BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021;20:33. [PMID: 33593376 DOI: 10.1186/s12943-021-01311-z] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 60.0] [Reference Citation Analysis]
Number Citing Articles
1 Hertler J, Slama K, Schober B, Özrendeci Z, Marchand V, Motorin Y, Helm M. Synthesis of point-modified mRNA. Nucleic Acids Res 2022:gkac719. [PMID: 36062567 DOI: 10.1093/nar/gkac719] [Reference Citation Analysis]
2 Nan F, Wu C, Su J, Ma L. Potential mouse models of coronavirus-related immune injury. Front Immunol 2022;13:943783. [DOI: 10.3389/fimmu.2022.943783] [Reference Citation Analysis]
3 Nitika, Wei J, Hui AM. The Delivery of mRNA Vaccines for Therapeutics. Life (Basel) 2022;12:1254. [PMID: 36013433 DOI: 10.3390/life12081254] [Reference Citation Analysis]
4 Zhou Y, Nishikawa M, Kanno H, Yang R, Ibayashi Y, Xiao TH, Peterson W, Herbig M, Nitta N, Miyata S, Kanthi Y, Rohde GK, Moriya K, Yatomi Y, Goda K. Long-term effects of Pfizer-BioNTech COVID-19 vaccinations on platelets. Cytometry A 2022. [PMID: 35938513 DOI: 10.1002/cyto.a.24677] [Reference Citation Analysis]
5 Duan X, Zhang Y, Guo M, Fan N, Chen K, Qin S, Xiao W, Zheng Q, Huang H, Wei X, Wei Y, Song X. Sodium alginate coating simultaneously increases the biosafety and immunotherapeutic activity of the cationic mRNA nanovaccine. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.08.015] [Reference Citation Analysis]
6 Zhou B, Zang R, Zhang M, Song P, Liu L, Bie F, Peng Y, Bai G, Gao S. Identifying novel tumor-related antigens and immune phenotypes for developing mRNA vaccines in lung adenocarcinoma. International Immunopharmacology 2022;109:108816. [DOI: 10.1016/j.intimp.2022.108816] [Reference Citation Analysis]
7 Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022;12:891878. [DOI: 10.3389/fcimb.2022.891878] [Reference Citation Analysis]
8 Zhou J, Feng C, Huang K. LCOR Reverses Immune-Checkpoint Inhibitors Therapy Resistance Out of IFN Constraint in Triple-Negative Breast Cancer. Front Oncol 2022;12:911572. [DOI: 10.3389/fonc.2022.911572] [Reference Citation Analysis]
9 You W, Ouyang J, Cai Z, Chen Y, Wu X. Comprehensive Analyses of Immune Subtypes of Stomach Adenocarcinoma for mRNA Vaccination. Front Immunol 2022;13:827506. [DOI: 10.3389/fimmu.2022.827506] [Reference Citation Analysis]
10 Son SA, Kim YJ, Lim SY, Kim HB. Bilateral Vocal Fold Paralysis After COVID-19 mRNA Vaccination: A Case Report. J Korean Med Sci 2022;37:e201. [PMID: 35762144 DOI: 10.3346/jkms.2022.37.e201] [Reference Citation Analysis]
11 Wang G, Gao Y, Chen Y, Wang K, Zhang S, Li G. Identification of Novel Tumor Antigens and the Immune Landscapes of Bladder Cancer Patients for mRNA Vaccine Development. Front Oncol 2022;12:921711. [DOI: 10.3389/fonc.2022.921711] [Reference Citation Analysis]
12 Ayad C, Yavuz A, Salvi JP, Libeau P, Exposito JY, Ginet V, Monge C, Verrier B, Arruda DC. Comparison of Physicochemical Properties of LipoParticles as mRNA Carrier Prepared by Automated Microfluidic System and Bulk Method. Pharmaceutics 2022;14:1297. [PMID: 35745869 DOI: 10.3390/pharmaceutics14061297] [Reference Citation Analysis]
13 Su H, Imai K, Jia W, Li Z, DiCioccio RA, Serody JS, Poe JC, Chen BJ, Doan PL, Sarantopoulos S. Alphavirus Replicon Particle Vaccine Breaks B Cell Tolerance and Rapidly Induces IgG to Murine Hematolymphoid Tumor Associated Antigens. Front Immunol 2022;13:865486. [PMID: 35686131 DOI: 10.3389/fimmu.2022.865486] [Reference Citation Analysis]
