaces B: Biointerfaces 2022;220:112923. [DOI: 10.1016/j.colsurfb.2022.112923] [Reference Citation Analysis]
|
65 |
Wang X, Zhu L, Gu Z, Dai L. Carbon nanomaterials for phototherapy. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0574] [Reference Citation Analysis]
|
66 |
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnol 2022;20:484. [DOI: 10.1186/s12951-022-01692-3] [Reference Citation Analysis]
|
67 |
Faid AH, Shouman SA, Badr YA, Sharaky M, Mostafa EM, Sliem MA. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer. BMC Chemistry 2022;16:94. [DOI: 10.1186/s13065-022-00892-0] [Reference Citation Analysis]
|
68 |
Mushtaq A, Zhang H, Cui M, Lin X, Huang S, Tang Z, Hou Y, Zubair Iqbal M, Kong X. ROS-Responsive Chlorin e6 and Silk Fibroin Loaded Ultrathin Magnetic Hydroxyapatite Nanorods for T1-Magnetic Resonance Imaging Guided Photodynamic Therapy In Vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130513] [Reference Citation Analysis]
|
69 |
Dubey R, Garg SS, Gupta J. Nanomodulation and nanotherapeutics of tumor-microenvironment. OpenNano 2022;8:100099. [DOI: 10.1016/j.onano.2022.100099] [Reference Citation Analysis]
|
70 |
Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022;48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
71 |
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice (Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. OTT 2022;Volume 15:1419-1448. [DOI: 10.2147/ott.s366630] [Reference Citation Analysis]
|
72 |
Onyancha RB, Ukhurebor KE, Aigbe UO, Mogire NB, Chanzu I, Kitoto VA, Kusuma HS, Darmokoesoemo H. A review of the capabilities of carbon dots for the treatment and diagnosis of cancer-related diseases. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103946] [Reference Citation Analysis]
|
73 |
Kang M, Khan F, Jo D, Oh D, Tabassum N, Kim Y. Antibiofilm and Antivirulence Activities of Gold and Zinc Oxide Nanoparticles Synthesized from Kimchi-Isolated Leuconostoc sp. Strain C2. Antibiotics 2022;11:1524. [DOI: 10.3390/antibiotics11111524] [Reference Citation Analysis]
|
74 |
Yadav N, Singh D, Rawat M, Sangwan N. Novel archetype in cancer therapeutics: exploring prospective of phytonanocarriers. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03372-3] [Reference Citation Analysis]
|
75 |
Wu S, Liu C, Bai S, Lu Z, Liu G. Broadening the Horizons of RNA Delivery Strategies in Cancer Therapy. Bioengineering 2022;9:576. [DOI: 10.3390/bioengineering9100576] [Reference Citation Analysis]
|
76 |
Kutumova EO, Akberdin IR, Kiselev IN, Sharipov RN, Egorova VS, Syrocheva AO, Parodi A, Zamyatnin AA, Kolpakov FA. Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools. IJMS 2022;23:12560. [DOI: 10.3390/ijms232012560] [Reference Citation Analysis]
|
77 |
Wang H, Li S, Yang Y, Zhang L, Zhang Y, Wei T. Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance. Cancer Drug Resist 2022;5:954-70. [PMID: 36627891 DOI: 10.20517/cdr.2022.76] [Reference Citation Analysis]
|
78 |
Jangjou A, Zareshahrabadi Z, Abbasi M, Talaiekhozani A, Kamyab H, Chelliapan S, Vaez A, Golchin A, Tayebi L, Vafa E, Amani AM, Faramarzi H. Time to Conquer Fungal Infectious Diseases: Employing Nanoparticles as Powerful and Versatile Antifungal Nanosystems against a Wide Variety of Fungal Species. Sustainability 2022;14:12942. [DOI: 10.3390/su141912942] [Reference Citation Analysis]
|
79 |
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022;10:1031811. [DOI: 10.3389/fchem.2022.1031811] [Reference Citation Analysis]
|
80 |
Bao J, Tu H, Li J, Dong Y, Dang L, Yurievna KE, Zhang F, Xu L. Interfacial engineered iron oxide nanoring for T2-weighted magnetic resonance imaging-guided magnetothermal-chemotherapy. Front Bioeng Biotechnol 2022;10:1005719. [DOI: 10.3389/fbioe.2022.1005719] [Reference Citation Analysis]
|
81 |
Jiang Z, Zhang W, Zhang J, Liu T, Xing J, Zhang H, Tang D. Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. Int J Nanomedicine 2022;17:4677-96. [PMID: 36211025 DOI: 10.2147/IJN.S376216] [Reference Citation Analysis]
|
82 |
