BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol 2021;14:45. [PMID: 33741032 DOI: 10.1186/s13045-021-01056-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Błach J, Wojas-Krawczyk K, Nicoś M, Krawczyk P. Failure of Immunotherapy-The Molecular and Immunological Origin of Immunotherapy Resistance in Lung Cancer. Int J Mol Sci 2021;22:9030. [PMID: 34445735 DOI: 10.3390/ijms22169030] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zhang J, Tavakoli H, Ma L, Li X, Han L, Li X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev 2022;187:114365. [PMID: 35667465 DOI: 10.1016/j.addr.2022.114365] [Reference Citation Analysis]
3 Yang X, Ma L, Zhang X, Huang L, Wei J. Targeting PD-1/PD-L1 pathway in myelodysplastic syndromes and acute myeloid leukemia. Exp Hematol Oncol 2022;11:11. [PMID: 35236415 DOI: 10.1186/s40164-022-00263-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Russell BL, Sooklal SA, Malindisa ST, Daka LJ, Ntwasa M. The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Front Oncol 2021;11:641428. [PMID: 34268109 DOI: 10.3389/fonc.2021.641428] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Lin T, Zhang Y, Lin Z, Peng L. Roles of HMGBs in Prognosis and Immunotherapy: A Pan-Cancer Analysis. Front Genet 2021;12:764245. [PMID: 34777483 DOI: 10.3389/fgene.2021.764245] [Reference Citation Analysis]
6 Wang G, Zhang X, Feng W, Wang J. Prediction of Prognosis and Immunotherapy of Osteosarcoma Based on Necroptosis-Related lncRNAs. Front Genet 2022;13:917935. [DOI: 10.3389/fgene.2022.917935] [Reference Citation Analysis]
7 Li C, Wang X, Chen T, Li W, Yang Q. A Novel lncRNA Panel for Risk Stratification and Immune Landscape in Breast Cancer Patients. IJGM 2022;Volume 15:5253-72. [DOI: 10.2147/ijgm.s366335] [Reference Citation Analysis]
8 Xu L, Zou C, Zhang S, Chu TSM, Zhang Y, Chen W, Zhao C, Yang L, Xu Z, Dong S, Yu H, Li B, Guan X, Hou Y, Kong FM. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol 2022;15:87. [PMID: 35799264 DOI: 10.1186/s13045-022-01307-2] [Reference Citation Analysis]
9 Jang A, Adler DM, Rauterkus GP, Bilen MA, Barata PC. Immunotherapies in Genitourinary Oncology: Where Are We Now? Where Are We Going? Cancers (Basel) 2021;13:5065. [PMID: 34680214 DOI: 10.3390/cancers13205065] [Reference Citation Analysis]
10 Sawada L, Vallinoto ACR, Brasil-Costa I. Regulation of the Immune Checkpoint Indoleamine 2,3-Dioxygenase Expression by Epstein-Barr Virus. Biomolecules 2021;11:1792. [PMID: 34944437 DOI: 10.3390/biom11121792] [Reference Citation Analysis]
11 Campochiaro C, De Luca G, Dagna L. Cardiac immune-related adverse events: an immune-cardio-oncology puzzle. Eur J Heart Fail 2021. [PMID: 34383998 DOI: 10.1002/ejhf.2329] [Reference Citation Analysis]
12 Lee EHC, Wong DCP, Ding JL. NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Front Immunol 2021;12:734551. [PMID: 34594338 DOI: 10.3389/fimmu.2021.734551] [Reference Citation Analysis]
13 Stirling ER, Bronson SM, Mackert JD, Cook KL, Triozzi PL, Soto-Pantoja DR. Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells 2022;11:179. [PMID: 35011741 DOI: 10.3390/cells11010179] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Quaresmini D, Di Lauro A, Fucci L, Strippoli S, De Risi I, Sciacovelli AM, Albano A, Achille G, Montepara M, Russo S, Tassone G, Guida M. Electrochemotherapy as a Trigger to Overcome Primary Resistance to Anti-PD-1 Treatment: A Case Report of Melanoma of the Scalp. Front Oncol 2021;11:742666. [PMID: 34604086 DOI: 10.3389/fonc.2021.742666] [Reference Citation Analysis]
15 Xu S, Ye C, Chen R, Li Q, Ruan J. The Landscape and Clinical Application of the Tumor Microenvironment in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2022;14:2911. [PMID: 35740577 DOI: 10.3390/cancers14122911] [Reference Citation Analysis]