14 Miyazaki Y, Yoshida A, Okaniwa T, Miyauchi K, Ohkubo A. Oligonucleotide Synthesis on Porous Glass Resins Containing Activators. Org Lett 2022;24:3807-11. [PMID: 35593903 DOI: 10.1021/acs.orglett.2c01348] [Reference Citation Analysis]
15 Tan H, Yu T, Liu C, Wang Y, Jing F, Ding Z, Liu J, Shi H. Identifying tumor antigens and immuno-subtyping in colon adenocarcinoma to facilitate the development of mRNA vaccine. Cancer Med 2022. [PMID: 35593226 DOI: 10.1002/cam4.4846] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Ladak RJ, He AJ, Huang Y, Ding Y. The Current Landscape of mRNA Vaccines Against Viruses and Cancer–A Mini Review. Front Immunol 2022;13:885371. [DOI: 10.3389/fimmu.2022.885371] [Reference Citation Analysis]
17 Wei J, Hui A. The Paradigm Shift in Treatment from Covid-19 to Oncology with mRNA Vaccines. Cancer Treatment Reviews 2022. [DOI: 10.1016/j.ctrv.2022.102405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022:S0168-3659(22)00159-6. [PMID: 35337940 DOI: 10.1016/j.jconrel.2022.03.033] [Reference Citation Analysis]
19 Wang Y, Zhang R, Tang L, Yang L. Nonviral Delivery Systems of mRNA Vaccines for Cancer Gene Therapy. Pharmaceutics 2022;14:512. [DOI: 10.3390/pharmaceutics14030512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Shen D, Zhao H, Zeng P, Ge M, Shrestha S, Zhao W. Circular RNA circ_0001459 accelerates hepatocellular carcinoma progression via the miR-6165/IGF1R axis. Ann N Y Acad Sci 2022. [PMID: 35199365 DOI: 10.1111/nyas.14753] [Reference Citation Analysis]
21 Jung BK, An YH, Jang JJ, Jeon JH, Jang SH, Jang H. The human ACE-2 receptor binding domain of SARS-CoV-2 express on the viral surface of the Newcastle disease virus as a non-replicating viral vector vaccine candidate. PLoS One 2022;17:e0263684. [PMID: 35134091 DOI: 10.1371/journal.pone.0263684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Durojaye OA, Sedzro DM, Idris MO, Yekeen AA, Fadahunsi AA, Alakanse OS. Identification of a Potential mRNA‐based Vaccine Candidate against the SARS‐CoV‐2 Spike Glycoprotein: A Reverse Vaccinology Approach. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202103903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 2022;14:401. [DOI: 10.3390/v14020401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wu C, Duan Y, Gong S, Osterhoff G, Kallendrusch S, Schopow N. Identification of Tumor Antigens and Immune Subtypes for the Development of mRNA Vaccines and Individualized Immunotherapy in Soft Tissue Sarcoma. Cancers 2022;14:448. [DOI: 10.3390/cancers14020448] [Reference Citation Analysis]
25 Cheng R, Xu Z, Luo M, Wang P, Cao H, Jin X, Zhou W, Xiao L, Jiang Q. Identification of alternative splicing-derived cancer neoantigens for mRNA vaccine development. Briefings in Bioinformatics. [DOI: 10.1093/bib/bbab553] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Papi M, Pozzi D, Palmieri V, Caracciolo G. Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today 2022. [DOI: 10.1016/j.nantod.2022.101403] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
27 Zhao H, Wang TC, Li XF, Zhang NN, Li L, Zhou C, Deng YQ, Cao TS, Yang G, Li RT, Huang YJ, Li YG, Zhang YM, Li FX, Zhou YR, Jiang YH, Lu XS, Sun SH, Cheng ML, Gu KP, Zhang M, Ma QQ, Yang X, Ying B, Gao YW, Qin CF. Long-term stability and protection efficacy of the RBD-targeting COVID-19 mRNA vaccine in nonhuman primates. Signal Transduct Target Ther 2021;6:438. [PMID: 34952914 DOI: 10.1038/s41392-021-00861-4] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
