BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020;19:50. [PMID: 32122374 DOI: 10.1186/s12943-020-01169-7] [Cited by in Crossref: 84] [Cited by in F6Publishing: 91] [Article Influence: 42.0] [Reference Citation Analysis]
Number Citing Articles
1 Xiang H, Yang R, Tu J, Xi Y, Yang S, Lv L, Zhai X, Zhu Y, Dong D, Tao X. Metabolic reprogramming of immune cells in pancreatic cancer progression. Biomedicine & Pharmacotherapy 2023;157:113992. [DOI: 10.1016/j.biopha.2022.113992] [Reference Citation Analysis]
2 Shen Q, Zhang C, Jiang X, Li J, Liu F, Zhang X, En G, Pang B. Emerging current trends and research focus related to pancreatic cancer metabolism: A bibliometric and visualized analysis. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1009700] [Reference Citation Analysis]
3 Liu C, Deng S, Xiao Z, Lu R, Cheng H, Feng J, Shen X, Ni Q, Wu W, Yu X, Luo G. Pancreatic cancer cells crave glutamine for glycosylation and CA19-9 biosynthesis through hexosamine biosynthetic pathway.. [DOI: 10.21203/rs.3.rs-2265467/v1] [Reference Citation Analysis]
4 Wang Y, Wang D, Yang L, Zhang Y. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chinese Medical Journal 2022;Publish Ahead of Print. [DOI: 10.1097/cm9.0000000000002426] [Reference Citation Analysis]
5 Yu Y, Ahmed A, Lai H, Cheng W, Yang J, Chang W, Chen L, Shan Y, Ma W. Review of the endocrine organ–like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1057930] [Reference Citation Analysis]
6 Zhu Y, Zheng J, Jia Q, Duan Z, Yao H, Yang J, Sun Y, Jiang S, Liu D, Huo Y. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol 2022. [DOI: 10.1007/s13402-022-00741-1] [Reference Citation Analysis]
7 Liu J, Jing W, Wang T, Hu Z, Lu H. Functional metabolomics revealed the dual-activation of cAMP-AMP axis is a novel therapeutic target of pancreatic cancer. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106554] [Reference Citation Analysis]
8 Qiu J, Feng M, Yang G, Cao Z, Liu Y, You L, Zhang T. mTOR inhibitor, gemcitabine and PD-L1 antibody blockade combination therapy suppresses pancreatic cancer progression via metabolic reprogramming and immune microenvironment remodeling in Trp53flox/+LSL-KrasG12D/+Pdx-1-Cre murine models. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.216020] [Reference Citation Analysis]
9 Zhang T, Ren Y, Yang P, Wang J, Zhou H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis 2022;13:897. [PMID: 36284087 DOI: 10.1038/s41419-022-05351-1] [Reference Citation Analysis]
10 Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022;15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Reference Citation Analysis]
11 Hsu S, Jadhao M, Liao W, Chang W, Hung C, Chiu C. Culprits of PDAC resistance to gemcitabine and immune checkpoint inhibitor: Tumour microenvironment components. Front Mol Biosci 2022;9:1020888. [DOI: 10.3389/fmolb.2022.1020888] [Reference Citation Analysis]
12 Liu H, Zhang J, Wei C, Liu Z, Zhou W, Yang P, Gong Y, Zhao Y. Prognostic signature construction of energy metabolism-related genes in pancreatic cancer. Front Oncol 2022;12:917897. [DOI: 10.3389/fonc.2022.917897] [Reference Citation Analysis]
13 Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-01178-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Comandatore A, Franczak M, Smolenski RT, Morelli L, Peters GJ, Giovannetti E. Lactate Dehydrogenase and its clinical significance in pancreatic and thoracic cancers. Semin Cancer Biol 2022;86:93-100. [PMID: 36096316 DOI: 10.1016/j.semcancer.2022.09.001] [Reference Citation Analysis]
15 Cai K, Chen S, Zhu C, Li L, Yu C, He Z, Sun C. FOXD1 facilitates pancreatic cancer cell proliferation, invasion, and metastasis by regulating GLUT1-mediated aerobic glycolysis. Cell Death Dis 2022;13:765. [DOI: 10.1038/s41419-022-05213-w] [Reference Citation Analysis]
16 Liu C, Qin H, Liu H, Wei T, Wu Z, Shang M, Liu H, Wang A, Liu J, Shang D, Yin P. Tissue metabolomics identified new biomarkers for the diagnosis and prognosis prediction of pancreatic cancer. Front Oncol 2022;12:991051. [DOI: 10.3389/fonc.2022.991051] [Reference Citation Analysis]
17 Orzechowska-licari EJ, Lacomb JF, Mojumdar A, Bialkowska AB. SP and KLF Transcription Factors in Cancer Metabolism. IJMS 2022;23:9956. [DOI: 10.3390/ijms23179956] [Reference Citation Analysis]