16 Shi T, Zhou S, Zhang T, Han S, Zhang L, Fu F, Yan R, Zhang X, Wang S. Establishment of a Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay to Measure Soluble B7-H5 in Patients with Cancer. Journal of Immunology Research 2022;2022:1-8. [DOI: 10.1155/2022/3013185] [Reference Citation Analysis]
17 Weber M, Lutz R, Olmos M, Glajzer J, Baran C, Nobis C, Möst T, Eckstein M, Kesting M, Ries J. Beyond PD-L1—Identification of Further Potential Therapeutic Targets in Oral Cancer. Cancers 2022;14:1812. [DOI: 10.3390/cancers14071812] [Reference Citation Analysis]
18 Shi M, Luo F, Shao T, Zhang H, Yang T, Wei Y, Chen R, Guo R. Positive Correlation Between LTA Expression and Overall Immune Activity Suggests an Increased Probability of Survival in Uterine Corpus Endometrial Carcinoma. Front Cell Dev Biol 2022;9:793793. [DOI: 10.3389/fcell.2021.793793] [Reference Citation Analysis]
19 Aru B, Soltani M, Pehlivanoglu C, Gürlü E, Ganjalikhani-Hakemi M, Yanikkaya Demirel G. Comparison of Laboratory Methods for the Clinical Follow Up of Checkpoint Blockade Therapies in Leukemia: Current Status and Challenges Ahead. Front Oncol 2022;12:789728. [PMID: 35155232 DOI: 10.3389/fonc.2022.789728] [Reference Citation Analysis]
20 Akkın S, Varan G, Bilensoy E. A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers. Molecules 2021;26:3382. [PMID: 34205019 DOI: 10.3390/molecules26113382] [Reference Citation Analysis]
21 Kujtan L, Kancha RK, Gustafson B, Douglass L, Ward CR, Buzard B, Subramanian J. Squamous cell carcinoma of the lung: Improving the detection and management of immune-related adverse events. Expert Rev Anticancer Ther 2022. [PMID: 35034561 DOI: 10.1080/14737140.2022.2029414] [Reference Citation Analysis]
22 Brown ZJ, Gregory S, Hewitt DB, Iacono S, Choe J, Labiner HE, Pawlik TM. Safety, efficacy, and tolerability of immune checkpoint inhibitors in the treatment of hepatocellular carcinoma. Surgical Oncology 2022;42:101748. [DOI: 10.1016/j.suronc.2022.101748] [Reference Citation Analysis]
23 Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol 2022;11:44. [PMID: 35907881 DOI: 10.1186/s40164-022-00297-8] [Reference Citation Analysis]
24 Kaushik I, Ramachandran S, Zabel C, Gaikwad S, Srivastava SK. The evolutionary legacy of immune checkpoint inhibitors. Semin Cancer Biol 2022:S1044-579X(22)00076-1. [PMID: 35341912 DOI: 10.1016/j.semcancer.2022.03.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
25 Borgers JSW, Heimovaara JH, Cardonick E, Dierickx D, Lambertini M, Haanen JBAG, Amant F. Immunotherapy for cancer treatment during pregnancy. Lancet Oncol 2021;22:e550-61. [PMID: 34856152 DOI: 10.1016/S1470-2045(21)00525-8] [Reference Citation Analysis]
26 Terry RL, Meyran D, Fleuren EDG, Mayoh C, Zhu J, Omer N, Ziegler DS, Haber M, Darcy PK, Trapani JA, Neeson PJ, Ekert PG. Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma. Cancers (Basel) 2021;13:4704. [PMID: 34572932 DOI: 10.3390/cancers13184704] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zhang P, Gao H, Ye C, Yan R, Yu L, Xia C, Yang D. Large-Scale Transcriptome Data Analysis Identifies KIF2C as a Potential Therapeutic Target Associated With Immune Infiltration in Prostate Cancer. Front Immunol 2022;13:905259. [PMID: 35720323 DOI: 10.3389/fimmu.2022.905259] [Reference Citation Analysis]
28 de Aguiar Ferreira C, Heidari P, Ataeinia B, Sinevici N, Granito A, Kumar HM, Wehrenberg-klee E, Mahmood U. Immune Checkpoint Inhibitor-Mediated Cancer Theranostics with Radiolabeled Anti-Granzyme B Peptide. Pharmaceutics 2022;14:1460. [DOI: 10.3390/pharmaceutics14071460] [Reference Citation Analysis]