Beitollahi H, Garkani Nejad F, Tajik S, Di Bartolomeo A. Screen-Printed Graphite Electrode Modified with Graphene-Co3O4 Nanocomposite: Voltammetric Assay of Morphine in the Presence of Diclofenac in Pharmaceutical and Biological Samples. Nanomaterials (Basel) 2022;12:3454. [PMID: 36234582 DOI: 10.3390/nano12193454] [Reference Citation Analysis]
|
83 |
Jing Z, Du Q, Zhang X, Zhang Y. Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal 2022;446:137147. [DOI: 10.1016/j.cej.2022.137147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
84 |
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022;154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
|
85 |
Janani SK, Dhanabal SP, Sureshkumar R, Nikitha Upadhyayula SS. Anti-nucleolin Aptamer as a Boom in Rehabilitation of Breast Cancer. Curr Pharm Des 2022;28:3114-26. [PMID: 36173049 DOI: 10.2174/1381612828666220928105044] [Reference Citation Analysis]
|
86 |
Mustafa S, Koran S, Alomair L. Insights Into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Front Mol Biosci 2022;9:896099. [DOI: 10.3389/fmolb.2022.896099] [Reference Citation Analysis]
|
87 |
Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022;17:4163-93. [PMID: 36134202 DOI: 10.2147/IJN.S380697] [Reference Citation Analysis]
|
88 |
Didamson OC, Chandran R, Abrahamse H. A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers 2022;14:4558. [DOI: 10.3390/cancers14194558] [Reference Citation Analysis]
|
89 |
Li L, Jiang X, Gao J. Characterization and Biomedical Application Opportunities of the Nanoparticle's Protein Corona. Adv Materials Inter. [DOI: 10.1002/admi.202201442] [Reference Citation Analysis]
|
90 |
Gao J, Li Z, Li J, Song P, Yang J, Xiao W, Li N, Xu R. Peptide-Based HDL as an Effective Delivery System for Lipophilic Drugs to Restrain Atherosclerosis Development. Int J Nanomedicine 2022;17:3877-92. [PMID: 36097444 DOI: 10.2147/IJN.S374736] [Reference Citation Analysis]
|
91 |
Qin J, Zhang J, Fan G, Wang X, Zhang Y, Wang L, Zhang Y, Guo Q, Zhou J, Zhang W, Ma J. Cold Atmospheric Plasma Activates Selective Photothermal Therapy of Cancer. Molecules 2022;27:5941. [DOI: 10.3390/molecules27185941] [Reference Citation Analysis]
|
92 |
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022;15:132. [PMID: 36096856 DOI: 10.1186/s13045-022-01320-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
93 |
Ayana G, Ryu J, Choe SW. Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy. Micromachines (Basel) 2022;13:1508. [PMID: 36144131 DOI: 10.3390/mi13091508] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
94 |
Perrotti V, Caponio VCA, Muzio LL, Choi EH, Marcantonio MCD, Mazzone M, Kaushik NK, Mincione G. Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review. IJMS 2022;23:10238. [DOI: 10.3390/ijms231810238] [Reference Citation Analysis]
|
95 |
Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A, Agrawal AK. Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci 2022;23:10068. [PMID: 36077466 DOI: 10.3390/ijms231710068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
96 |
Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int J Mol Sci 2022;23:10038. [PMID: 36077433 DOI: 10.3390/ijms231710038] [Reference Citation Analysis]
|
97 |
Radomska D, Czarnomysy R, Szymanowska A, Radomski D, Domínguez-Álvarez E, Bielawska A, Bielawski K. Novel Selenoesters as a Potential Tool in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2022;14. [PMID: 36077839 DOI: 10.3390/cancers14174304] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
98 |
Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials (Basel) 2022;12:3051. [PMID: 36080088 DOI: 10.3390/nano12173051] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
99 |
Karuvantevida N, Razia M, Bhuvaneshwar R, Sathishkumar G, Prabukumar S, Sivaramakrishnan S. Bioactive Flavonoid used as a Stabilizing Agent of Mono and Bimetallic Nanomaterials for Multifunctional Activities. J Pure Appl Microbiol 2022;16:1652-1662. [DOI: 10.22207/jpam.16.3.03] [Reference Citation Analysis]
|
100 |
Kanaoujiya R, Porwal D, Srivastava S. Applications of nanomaterials for gastrointestinal tumors: A review. Front Med Technol 2022;4. [DOI: 10.3389/fmedt.2022.997123] [Reference Citation Analysis]
|
101 |
