BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rast FM, Labruyère R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J Neuroeng Rehabil 2020;17:148. [PMID: 33148315 DOI: 10.1186/s12984-020-00779-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Yang G, Su Z, Li S, Wang Y. Human activity recognition based on multienvironment sensor data. Information Fusion 2023;91:47-63. [DOI: 10.1016/j.inffus.2022.10.015] [Reference Citation Analysis]
2 Celik Y, Vitorio R, Powell D, Moore J, Young F, Coulby G, Tung J, Nouredanesh M, Ellis R, Izmailova ES, Stuart S, Godfrey A. Sensor Integration for Gait Analysis. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00139-4] [Reference Citation Analysis]
3 Celik Y, Aslan MF, Sabanci K, Stuart S, Woo WL, Godfrey A. Improving Inertial Sensor-Based Activity Recognition in Neurological Populations. Sensors (Basel) 2022;22. [PMID: 36560259 DOI: 10.3390/s22249891] [Reference Citation Analysis]
4 Gouteron A, Laroche D, Beaurain J, Ksiazek E, Fournel I, Bohm A, Ornetti P, Casillas JM, Armand S, Gueugnon M. Effect of decompression surgery for lumbar spinal stenosis on aerobic capacities during a 6-min walk test: A preliminary cohort study. Ann Phys Rehabil Med 2022;66:101673. [PMID: 35489687 DOI: 10.1016/j.rehab.2022.101673] [Reference Citation Analysis]
5 Rast FM, Labruyère R. Sensor-based outcomes to monitor everyday life motor activities of children and adolescents with neuromotor impairments: A survey with health professionals. Front Rehabil Sci 2022;3:865701. [PMID: 36311205 DOI: 10.3389/fresc.2022.865701] [Reference Citation Analysis]
6 Pohl J, Ryser A, Veerbeek JM, Verheyden G, Vogt JE, Luft AR, Easthope CA. Accuracy of gait and posture classification using movement sensors in individuals with mobility impairment after stroke. Front Physiol 2022;13:933987. [DOI: 10.3389/fphys.2022.933987] [Reference Citation Analysis]
7 Huang C, Nihey F, Fukushi K, Kajitani H, Nozaki Y, Wang Z, Nakahara K. Estimation of Hand Grip Strength Using Foot motion Measured by In-shoe Motion Sensor. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2022. [DOI: 10.1109/embc48229.2022.9871544] [Reference Citation Analysis]
8 Sanpablo AIP, Armenta-García JA, Muñiz AF, Peñaloza AM, Mendoza-Arguilés A, Rodríguez MD. Integration of persuasive elements into exergames: Application in the development of a novel gait rehabilitation system for children with musculoskeletal conditions. J Biomed Inform 2022;132:104130. [PMID: 35820597 DOI: 10.1016/j.jbi.2022.104130] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Lencioni T, Meloni M, Bowman T, Marzegan A, Caronni A, Carpinella I, Castagna A, Gower V, Ferrarin M, Pelosin E. Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson's Disease. Sensors (Basel) 2022;22. [PMID: 35408282 DOI: 10.3390/s22072668] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bell BM, Alam R, Mondol AS, Ma M, Emi IA, Preum SM, de la Haye K, Stankovic JA, Lach J, Spruijt-Metz D. Validity and Feasibility of the Monitoring and Modeling Family Eating Dynamics System to Automatically Detect In-field Family Eating Behavior: Observational Study. JMIR Mhealth Uhealth 2022;10:e30211. [PMID: 35179508 DOI: 10.2196/30211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tan JS, Tippaya S, Binnie T, Davey P, Napier K, Caneiro JP, Kent P, Smith A, O'Sullivan P, Campbell A. Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models. Sensors (Basel) 2022;22:446. [PMID: 35062408 DOI: 10.3390/s22020446] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Huang C, Fukushi K, Wang Z, Nihey F, Kajitani H, Nakahara K. Method for Estimating Temporal Gait Parameters Concerning Bilateral Lower Limbs of Healthy Subjects Using a Single In-Shoe Motion Sensor through a Gait Event Detection Approach. Sensors (Basel) 2022;22:351. [PMID: 35009893 DOI: 10.3390/s22010351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Klamroth-marganska V, Giovanoli S, Easthope CA, Schönhammer JG. Telerehabilitation Technology. Neurorehabilitation Technology 2022. [DOI: 10.1007/978-3-031-08995-4_25] [Reference Citation Analysis]
14 Andreoni G, Cassiolas G, Standoli CE, Lenzi SE, Perego P, Lopomo NF. Automatic Classification of Working Activities for Risk Assessment in Large-Scale Retail Distribution by Using Wearable Sensors: A Preliminary Analysis. Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Health, Operations Management, and Design 2022. [DOI: 10.1007/978-3-031-06018-2_10] [Reference Citation Analysis]
15 Kanzler CM, Bolliger M, Lambercy O. Robotic Technologies and Digital Health Metrics for Assessing Sensorimotor Disability. Neurorehabilitation Technology 2022. [DOI: 10.1007/978-3-031-08995-4_15] [Reference Citation Analysis]
16 Ionut-Cristian S, Dan-Marius D. Using Inertial Sensors to Determine Head Motion-A Review. J Imaging 2021;7:265. [PMID: 34940732 DOI: 10.3390/jimaging7120265] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Martino Cinnera A, Morone G, Marrano S, Vannozzi G, Picerno P. Feasibility of using wearable inertial sensors for assessing gait changes after total knee arthroplasty: a systematic review and meta-analysis. Minerva Orthop 2021;72. [DOI: 10.23736/s2784-8469.21.04137-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Celik Y, Stuart S, Woo WL, Godfrey A. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations. Sensors (Basel) 2021;21:6476. [PMID: 34640799 DOI: 10.3390/s21196476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Dindorf C, Konradi J, Wolf C, Taetz B, Bleser G, Huthwelker J, Werthmann F, Bartaguiz E, Kniepert J, Drees P, Betz U, Fröhlich M. Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI). Sensors (Basel) 2021;21:6323. [PMID: 34577530 DOI: 10.3390/s21186323] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
20 Keogh A, Argent R, Anderson A, Caulfield B, Johnston W. Assessing the usability of wearable devices to measure gait and physical activity in chronic conditions: a systematic review. J Neuroeng Rehabil 2021;18:138. [PMID: 34526053 DOI: 10.1186/s12984-021-00931-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 De Fazio R, Stabile M, De Vittorio M, Velázquez R, Visconti P. An Overview of Wearable Piezoresistive and Inertial Sensors for Respiration Rate Monitoring. Electronics 2021;10:2178. [DOI: 10.3390/electronics10172178] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
22 Tan JS, Beheshti BK, Binnie T, Davey P, Caneiro JP, Kent P, Smith A, O'Sullivan P, Campbell A. Human Activity Recognition for People with Knee Osteoarthritis-A Proof-of-Concept. Sensors (Basel) 2021;21:3381. [PMID: 34066265 DOI: 10.3390/s21103381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Bell BM, Alam R, Mondol AS, Ma M, Emi IA, Preum SM, de la Haye K, Stankovic JA, Lach J, Spruijt-metz D. Validity and Feasibility of the Monitoring and Modeling Family Eating Dynamics System to Automatically Detect In-field Family Eating Behavior: Observational Study (Preprint).. [DOI: 10.2196/preprints.30211] [Reference Citation Analysis]
24 Sanchetee P. Current Trends in Stroke Rehabilitation. Ischemic Stroke 2021. [DOI: 10.5772/intechopen.95576] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]