BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yi F, Li L, Xu LJ, Meng H, Dong YM, Liu HB, Xiao PG. In silico approach in reveal traditional medicine plants pharmacological material basis. Chin Med 2018;13:33. [PMID: 29946351 DOI: 10.1186/s13020-018-0190-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Dhanasekaran S, Selvadoss PP, Manoharan SS. Anti-Fungal Potential of Structurally Diverse FDA-Approved Therapeutics Targeting Secreted Aspartyl Proteinase (SAP) of Candida albicans: an In Silico Drug Repurposing Approach. Appl Biochem Biotechnol 2023;195:1983-98. [PMID: 36401722 DOI: 10.1007/s12010-022-04207-w] [Reference Citation Analysis]
2 Alugoju P, Vishnu Bhandare V, S. Patil V, V. K. D KS, Borugadda PK, Tencomnao T. In silico molecular docking and molecular dynamic simulation of agarwood compounds with molecular targets of Alzheimer’s disease. F1000Res 2023;12:230. [DOI: 10.12688/f1000research.130618.1] [Reference Citation Analysis]
3 Ugwu-Korie N, Quaye O, Wright E, Languon S, Agyapong O, Broni E, Gupta Y, Kempaiah P, Kwofie SK. Structure-Based Identification of Natural-Product-Derived Compounds with Potential to Inhibit HIV-1 Entry. Molecules 2023;28. [PMID: 36677538 DOI: 10.3390/molecules28020474] [Reference Citation Analysis]
4 Sunitha S, Anoopkumar A, Aneesh EM, Rajesh K, Nath GR. Biological Activities of Essential Oil of Vitex altissima Leaves and Inhibition Potential towards Phosphoinositide-3 Kinase (PI3K) Enzyme by Molecular Docking. Asian J Chem 2023;35:17-28. [DOI: 10.14233/ajchem.2023.24046] [Reference Citation Analysis]
5 Vivek AS, Riyas CT, Swapna TS. Enhanced Secondary Metabolite Production for Drug Leads. Sustainable Development and Biodiversity 2023. [DOI: 10.1007/978-981-19-5841-0_19] [Reference Citation Analysis]
6 Yan G, Wang Y, Zhu H, Fan X, Wang G, Wang X, Mi J. Evaluation of Kusuantongtiao Formula as adjunctive therapy for Insulin Resistance: An integrated in silico exploration and experimental validation.. [DOI: 10.21203/rs.3.rs-2278280/v1] [Reference Citation Analysis]
7 Sharma B, Yadav DK. Metabolomics and Network Pharmacology in the Exploration of the Multi-Targeted Therapeutic Approach of Traditional Medicinal Plants. Plants (Basel) 2022;11. [PMID: 36501282 DOI: 10.3390/plants11233243] [Reference Citation Analysis]
8 Mohammed AE, Alghamdi SS, Alharbi NK, Alshehri F, Suliman RS, Al-Dhabaan F, Alharbi M. Limoniastrum monopetalum-Mediated Nanoparticles and Biomedicines: In Silico Study and Molecular Prediction of Biomolecules. Molecules 2022;27. [PMID: 36432115 DOI: 10.3390/molecules27228014] [Reference Citation Analysis]
9 Sudhir S, Pozhaiparambil Sasikumar A. A Scientific Ethnomedical Study Using Microbes on Gaucher Disease: An In-Silico Analysis. Drug Formulation Design [Working Title] 2022. [DOI: 10.5772/intechopen.107545] [Reference Citation Analysis]
10 Ibrahim M, Tiwari R, Fahim M, Nirban S. Integrating phytochemical profiling, <i>in vitro</i> studies and network pharmacology to reveal the antidiabetic action mechanism of <i>Punica granatum</i> fruit peel. NRFHH 2022. [DOI: 10.53365/nrfhh/153385] [Reference Citation Analysis]
11 Ali Z, Ain S, Kumar B, Ain Q. Method Development and Validation for Estimation of Cefadroxil in Different Marketed Tablets by UV Spectrophotometry Method and Anti-Inflammatory Studies Using In-Silico Approaches. Orient J Chem 2022;38:898-905. [DOI: 10.13005/ojc/380409] [Reference Citation Analysis]
12 Yamamoto M. KAMPOmics: A framework for multidisciplinary and comprehensive research on Japanese traditional medicine. Gene 2022;831:146555. [PMID: 35569769 DOI: 10.1016/j.gene.2022.146555] [Reference Citation Analysis]