29 Pirš B, Škof E, Smrkolj V, Smrkolj Š. Overview of Immune Checkpoint Inhibitors in Gynecological Cancer Treatment. Cancers (Basel) 2022;14:631. [PMID: 35158899 DOI: 10.3390/cancers14030631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Chocarro L, Bocanegra A, Blanco E, Fernández-rubio L, Arasanz H, Echaide M, Garnica M, Ramos P, Piñeiro-hermida S, Vera R, Escors D, Kochan G. Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells 2022;11:2351. [DOI: 10.3390/cells11152351] [Reference Citation Analysis]
31 Lee SE, Lee CM, Won JE, Jang G, Lee JH, Park SH, Kang TH, Han HD, Park Y. Enhancement of anticancer immunity by immunomodulation of apoptotic tumor cells using annexin A5 protein-labeled nanocarrier system. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121677] [Reference Citation Analysis]
32 Moon J, Oh YM, Ha S. Perspectives on immune checkpoint ligands: expression, regulation, and clinical implications. BMB Rep 2021;54:403-12. [DOI: 10.5483/bmbrep.2021.54.8.054] [Reference Citation Analysis]
33 Zhu GL, Yang KB, Xu C, Feng RJ, Li WF, Ma J. Development of a prediction model for radiotherapy response among patients with head and neck squamous cell carcinoma based on the tumor immune microenvironment and hypoxia signature. Cancer Med 2022. [PMID: 35505641 DOI: 10.1002/cam4.4791] [Reference Citation Analysis]
34 An L, Zhang J, Feng D, Zhao Y, Ouyang W, Shi R, Zhou X, Yu Z, Wei S, Min J, Wang H. KIF2C Is a Novel Prognostic Biomarker and Correlated with Immune Infiltration in Endometrial Cancer. Stem Cells Int 2021;2021:1434856. [PMID: 34650608 DOI: 10.1155/2021/1434856] [Reference Citation Analysis]
35 Ji Q, Cai Y, Shrestha SM, Shen D, Zhao W, Shi R. Construction and Validation of an Immune-Related Gene Prognostic Index for Esophageal Squamous Cell Carcinoma. Biomed Res Int 2021;2021:7430315. [PMID: 34722771 DOI: 10.1155/2021/7430315] [Reference Citation Analysis]
36 Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022;13:851004. [PMID: 35222443 DOI: 10.3389/fimmu.2022.851004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Zhang R, Neighbors J, Schell T, Hohl R. Schweinfurthin induces ICD without ER stress and caspase activation. OncoImmunology 2022;11:2104551. [DOI: 10.1080/2162402x.2022.2104551] [Reference Citation Analysis]
38 Yu Y, Zhou Y, Zhang X, Tan K, Zheng J, Li J, Cui H. Immune Checkpoint Inhibitors in the Treatment of Patients With Cancer and Preexisting Psoriasis: A Systematic Review and Meta-Analysis of Observational Studies. Front Oncol 2022;12:934093. [DOI: 10.3389/fonc.2022.934093] [Reference Citation Analysis]
39 Xie Q, Huang X, Huang W, Liu F. PD-L2 Serves as a Potential Prognostic Biomarker That Correlates With Immune Infiltration and May Predict Therapeutic Sensitivity in Lower-Grade Gliomas. Front Oncol 2022;12:860640. [PMID: 35756621 DOI: 10.3389/fonc.2022.860640] [Reference Citation Analysis]
40 Delire B, De Martin E, Meunier L, Larrey D, Horsmans Y. Immunotherapy and Gene Therapy: New Challenges in the Diagnosis and Management of Drug-Induced Liver Injury. Front Pharmacol 2022;12:786174. [DOI: 10.3389/fphar.2021.786174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022;11:3. [PMID: 35074008 DOI: 10.1186/s40164-022-00257-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
42 Sumiyoshi A, Shibata S, Zhelev Z, Miller T, Lazarova D, Aoki I, Obata T, Higashi T, Bakalova R. Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State. Cancers 2022;14:485. [DOI: 10.3390/cancers14030485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Reference Citation Analysis]
44 Kamat S, Patel J, Brown BR, Vyas A. Adverse events induced by nivolumab plus ipilimumab versus nivolumab monotherapy among cancer patients: A systematic review and meta-analysis. Cancer Invest 2022;:1-20. [PMID: 35916661 DOI: 10.1080/07357907.2022.2108827] [Reference Citation Analysis]