Huang T, Peng L, Han Y, Wang D, He X, Wang J, Ou C. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front Immunol 2022;13:922301. [DOI: 10.3389/fimmu.2022.922301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
102 |
Chis AA, Arseniu AM, Morgovan C, Dobrea CM, Frum A, Juncan AM, Butuca A, Ghibu S, Gligor FG, Rus LL. Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022;14:1773. [DOI: 10.3390/pharmaceutics14091773] [Reference Citation Analysis]
|
103 |
Miclea LC, Mihailescu M, Tarba N, Brezoiu AM, Sandu AM, Mitran RA, Berger D, Matei C, Moisescu MG, Savopol T. Evaluation of intracellular distribution of folate functionalized silica nanoparticles using fluorescence and hyperspectral enhanced dark field microscopy. Nanoscale 2022. [PMID: 36000453 DOI: 10.1039/d2nr01821g] [Reference Citation Analysis]
|
104 |
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. Nano Select 2022. [DOI: 10.1002/nano.202200064] [Reference Citation Analysis]
|
105 |
Xu B, Ding Z, Hu Y, Zhang T, Shi S, Yu G, Qi X. Preparation and Evaluation of the Cytoprotective Activity of Micelles with DSPE-PEG-C60 as a Carrier Against Doxorubicin-Induced Cytotoxicity. Front Pharmacol 2022;13:952800. [DOI: 10.3389/fphar.2022.952800] [Reference Citation Analysis]
|
106 |
Zhu L, Liu J, Qiu M, Chen J, Liang Q, Peng G, Zou Z. Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121711] [Reference Citation Analysis]
|
107 |
Espinoza MJC, Lin K, Weng M, Kunene SC, Liu S, Lin Y. In vivo and in vitro studies of magnetic silica nanocomposites decorated with Pluronic F127 for controlled drug delivery system. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.08.037] [Reference Citation Analysis]
|
108 |
Meng Z, Xue H, Wang T, Chen B, Dong X, Yang L, Dai J, Lou X, Xia F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. J Nanobiotechnology 2022;20:344. [PMID: 35883086 DOI: 10.1186/s12951-022-01553-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
109 |
Kong L, Zhu J, Su H, Zhao L, Lu Y, Zhu M, Sun W. Phenylboronic acid conjugated multifunctional nanogels with 131I-labeling for targeted SPECT imaging and radiotherapy of breast adenocarcinoma. Front Bioeng Biotechnol 2022;10:973141. [DOI: 10.3389/fbioe.2022.973141] [Reference Citation Analysis]
|
110 |
Alyami MH, Alyami HS, Alshehri AA, Alsharif WK, Shaikh IA, Algahtani TS. Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels 2022;8:456. [DOI: 10.3390/gels8070456] [Reference Citation Analysis]
|
111 |
Tao L, Chao Z, Jingyu J, Xigao C. Nano zinc oxide decorated latex drainage: A promising antibacterial material prevent retrograde infection associated with drainage. J Biomater Appl 2022;:8853282221114382. [PMID: 35834398 DOI: 10.1177/08853282221114382] [Reference Citation Analysis]
|
112 |
Ahmed S, Rehman SU, Tabish M. Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OpenNano 2022;7:100051. [DOI: 10.1016/j.onano.2022.100051] [Reference Citation Analysis]
|
113 |
Lee SE, Lee CM, Won JE, Jang G, Lee JH, Park SH, Kang TH, Han HD, Park Y. Enhancement of anticancer immunity by immunomodulation of apoptotic tumor cells using annexin A5 protein-labeled nanocarrier system. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
114 |
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano 2022;7:100048. [DOI: 10.1016/j.onano.2022.100048] [Reference Citation Analysis]
|
115 |
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022:S1044-579X(22)00155-9. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
116 |
Yu H, Han Z, Chen C, Zhang L. Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art. Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022 [Working Title] 2022. [DOI: 10.5772/intechopen.105700] [Reference Citation Analysis]
|
117 |
Natalia Krasteva, Milena Georgieva. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022;14:1213. [PMID: 35745786 DOI: 10.3390/pharmaceutics14061213] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
|
118 |
Yadav S, Sadique MA, Pal M, Khan R, Srivastava AK. Cytotoxicity and DNA fragmentation-mediated apoptosis response of hexagonal ZnO nanorods against human prostate cancer cells. Applied Surface Science Advances 2022;9:100237. [DOI: 10.1016/j.apsadv.2022.100237] [Reference Citation Analysis]