13 Siswodihardjo S, Pratama MRF, Praditapuspa EN, Kesuma D, Poerwono H, Widiandani T. Boesenbergia Pandurata as an Anti-Breast Cancer Agent: Molecular Docking and ADMET Study. LDDD 2022;19:606-626. [DOI: 10.2174/1570180819666211220111245] [Reference Citation Analysis]
14 Mahapatra SR, Dey J, Raj T, Kumar V, Ghosh M, Verma KK, Kaur T, Kesawat MS, Misra N, Suar M. The potential of plant-derived secondary metabolites as novel drug candidate against Klebsiella pneumoniae: Molecular docking and simulation investigation. South African Journal of Botany 2022. [DOI: 10.1016/j.sajb.2022.04.043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Tomasella C, Binello A, Guccione S, Cravotto G. Therapeutically valuable bioactive extracts from Mediterranean plants: Green technologies and molecular modelling for a viable endeavour. Green Chemistry and Computational Chemistry 2022. [DOI: 10.1016/b978-0-12-819879-7.00014-3] [Reference Citation Analysis]
16 Srinivasa C, Shivamallu C, Kallimani S, Sushma P, Kollur SP, Prabhurajeshwar, Gopinath S. Application of molecular docking and dynamics tools in SARS-CoV-2 drug design. Coronavirus Drug Discovery 2022. [DOI: 10.1016/b978-0-323-95578-2.00003-0] [Reference Citation Analysis]
17 Briones YL, Young AT, Dayrit FM, De Jesus AJ, Rojas NRL. Visualizing Phytochemical-Protein Interaction Networks: Momordica charantia and Cancer. Front Bioinform 2021;1:768886. [DOI: 10.3389/fbinf.2021.768886] [Reference Citation Analysis]
18 Ibrahim MB, Kola-mustapha AT, Adelakun NS, Koorbanally NA. Phytoconstituents from Markhamia tomentosa Bind To HPV Oncoprotein with Apoptogenic Potential: A Molecular Modeling Approach. Annals of Science and Technology 2021;6:28-46. [DOI: 10.2478/ast-2021-0008] [Reference Citation Analysis]
19 Tran VA, Thi Vo T, Nguyen MT, Duy Dat N, Doan V, Nguyen T, Vu QH, Le VT, Tong TD, Maneiro M. Novel α-Mangostin Derivatives from Mangosteen (Garcinia mangostana L.) Peel Extract with Antioxidant and Anticancer Potential. Journal of Chemistry 2021;2021:1-12. [DOI: 10.1155/2021/9985604] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Yudhani RD, Nugrahaningsih DAA, Sholikhah EN, Mustofa M. The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review. Open Access Maced J Med Sci 2021;9:370-388. [DOI: 10.3889/oamjms.2021.6972] [Reference Citation Analysis]
21 Taskin D, Ozdemir M, Yalcin B. LC-ESI-tandem MS and in silico ADMET analysis of polyphenols from Rhus coriaria L. and Micromeria fruticosa (L.) Druce ssp. brachycalyx P. H. Davis. Futur J Pharm Sci 2021;7. [DOI: 10.1186/s43094-021-00317-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Ma J, Ye M, Li Y, Chai S, Huang H, Lian X, Huang H. Zhuanggu Zhitong Capsule alleviates osteosarcopenia in rats by up-regulating PI3K/Akt/Bcl2 signaling pathway. Biomed Pharmacother 2021;142:111939. [PMID: 34311171 DOI: 10.1016/j.biopha.2021.111939] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yongzhong Lu, Zhao J, Cheng L. Virtual Screening of Antimicrobial Agents from Medicinal Plants. Russ J Bioorg Chem 2021;47:939-44. [DOI: 10.1134/s1068162021040154] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Oliveros-Díaz A, Olivero-Verbel J, Pájaro-González Y, Díaz-Castillo F. Molecular Human Targets of Bioactive Alkaloid-Type Compounds from Tabernaemontana cymose Jacq. Molecules 2021;26:3765. [PMID: 34205626 DOI: 10.3390/molecules26123765] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Liu Z, Zhang L, Wang J, Li Y, Chang Y, Huang X, Duan J, Ai Y, Zeng X, Guo J. Virtual Screening and Biological Evaluation of Anti-Biofilm Agents Targeting LuxS in the Quorum Sensing System. Natural Product Communications 2021;16:1934578X2110196. [DOI: 10.1177/1934578x211019625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Umashankar V, Deshpande SH, Hegde HV, Singh I, Chattopadhyay D. Phytochemical Moieties From Indian Traditional Medicine for Targeting Dual Hotspots on SARS-CoV-2 Spike Protein: An Integrative in-silico Approach. Front Med (Lausanne) 2021;8:672629. [PMID: 34026798 DOI: 10.3389/fmed.2021.672629] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