28 Nitika, Wei J, Hui AM. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates. Infect Drug Resist 2021;14:5271-85. [PMID: 34916811 DOI: 10.2147/IDR.S341694] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Elkhalifa D, Rayan M, Negmeldin AT, Elhissi A, Khalil A. Chemically modified mRNA beyond COVID-19: Potential preventive and therapeutic applications for targeting chronic diseases. Biomed Pharmacother 2022;145:112385. [PMID: 34915673 DOI: 10.1016/j.biopha.2021.112385] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. Adv Mater 2021;:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Hoehn SJ, Krul SE, Skory BJ, Crespo-Hernández CE. Increased Photostability of the Integral mRNA Vaccine Component N1 -Methylpseudouridine Compared to Uridine. Chemistry 2021;:e202103667. [PMID: 34875113 DOI: 10.1002/chem.202103667] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Zheng X, Xu H, Yi X, Zhang T, Wei Q, Li H, Ai J. Tumor-antigens and immune landscapes identification for prostate adenocarcinoma mRNA vaccine. Mol Cancer 2021;20:160. [PMID: 34872584 DOI: 10.1186/s12943-021-01452-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
33 Wang Y, Tan H, Yu T, Chen X, Jing F, Shi H. Potential Immune Biomarker Candidates and Immune Subtypes of Lung Adenocarcinoma for Developing mRNA Vaccines. Front Immunol 2021;12:755401. [DOI: 10.3389/fimmu.2021.755401] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Tai W, Zhang X, Yang Y, Zhu J, Du L. Advances in mRNA and other vaccines against MERS-CoV. Transl Res 2021:S1931-5244(21)00280-2. [PMID: 34801748 DOI: 10.1016/j.trsl.2021.11.007] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Machado BAS, Hodel KVS, Fonseca LMDS, Mascarenhas LAB, Andrade LPCDS, Rocha VPC, Soares MBP, Berglund P, Duthie MS, Reed SG, Badaró R. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines (Basel) 2021;9:1345. [PMID: 34835276 DOI: 10.3390/vaccines9111345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kim MS, Jung SY, Ahn JG, Park SJ, Shoenfeld Y, Kronbichler A, Koyanagi A, Dragioti E, Tizaoui K, Hong SH, Jacob L, Salem JE, Yon DK, Lee SW, Ogino S, Kim H, Kim JH, Excler JL, Marks F, Clemens JD, Eisenhut M, Barnett Y, Butler L, Ilie CP, Shin EC, Il Shin J, Smith L. Comparative safety of mRNA COVID-19 vaccines to influenza vaccines: A pharmacovigilance analysis using WHO international database. J Med Virol 2021. [PMID: 34709664 DOI: 10.1002/jmv.27424] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
37 El-Battari A, Rodriguez L, Chahinian H, Delézay O, Fantini J, Yahi N, Di Scala C. Gene Therapy Strategy for Alzheimer's and Parkinson's Diseases Aimed at Preventing the Formation of Neurotoxic Oligomers in SH-SY5Y Cells. Int J Mol Sci 2021;22:11550. [PMID: 34768981 DOI: 10.3390/ijms222111550] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
38 Abdelzaher HM, Gabr AS, Saleh BM, Abdel Gawad RM, Nour AA, Abdelanser A. RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement. Vaccines (Basel) 2021;9:1211. [PMID: 34835142 DOI: 10.3390/vaccines9111211] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
39 Constantin C, Pisani A, Bardi G, Neagu M. Nano-carriers of COVID-19 vaccines: the main pillars of efficacy. Nanomedicine (Lond) 2021;16:2377-87. [PMID: 34632802 DOI: 10.2217/nnm-2021-0250] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
