BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021;19:2. [PMID: 33407537 DOI: 10.1186/s12951-020-00740-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Verma AH, Ganesh S, Venkatakrishnan K, Tan B. Epigenetic reprogramming of cancer stem cells to tumor cells using ultrasmall gold nanoparticle. Applied Materials Today 2023;30:101725. [DOI: 10.1016/j.apmt.2022.101725] [Reference Citation Analysis]
2 Erdem JS, Závodná T, Ervik TK, Skare Ø, Hron T, Anmarkrud KH, Kuśnierczyk A, Catalán J, Ellingsen DG, Topinka J, Zienolddiny-narui S. High aspect ratio nanomaterial-induced macrophage polarization is mediated by changes in miRNA levels. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1111123] [Reference Citation Analysis]
3 Belitsky GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Mechanisms of the carcinogenicity of nanomaterials. Usp mol onkol 2022;9:8-23. [DOI: 10.17650/2313-805x-2022-9-4-8-23] [Reference Citation Analysis]
4 Dos Santos OAL, Pizzorno Backx B, Abumousa RA, Bououdina M. Environmental Implications Associated with the Development of Nanotechnology: From Synthesis to Disposal. Nanomaterials (Basel) 2022;12. [PMID: 36500947 DOI: 10.3390/nano12234319] [Reference Citation Analysis]
5 Sadiku OO, Rodríguez-Seijo A. Metabolic and genetic derangement: a review of mechanisms involved in arsenic and lead toxicity and genotoxicity. Arh Hig Rada Toksikol 2022;73:244-55. [PMID: 36607725 DOI: 10.2478/aiht-2022-73-3669] [Reference Citation Analysis]
6 Cholujova D, Koklesova L, Lukacova Bujnakova Z, Dutkova E, Valuskova Z, Beblava P, Matisova A, Sedlak J, Jakubikova J. In vitro and ex vivo anti-myeloma effects of nanocomposite As(4)S(4)/ZnS/Fe(3)O(4). Sci Rep 2022;12:17961. [PMID: 36289430 DOI: 10.1038/s41598-022-22672-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhang W, Li J, Silveira CP, Cai Q, Dawson KA, Cagney G, Yan Y. Nanoscale shape-dependent histone modifications. PNAS Nexus 2022;1:pgac172. [PMID: 36714843 DOI: 10.1093/pnasnexus/pgac172] [Reference Citation Analysis]
8 Pogribna M, Word B, Lyn-cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology. [DOI: 10.1080/17435390.2022.2085206] [Reference Citation Analysis]
9 Bonser CAR, Astete CE, Sabliov CM, Davis JA. Life History of Chrysodeixis includens (Lepidoptera: Noctuidae) on Positively Charged Zein Nanoparticles. Environ Entomol 2022:nvac042. [PMID: 35727137 DOI: 10.1093/ee/nvac042] [Reference Citation Analysis]
10 Karalija E, Carbó M, Coppi A, Colzi I, Dainelli M, Gasparovic M, Grebenc T, Gonnelli C, Papadakis V, Pilic S, Šibanc N, Valledor L, Poma A, Martinelli F. Interplay of plastic pollution with algae and plants: hidden danger or a blessing? Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.129450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wen L, Li M, Lin X, Li Y, Song H, Chen H. AgNPs Aggravated Hepatic Steatosis, Inflammation, Oxidative Stress, and Epigenetic Changes in Mice With NAFLD Induced by HFD. Front Bioeng Biotechnol 2022;10:912178. [DOI: 10.3389/fbioe.2022.912178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ayers M. A Nanoreview of Nanoscience. Science & Technology Libraries 2022;41:113-122. [DOI: 10.1080/0194262x.2021.1965943] [Reference Citation Analysis]
13 Olmedo-suárez MÁ, Ramírez-díaz I, Pérez-gonzález A, Molina-herrera A, Coral-garcía MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022;12:513. [DOI: 10.3390/biom12040513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Han D, Xu C, Ren XH, Peng Y, Xu B, Song JL, Chen J, Cheng SX. In Situ Detection of Nanotoxicity in Living Cells Based on Multiple miRNAs Probed by a Peptide Functionalized Nanoprobe. Anal Chem 2022. [PMID: 35099175 DOI: 10.1021/acs.analchem.1c03950] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Wang Y, Ruan F, Zuo Z, He C. Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. Nanomaterials 2022;12:389. [DOI: 10.3390/nano12030389] [Reference Citation Analysis]