27 Joshi G, Sindhu J, Thakur S, Rana A, Sharma G, Mayank, Poduri R. Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads. Food Chem Toxicol 2021;152:112160. [PMID: 33823228 DOI: 10.1016/j.fct.2021.112160] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
28 Yin X, Qiu Y, Li Z, Guo L, Wei H, Liu B, Zhou M, Li T, Wang L, Jiang W, Bi H, Guo D. Longdan Xiegan Decoction alleviates experimental autoimmune uveitis in rats by inhibiting Notch signaling pathway activation and Th17 cell differentiation. Biomedicine & Pharmacotherapy 2021;136:111291. [DOI: 10.1016/j.biopha.2021.111291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Mondal M, Quispe C, Sarkar C, Bepari TC, Alam MJ, Saha S, Ray P, Rahim MA, Islam MT, Setzer WN, Salehi B, Ahmadi M, Abdalla M, Sharifi-rad J, Kundu SK. Analgesic and Anti-Inflammatory Potential of Essential Oil of Eucalyptus camaldulensis Leaf: In Vivo and in Silico Studies. Natural Product Communications 2021;16:1934578X2110076. [DOI: 10.1177/1934578x211007634] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Tayab MA, Chowdhury KAA, Jabed M, Mohammed Tareq S, Kamal ATMM, Islam MN, Uddin AMK, Hossain MA, Emran TB, Simal-Gandara J. Antioxidant-Rich Woodfordia fruticosa Leaf Extract Alleviates Depressive-Like Behaviors and Impede Hyperglycemia. Plants (Basel) 2021;10:287. [PMID: 33546288 DOI: 10.3390/plants10020287] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
31 Umar HI, Siraj B, Ajayi A, Jimoh TO, Chukwuemeka PO. Molecular docking studies of some selected gallic acid derivatives against five non-structural proteins of novel coronavirus. J Genet Eng Biotechnol 2021;19:16. [PMID: 33492492 DOI: 10.1186/s43141-021-00120-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
32 Adetunji CO, Akram M, Olaniyan OT, Ajayi OO, Inobeme A, Olaniyan S, Hameed L, Adetunji JB. Targeting SARS-CoV-2 Novel Corona (COVID-19) Virus Infection Using Medicinal Plants. Medicinal Plants for Lung Diseases 2021. [DOI: 10.1007/978-981-33-6850-7_21] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Sun N, Agyei D, Ji D. Medicinal Chemistry Friendliness of Pigments from Monascus-Fermented Rice and the Molecular Docking Analysis of Their Anti-Hyperlipidemia Properties. Fermentation 2020;6:111. [DOI: 10.3390/fermentation6040111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Lopes Neto JJ, de Almeida TS, Gonçalves de Lima RC, Dos Santos Nunes RG, de Lima Silva JR, de Almeida LL, Kamdem JP, Carvalho AFU. Metabolic aspects of phenolic compounds from Triplaris gardneriana seeds in the management of oxidative stress. Drug Dev Ind Pharm 2020;46:1026-33. [PMID: 32393135 DOI: 10.1080/03639045.2020.1767126] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Sun Y, Xiong YY, Wu HZ, Xiong WC, Liu B, Xie ZT, Xiao WP, Huang BS, Yang YF. Active Ingredients and Mechanism of Action of Rhizoma Coptidis against Type 2 Diabetes Based on Network-Pharmacology and Bioinformatics. Curr Med Sci 2020;40:257-64. [PMID: 32337687 DOI: 10.1007/s11596-020-2182-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
36 Buriani A, Fortinguerra S, Sorrenti V, Caudullo G, Carrara M. Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020;25:E1833. [PMID: 32316274 DOI: 10.3390/molecules25081833] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