45 Skertich NJ, Chu F, Tarhoni IAM, Szajek S, Borgia JA, Madonna MB. Expression of Immunomodulatory Checkpoint Molecules in Drug-Resistant Neuroblastoma: An Exploratory Study. Cancers (Basel) 2022;14:751. [PMID: 35159017 DOI: 10.3390/cancers14030751] [Reference Citation Analysis]
46 Casagrande N, Borghese C, Aldinucci D. Current and Emerging Approaches to Study Microenvironmental Interactions and Drug Activity in Classical Hodgkin Lymphoma. Cancers 2022;14:2427. [DOI: 10.3390/cancers14102427] [Reference Citation Analysis]
47 Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021;:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Reference Citation Analysis]
48 Pansy K, Uhl B, Krstic J, Szmyra M, Fechter K, Santiso A, Thüminger L, Greinix H, Kargl J, Prochazka K, Feichtinger J, Deutsch AJ. Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021;22:13311. [PMID: 34948104 DOI: 10.3390/ijms222413311] [Reference Citation Analysis]
49 Kwan AK, Piazza GA, Keeton AB, Leite CA. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. J Exp Clin Cancer Res 2022;41. [DOI: 10.1186/s13046-021-02225-w] [Reference Citation Analysis]
50 Mccrae KR, Swaidani S, Diaz-montero CM, Khorana AA. Old is new again: Emergence of thromboembolic complications in cancer patients on immunotherapy. Thrombosis Research 2022;213:S51-7. [DOI: 10.1016/j.thromres.2022.01.006] [Reference Citation Analysis]
51 Zhao X, Pan X, Wang Y, Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark Res 2021;9:61. [PMID: 34321091 DOI: 10.1186/s40364-021-00315-7] [Reference Citation Analysis]
52 Cai W, Nguyen MQ, Wilski NA, Purwin TJ, Vernon M, Tiago M, Aplin AE. A Genome-Wide Screen Identifies PDPK1 as a Target to Enhance the Efficacy of MEK1/2 Inhibitors in NRAS Mutant Melanoma. Cancer Res 2022;82:2625-39. [PMID: 35657206 DOI: 10.1158/0008-5472.CAN-21-3217] [Reference Citation Analysis]
53 Tarone L, Giacobino D, Camerino M, Ferrone S, Buracco P, Cavallo F, Riccardo F. Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Front Vet Sci 2022;9:803093. [DOI: 10.3389/fvets.2022.803093] [Reference Citation Analysis]
54 Lamas NJ, Martel A, Nahon-Estève S, Goffinet S, Macocco A, Bertolotto C, Lassalle S, Hofman P. Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021;14:96. [PMID: 35008260 DOI: 10.3390/cancers14010096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 Xie R, Xie M, Zhu L, Chiu JWY, Lam W, Yap DYH. The Relationship of Pyroptosis-Related Genes, Patient Outcomes, and Tumor-Infiltrating Cells in Bladder Urothelial Carcinoma (BLCA). Front Pharmacol 2022;13:930951. [DOI: 10.3389/fphar.2022.930951] [Reference Citation Analysis]
56 Yu W, Liu F, Lei Q, Wu P, Yang L, Zhang Y. Identification of Key Pathways and Genes Related to Immunotherapy Resistance of LUAD Based on WGCNA Analysis. Front Oncol 2021;11:814014. [PMID: 35071018 DOI: 10.3389/fonc.2021.814014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Chen S, Duan Y, Wu Y, Yang D, An J. A Novel Integrated Metabolism-Immunity Gene Expression Model Predicts the Prognosis of Lung Adenocarcinoma Patients. Front Pharmacol 2021;12:728368. [PMID: 34393804 DOI: 10.3389/fphar.2021.728368] [Reference Citation Analysis]
58 Shao Q, Wang L, Yuan M, Jin X, Chen Z, Wu C. TIGIT Induces (CD3+) T Cell Dysfunction in Colorectal Cancer by Inhibiting Glucose Metabolism. Front Immunol 2021;12:688961. [PMID: 34659197 DOI: 10.3389/fimmu.2021.688961] [Reference Citation Analysis]
59 Goff PH, Bhakuni R, Pulliam T, Lee JH, Hall ET, Nghiem P. Intersection of Two Checkpoints: Could Inhibiting the DNA Damage Response Checkpoint Rescue Immune Checkpoint-Refractory Cancer? Cancers (Basel) 2021;13:3415. [PMID: 34298632 DOI: 10.3390/cancers13143415] [Reference Citation Analysis]