16 Panghal A, Flora SJS. Toxicity Evaluation of Nanomedicine. Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology 2022. [DOI: 10.1007/978-3-031-12398-6_19] [Reference Citation Analysis]
17 Danquah MK, Jeevanandam J. Nano-tattoos—a novel approach for glucose monitoring and diabetes management. Emerging Nanomedicines for Diabetes Mellitus Theranostics 2022. [DOI: 10.1016/b978-0-323-85396-5.00003-8] [Reference Citation Analysis]
18 Muñoz-Wolf N, Lavelle EC. Promotion of trained innate immunity by nanoparticles. Semin Immunol 2021;:101542. [PMID: 34973890 DOI: 10.1016/j.smim.2021.101542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ballesteros S, Vales G, Velázquez A, Pastor S, Alaraby M, Marcos R, Hernández A. MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO2NP and MWCNT. Nanomaterials (Basel) 2021;11:3458. [PMID: 34947804 DOI: 10.3390/nano11123458] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Carotenuto R, Tussellino M, Ronca R, Benvenuto G, Fogliano C, Fusco S, Netti PA. Toxic effects of SiO2NPs in early embryogenesis of Xenopuslaevis. Chemosphere 2021;289:133233. [PMID: 34896176 DOI: 10.1016/j.chemosphere.2021.133233] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. Oxid Med Cell Longev 2021;2021:7244677. [PMID: 34820054 DOI: 10.1155/2021/7244677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G, Durazzo A. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. Oxidative Medicine and Cellular Longevity 2021;2021:1-21. [DOI: 10.1155/2021/7244677] [Reference Citation Analysis]
23 Wu K, Zhou Q, Ouyang S. Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA-A Review. Nanomaterials (Basel) 2021;11:2889. [PMID: 34835652 DOI: 10.3390/nano11112889] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
24 Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet 2021;12:728250. [PMID: 34659351 DOI: 10.3389/fgene.2021.728250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
25 Pezzotti G, Boschetto F, Ohgitani E, Fujita Y, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O. Mechanisms of instantaneous inactivation of SARS-CoV-2 by silicon nitride bioceramic. Mater Today Bio 2021;12:100144. [PMID: 34632359 DOI: 10.1016/j.mtbio.2021.100144] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Abdelnour SA, Alagawany M, Hashem NM, Farag MR, Alghamdi ES, Hassan FU, Bilal RM, Elnesr SS, Dawood MAO, Nagadi SA, Elwan HAM, ALmasoudi AG, Attia YA. Nanominerals: Fabrication Methods, Benefits and Hazards, and Their Applications in Ruminants with Special Reference to Selenium and Zinc Nanoparticles. Animals (Basel) 2021;11:1916. [PMID: 34203158 DOI: 10.3390/ani11071916] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
27 Zhang J, Liu S, Han J, Wang Z, Zhang S. On the developmental toxicity of silver nanoparticles. Materials & Design 2021;203:109611. [DOI: 10.1016/j.matdes.2021.109611] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
28 Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E. Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. Int J Mol Sci 2021;22:4595. [PMID: 33925617 DOI: 10.3390/ijms22094595] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
29 Yuan YG, Cai HQ, Wang JL, Mesalam A, Md Talimur Reza AM, Li L, Chen L, Qian C. Graphene Oxide-Silver Nanoparticle Nanocomposites Induce Oxidative Stress and Aberrant Methylation in Caprine Fetal Fibroblast Cells. Cells 2021;10:682. [PMID: 33808775 DOI: 10.3390/cells10030682] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Choi JH, Lee H, Lee H, Lee H. Dopant-Dependent Toxicity of CeO2 Nanoparticles Is Associated with Dynamic Changes in H3K4me3 and H3K27me3 and Transcriptional Activation of NRF2 Gene in HaCaT Human Keratinocytes. Int J Mol Sci 2021;22:3087. [PMID: 33802993 DOI: 10.3390/ijms22063087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]