37 Varela-Rodríguez L, Sánchez-Ramírez B, Hernández-Ramírez VI, Varela-Rodríguez H, Castellanos-Mijangos RD, González-Horta C, Chávez-Munguía B, Talamás-Rohana P. Effect of Gallic acid and Myricetin on ovarian cancer models: a possible alternative antitumoral treatment. BMC Complement Med Ther 2020;20:110. [PMID: 32276584 DOI: 10.1186/s12906-020-02900-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
38 Anand U, Nandy S, Mundhra A, Das N, Pandey DK, Dey A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist Updat 2020;51:100695. [PMID: 32442892 DOI: 10.1016/j.drup.2020.100695] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 15.7] [Reference Citation Analysis]
39 Zheng W, Wu J, Gu J, Weng H, Wang J, Wang T, Liang X, Cao L. Modular Characteristics and Mechanism of Action of Herbs for Endometriosis Treatment in Chinese Medicine: A Data Mining and Network Pharmacology-Based Identification. Front Pharmacol 2020;11:147. [PMID: 32210799 DOI: 10.3389/fphar.2020.00147] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
40 Marshall AC. Traditional Chinese Medicine and Clinical Pharmacology. Drug Discovery and Evaluation: Methods in Clinical Pharmacology 2020. [DOI: 10.1007/978-3-319-56637-5_60-2] [Reference Citation Analysis]
41 Marshall AC. Traditional Chinese Medicine and Clinical Pharmacology. Drug Discovery and Evaluation: Methods in Clinical Pharmacology 2020. [DOI: 10.1007/978-3-319-68864-0_60] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
42 Olivés J, Mestres J. Closing the Gap Between Therapeutic Use and Mode of Action in Remedial Herbs. Front Pharmacol 2019;10:1132. [PMID: 31632273 DOI: 10.3389/fphar.2019.01132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Zhong Z, Zhang Q, Tao H, Sang W, Cui L, Qiang W, Cheang WS, Hu Y, Yu H, Wang Y. Anti-inflammatory activities of Sigesbeckia glabrescens Makino: combined in vitro and in silico investigations. Chin Med 2019;14:35. [PMID: 31572487 DOI: 10.1186/s13020-019-0260-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
44 Saleem H, Zengin G, Locatelli M, Ahmad I, Khaliq S, Mahomoodally MF, Hussain R, Rengasamy KRR, Mollica A, Zainal Abidin SA, Ahemad N. Pharmacological, phytochemical and in-vivo toxicological perspectives of a xero-halophyte medicinal plant: Zaleya pentandra (L.) Jeffrey. Food Chem Toxicol 2019;131:110535. [PMID: 31154083 DOI: 10.1016/j.fct.2019.05.043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
45 Kalani K, Alam S, Chaturvedi V, Singh S, Khan F, Srivastava SK. In Vitro, In Silico and Ex Vivo Studies of Dihydroartemisinin Derivatives as Antitubercular Agents. Curr Top Med Chem 2019;19:633-44. [PMID: 30834834 DOI: 10.2174/1568026619666190305131425] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
46 Marshall AC. Traditional Chinese Medicine and Clinical Pharmacology. Drug Discovery and Evaluation: Methods in Clinical Pharmacology 2019. [DOI: 10.1007/978-3-319-56637-5_60-1] [Reference Citation Analysis]
47 Kumar R, Singh AK, Gupta A, Pandey AK. In-silico Approaches to Study Therapeutic Efficacy of Nutraceuticals. Phytochemistry: An in-silico and in-vitro Update 2019. [DOI: 10.1007/978-981-13-6920-9_25] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
48 Silva DR, Sardi JCO, Freires IA, Silva ACB, Rosalen PL. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur J Pharmacol 2019;842:64-9. [PMID: 30326213 DOI: 10.1016/j.ejphar.2018.10.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
49 Locatelli M, Yerlikaya S, Baloglu MC, Zengin G, Altunoglu YC, Cacciagrano F, Campestre C, Mahomoodally MF, Mollica A. Investigations into the therapeutic potential of Asphodeline liburnica roots: In vitro and in silico biochemical and toxicological perspectives. Food and Chemical Toxicology 2018;120:172-82. [DOI: 10.1016/j.fct.2018.07.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]