|
119 |
Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharmaceutical Development and Technology. [DOI: 10.1080/10837450.2022.2084554] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
120 |
Graur F, Puia A, Mois EI, Moldovan S, Pusta A, Cristea C, Cavalu S, Puia C, Al Hajjar N. Nanotechnology in the Diagnostic and Therapy of Hepatocellular Carcinoma. Materials 2022;15:3893. [DOI: 10.3390/ma15113893] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
121 |
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. Nano Convergence 2022;9. [DOI: 10.1186/s40580-022-00313-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
122 |
Poonaki E, Nickel AC, Shafiee Ardestani M, Rademacher L, Kaul M, Apartsin E, Meuth SG, Gorji A, Janiak C, Kahlert UD. CD133-Functionalized Gold Nanoparticles as a Carrier Platform for Telaglenastat (CB-839) against Tumor Stem Cells. Int J Mol Sci 2022;23:5479. [PMID: 35628289 DOI: 10.3390/ijms23105479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
123 |
Hosseinkazemi H, Samani S, O’neill A, Soezi M, Moghoofei M, Azhdari MH, Aavani F, Nazbar A, Keshel SH, Doroudian M, Shi D. Applications of Iron Oxide Nanoparticles against Breast Cancer. Journal of Nanomaterials 2022;2022:1-12. [DOI: 10.1155/2022/6493458] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
124 |
Zhang M, Wang L, Liu H, Wang Z, Feng W, Jin H, Liu S, Lan S, Liu Y, Zhang H. Copper Ion and Ruthenium Complex Codoped Polydopamine Nanoparticles for Magnetic Resonance/Photoacoustic Tomography Imaging-Guided Photodynamic/Photothermal Dual-Mode Therapy. ACS Appl Bio Mater 2022. [PMID: 35507759 DOI: 10.1021/acsabm.2c00212] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
125 |
Jafari A, Khanmohammadi Chenab K, Malektaj H, Farshchi F, Ghorbani S, Ghasemiamineh A, Khoshakhlagh M, Ashtari B, Zamani-meymian M. An Attempt of Stimuli-Responsive Drug Delivery of Graphene-Based Nanomaterial through Biological Obstacles of Tumor. FlatChem 2022. [DOI: 10.1016/j.flatc.2022.100381] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
126 |
Hazeri Y, Samie A, Ramezani M, Alibolandi M, Yaghoobi E, Dehghani S, Zolfaghari R, Khatami F, Zavvar T, Nameghi MA, Abnous K, Taghdisi SM. Dual-targeted delivery of doxorubicin by mesoporous silica nanoparticle coated with AS1411 aptamer and RGDK-R peptide to breast cancer in vitro and in vivo. Journal of Drug Delivery Science and Technology 2022;71:103285. [DOI: 10.1016/j.jddst.2022.103285] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
127 |
Lu SY, Wang J, Wang X, Yang W, Jin M, Xu L, Yang H, Ge X, Shang C, Chao Y, Zhou L, Yin K, Zhang Q, Gu L, Cao Y, Ran H, Guo S, Liu H. Janus-like Bx C/C Quantum Sheets with Z-Scheme Mechanism Strengthen Tumor Photothermal-Immunotherapy in NIR-II Biowindow. Small Methods 2022;:e2101551. [PMID: 35460201 DOI: 10.1002/smtd.202101551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
128 |
Ngema LM, Adeyemi SA, Marimuthu T, Ubanako P, Wamwangi D, Choonara YE. Synthesis of Novel Conjugated Linoleic Acid (CLA)-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for the Delivery of Paclitaxel with Enhanced In Vitro Anti-Proliferative Activity on A549 Lung Cancer Cells. Pharmaceutics 2022;14:829. [DOI: 10.3390/pharmaceutics14040829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
129 |
Marcovici I, Coricovac D, Pinzaru I, Macasoi IG, Popescu R, Chioibas R, Zupko I, Dehelean CA. Melanin and Melanin-Functionalized Nanoparticles as Promising Tools in Cancer Research-A Review. Cancers (Basel) 2022;14:1838. [PMID: 35406610 DOI: 10.3390/cancers14071838] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
130 |
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022:S0168-3659(22)00189-4. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
131 |
Tian M, Xin X, Wu R, Guan W, Zhou W. Advances in Intelligent-Responsive Nanocarriers for Cancer Therapy. Pharmacol Res 2022;:106184. [PMID: 35301111 DOI: 10.1016/j.phrs.2022.106184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
132 |