40 Chang YH, Lin MW, Chien MC, Ke GM, Wu IE, Lin RL, Lin CY, Hu YC. Polyplex nanomicelle delivery of self-amplifying RNA vaccine. J Control Release 2021;338:694-704. [PMID: 34509585 DOI: 10.1016/j.jconrel.2021.09.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, Zamyatnin AA Jr, Ganjalikhani-Hakemi M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines (Basel) 2021;9:1060. [PMID: 34696168 DOI: 10.3390/vaccines9101060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
42 Kim SC, Sekhon SS, Shin WR, Ahn G, Cho BK, Ahn JY, Kim YH. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol 2021;:1-8. [PMID: 34567201 DOI: 10.1007/s13273-021-00171-4] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
43 Zhong H, Liu S, Cao F, Zhao Y, Zhou J, Tang F, Peng Z, Li Y, Xu S, Wang C, Yang G, Li ZQ. Dissecting Tumor Antigens and Immune Subtypes of Glioma to Develop mRNA Vaccine. Front Immunol 2021;12:709986. [PMID: 34512630 DOI: 10.3389/fimmu.2021.709986] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
44 Calina D, Hernández AF, Hartung T, Egorov AM, Izotov BN, Nikolouzakis TK, Tsatsakis A, Vlachoyiannopoulos PG, Docea AO. Challenges and Scientific Prospects of the Newest Generation of mRNA-Based Vaccines against SARS-CoV-2. Life (Basel) 2021;11:907. [PMID: 34575056 DOI: 10.3390/life11090907] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
45 Jeeva S, Kim KH, Shin CH, Wang BZ, Kang SM. An Update on mRNA-Based Viral Vaccines. Vaccines (Basel) 2021;9:965. [PMID: 34579202 DOI: 10.3390/vaccines9090965] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
46 Shahzamani K, Mahmoudian F, Ahangarzadeh S, Ranjbar MM, Beikmohammadi L, Bahrami S, Mohammadi E, Esfandyari S, Alibakhshi A, Javanmard SH. Vaccine design and delivery approaches for COVID-19. Int Immunopharmacol 2021;100:108086. [PMID: 34454291 DOI: 10.1016/j.intimp.2021.108086] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
47 Palma M. Perspectives on passive antibody therapy and peptide-based vaccines against emerging pathogens like SARS-CoV-2. Germs 2021;11:287-305. [PMID: 34422699 DOI: 10.18683/germs.2021.1264] [Reference Citation Analysis]
48 Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother 2021;142:111953. [PMID: 34343897 DOI: 10.1016/j.biopha.2021.111953] [Cited by in Crossref: 7] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
49 Parums DV. Editorial: mRNA Vaccines and Immunotherapy in Oncology: A New Era for Personalized Medicine. Med Sci Monit 2021;27:e933088. [PMID: 33994538 DOI: 10.12659/MSM.933088] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
50 Parums DV. Editorial: mRNA Vaccines and Future Epidemic, Pandemic, and Endemic Zoonotic Virus Infections. Med Sci Monit 2021;27:e932915. [PMID: 33942804 DOI: 10.12659/MSM.932915] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
51 Saillard M, Cenerenti M, Romero P, Jandus C. Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021;9:454. [PMID: 34064410 DOI: 10.3390/vaccines9050454] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
52 Chirumbolo S. Vaccination hesitancy and the "myth" on mRNA-based vaccines in Italy in the COVID-19 era: Does urgency meet major safety criteria? J Med Virol 2021;93:4049-53. [PMID: 33666240 DOI: 10.1002/jmv.26922] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]