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro / in vivo discrepancy. Biophysics Rev 2022;3:011303. [DOI: 10.1063/5.0073494] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
133 |
Chen Q, Li N, Wang X, Yang Y, Xiang Y, Long X, Zhang J, Huang J, Chen L, Huang Q. Mitochondria-Targeting Chemodynamic Therapy Nanodrugs for Cancer Treatment. Front Pharmacol 2022;13:847048. [PMID: 35222052 DOI: 10.3389/fphar.2022.847048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
134 |
Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
135 |
Ramamurthi P, Zhao Z, Burke E, Steinmetz NF, Müllner M. Tuning the Hydrophilic-Hydrophobic Balance of Molecular Polymer Bottlebrushes Enhances their Tumor Homing Properties. Adv Healthc Mater 2022;:e2200163. [PMID: 35184421 DOI: 10.1002/adhm.202200163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
136 |
Qiu G, Xue L, Zhu X, Lu X, Liu L, Wang Z, Li X, Huang C, Liu J. Cetuximab Combined With Sonodynamic Therapy Achieves Dual-Modal Image Monitoring for the Treatment of EGFR-Sensitive Non-Small-Cell Lung Cancer. Front Oncol 2022;12:756489. [DOI: 10.3389/fonc.2022.756489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
137 |
Akter S, Rahman MA, Hasan MN, Akhter H, Noor P, Islam R, Shin Y, Rahman MH, Gazi MS, Huda MN, Nam NM, Chung J, Han S, Kim B, Kang I, Ha J, Choe W, Choi TG, Kim SS. Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022;11:650. [DOI: 10.3390/cells11040650] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
|
138 |
Mohammed SA, Shaaban EIA. Efficacious nanomedicine track toward combating COVID-19. Nanotechnology Reviews 2022;11:680-98. [DOI: 10.1515/ntrev-2022-0036] [Reference Citation Analysis]
|
139 |
Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. Nanoscale 2022. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
140 |
Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2021;11:786913. [PMID: 35070992 DOI: 10.3389/fonc.2021.786913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
141 |
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjugate Chem 2022;33:87-96. [DOI: 10.1021/acs.bioconjchem.1c00587] [Cited by in Crossref: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
142 |
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem 2022;33:87-96. [PMID: 34967608 DOI: 10.1021/acs.bioconjchem.1c00587] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
|
143 |
Garg P. Radiobioconjugate targeted therapy in cancer, using radiolabeled mediated biological analogs: Desired qualities and selective targeting approach. Biomed Biotechnol Res J 2022;6:40. [DOI: 10.4103/bbrj.bbrj_282_21] [Reference Citation Analysis]
|
144 |
Xu Q, Rajendrakumar SK, Khirallah J. Role of protein corona on nanoparticle-mediated organ and cell-targeted delivery. Reference Module in Materials Science and Materials Engineering 2022. [DOI: 10.1016/b978-0-12-822425-0.00052-x] [Reference Citation Analysis]
|
145 |
Jahan I. Nanotechnology for Drug Delivery and Cancer Therapy. Handbook of Research on Green Synthesis and Applications of Nanomaterials 2022. [DOI: 10.4018/978-1-7998-8936-6.ch015] [Reference Citation Analysis]
|
146 |
Tagde P, Sharma A, Goyal K, Jindal S. Progress of Cancer Nano Medicine, Clinical Hurdles, and Opportunities. Hormone Related Cancer Mechanistic and Nanomedicines 2022. [DOI: 10.1007/978-981-19-5558-7_3] [Reference Citation Analysis]
|
147 |
Mukherjee S, Madamsetty VS. Nanomedicine: An Alternative Approach Towards Anti-angiogenic Cancer Therapy. Nanoparticles in Angiogenesis and Cancer 2022. [DOI: 10.1007/978-3-031-11284-3_3] [Reference Citation Analysis]
|
148 |
Kalluri L, Duan Y. Role of Electrospun Nanofibers in Cancer Detection and Treatment. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications 2022. [DOI: 10.1007/978-3-031-09636-5_9] [Reference Citation Analysis]
|
149 |
Ilkiv MV, Ivan Franko National University of Lviv, Ukraine, Shalai YR, Ostapiuk YV, Mitina NE, Zaichenko OS, Babsky AM, Ivan Franko National University of Lviv, Ukraine, Ivan Franko National University of Lviv, Ukraine, Lviv Polytechnic National University, Ukraine, Lviv Polytechnic National University, Ukraine, Ivan Franko National University of Lviv, Ukraine. Safety profile of thiazole derivative and its complex with PEG-based polymeric nanoparticles on liver and blood cells in tumor-bearing mice. Biol Stud 2022;16:19-32. [DOI: 10.30970/sbi.1604.696] [Reference Citation Analysis]
|
150 |
Wu J, Wang M, Pan Y, Pang Y, Tang Y, Song C, Zhu J, Zhang X, Huang Q. Synthesis of manganese-oxide and palladium nanoparticles co-decorated polypyrrole/graphene oxide (MnO 2 @Pd@PPy/GO) nanocomposites for anti-cancer treatment. RSC Adv 2022;12:23786-95. [DOI: 10.1039/d2ra03860a] [Reference Citation Analysis]
|
151 |
Li C, Gao F, Wang Y, Zhao L, Li H, Jiang Y. Advances of bioactive tellurium nanomaterials in anti-cancer phototherapy. Mater Adv 2022;3:6397-6414. [DOI: 10.1039/d2ma00318j] [Reference Citation Analysis]
|
152 |
Mehrabian A, Mashreghi M, Dadpour S, Badiee A, Arabi L, Hoda Alavizadeh S, Alia Moosavian S, Reza Jaafari M. Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technol Cancer Res Treat 2022;21:15330338221080974. [PMID: 35253549 DOI: 10.1177/15330338221080974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
153 |
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjugate Chem 2022;33:87-96. [DOI: 10.1021/acs.bioconjchem.1c00587] [Reference Citation Analysis]
|
154 |
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021;14:18. [PMID: 35056915 DOI: 10.3390/pharmaceutics14010018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
155 |
Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021;8:783831. [PMID: 34926557 DOI: 10.3389/fnut.2021.783831] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
156 |
Sartaj A, Qamar Z, Qizilbash FF, Annu, Md S, Alhakamy NA, Baboota S, Ali J. Polymeric Nanoparticles: Exploring the Current Drug Development and Therapeutic Insight of Breast Cancer Treatment and Recommendations. Polymers (Basel) 2021;13:4400. [PMID: 34960948 DOI: 10.3390/polym13244400] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
157 |
Wu Z, Dai L, Tang K, Ma Y, Song B, Zhang Y, Li J, Lui S, Gong Q, Wu M. Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics. Regen Biomater 2021;8:rbab062. [PMID: 34868634 DOI: 10.1093/rb/rbab062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
158 |
Cao Y, Dhahad HA, El-Shorbagy MA, Alijani HQ, Zakeri M, Heydari A, Bahonar E, Slouf M, Khatami M, Naderifar M, Iravani S, Khatami S, Dehkordi FF. Green synthesis of bimetallic ZnO-CuO nanoparticles and their cytotoxicity properties. Sci Rep 2021;11:23479. [PMID: 34873281 DOI: 10.1038/s41598-021-02937-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
|
159 |
Farmanbordar H, Amini-fazl MS, Mohammadi R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. Journal of Drug Delivery Science and Technology 2021;66:102896. [DOI: 10.1016/j.jddst.2021.102896] [Reference Citation Analysis]
|
160 |
Xu Y, Luo C, Wang J, Chen L, Chen J, Chen T, Zeng Q. Application of nanotechnology in the diagnosis and treatment of bladder cancer. J Nanobiotechnology 2021;19:393. [PMID: 34838048 DOI: 10.1186/s12951-021-01104-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
|
161 |
Nguyen PV, Hervé-Aubert K, Chourpa I, Allard-Vannier E. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Int J Pharm 2021;609:121134. [PMID: 34571073 DOI: 10.1016/j.ijpharm.2021.121134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
162 |
Prabhu MPT, Sarkar N. Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophys Chem 2022;280:106714. [PMID: 34749221 DOI: 10.1016/j.bpc.2021.106714] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
163 |
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. Mater Sci Eng C Mater Biol Appl 2021;130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
|
164 |
Morărașu Ș, Iacob Ș, Tudorancea I, Luncă S, Dimofte M. Targeted Chemotherapy Delivery via Gold Nanoparticles: A Scoping Review of In Vivo Studies. Crystals 2021;11:1169. [DOI: 10.3390/cryst11101169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
165 |
Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 2021;14:125. [PMID: 34404434 DOI: 10.1186/s13045-021-01134-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
|