18 Qin C, Wang Y, Zhao B, Li Z, Li T, Yang X, Zhao Y, Wang W. STOML2 Restricts Mitophagy and Increases Chemosensitivity in Pancreatic Cancer through Stabilizing PARL-induced PINK1 degradation.. [DOI: 10.21203/rs.3.rs-1952708/v1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Hao S, Meng Q, Sun H, Li Y, Li Y, Gu L, Liu B, Zhang Y, Zhou H, Xu Z, Wang Y. The role of transketolase in human cancer progression and therapy. Biomed Pharmacother 2022;154:113607. [PMID: 36030587 DOI: 10.1016/j.biopha.2022.113607] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Park JM, Peng JM, Shen YS, Lin CY, Hsu TW, Su YH, Chen HA, Saengboonmee C, Chang JS, Chiu CF, Shan YS. Phosphomimetic Dicer S1016E triggers a switch to glutamine metabolism in gemcitabine-resistant pancreatic cancer. Mol Metab 2022;:101576. [PMID: 35995401 DOI: 10.1016/j.molmet.2022.101576] [Reference Citation Analysis]
21 Smith C, Zheng W, Dong J, Wang Y, Lai J, Liu X, Yin F. Tumor microenvironment in pancreatic ductal adenocarcinoma: Implications in immunotherapy. World J Gastroenterol 2022; 28(27): 3297-3313 [DOI: 10.3748/wjg.v28.i27.3297] [Reference Citation Analysis]
22 Osei-Bordom DC, Serifis N, Brown ZJ, Hewitt DB, Lawal G, Sachdeva G, Cloonan DJ, Pawlik TM. Pancreatic ductal adenocarcinoma: Emerging therapeutic strategies. Surg Oncol 2022;43:101803. [PMID: 35830772 DOI: 10.1016/j.suronc.2022.101803] [Reference Citation Analysis]
23 Tan P, Li M, Liu Z, Li T, Zhao L, Fu W. Glycolysis-Related LINC02432/Hsa-miR-98–5p/HK2 Axis Inhibits Ferroptosis and Predicts Immune Infiltration, Tumor Mutation Burden, and Drug Sensitivity in Pancreatic Adenocarcinoma. Front Pharmacol 2022;13:937413. [DOI: 10.3389/fphar.2022.937413] [Reference Citation Analysis]
24 Lei Y, Li G, Li J, Gao S, Lei M, Gong G, Li C, Chen Y, Wang C, Wang X. Investigation of the potential role of TGR5 in pancreatic cancer by a comprehensive molecular experiments and the liquid chromatography mass spectrometry (LC-MS) based metabolomics. Discov Oncol 2022;13:46. [PMID: 35689739 DOI: 10.1007/s12672-022-00504-2] [Reference Citation Analysis]
25 Xie LY, Huang HY, Fang T, Liang JY, Hao YL, Zhang XJ, Xie YX, Wang C, Tan YH, Zeng L. A Prognostic Survival Model of Pancreatic Adenocarcinoma Based on Metabolism-Related Gene Expression. Front Genet 2022;13:804190. [PMID: 35664305 DOI: 10.3389/fgene.2022.804190] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zeng X, Guo H, Liu Z, Qin Z, Cong Y, Ren N, Zhang Y, Zhang N. S100A11 activates the pentose phosphate pathway to induce malignant biological behaviour of pancreatic ductal adenocarcinoma. Cell Death Dis 2022;13:568. [DOI: 10.1038/s41419-022-05004-3] [Reference Citation Analysis]
27 Tarannum M, Vivero-Escoto JL. Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment. Adv Drug Deliv Rev 2022;187:114357. [PMID: 35605679 DOI: 10.1016/j.addr.2022.114357] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Li D, Liang J, Zhang W, Wu X, Fan J. A Distinct Glucose Metabolism Signature of Lung Adenocarcinoma With Prognostic Value. Front Genet 2022;13:860677. [DOI: 10.3389/fgene.2022.860677] [Reference Citation Analysis]
29 Carmona-Carmona CA, Dalla Pozza E, Ambrosini G, Errico A, Dando I. Divergent Roles of Mitochondria Dynamics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022;14:2155. [PMID: 35565283 DOI: 10.3390/cancers14092155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Wang R, Guo Y, Ma P, Song Y, Min J, Zhao T, Hua L, Zhang C, Yang C, Shi J, Zhu L, Gan D, Li S, Li J, Su H. Comprehensive Analysis of 5-Methylcytosine (m5C) Regulators and the Immune Microenvironment in Pancreatic Adenocarcinoma to Aid Immunotherapy. Front Oncol 2022;12:851766. [PMID: 35433474 DOI: 10.3389/fonc.2022.851766] [Reference Citation Analysis]
31 Lee JC, Kim GC, Lee NK, Kim SW, Cho YS, Chung SW, Lee YS, Chang HW, Byun Y, Kim SY. Feedback amplification of senolysis using caspase-3-cleavable peptide-doxorubicin conjugate and 2DG. J Control Release 2022:S0168-3659(22)00206-1. [PMID: 35452763 DOI: 10.1016/j.jconrel.2022.04.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Tan C, Wang X, Wang X, Weng W, Ni SJ, Zhang M, Jiang H, Wang L, Huang D, Sheng W, Xu MD. Molecular signatures of tumor progression in pancreatic adenocarcinoma identified by energy metabolism characteristics. BMC Cancer 2022;22:404. [PMID: 35418066 DOI: 10.1186/s12885-022-09487-3] [Reference Citation Analysis]
33 Zhang L, Sun L, Tang Q, Sun S, Zeng L, Ma J, Li X, Ge H, Liang X. Cascade Drug Delivery through Tumor Barriers of Pancreatic Cancer via Ultrasound in Combination with Functional Microbubbles. ACS Biomater Sci Eng 2022;8:1583-95. [PMID: 35263095 DOI: 10.1021/acsbiomaterials.2c00069] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Chang M. Fatty Pancreas-Centered Metabolic Basis of Pancreatic Adenocarcinoma: From Obesity, Diabetes and Pancreatitis to Oncogenesis. Biomedicines 2022;10:692. [DOI: 10.3390/biomedicines10030692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Miyazaki Y, Mori N, Akagi Y, Oda T, Kida YS. Potential Metabolite Markers for Pancreatic Cancer Identified by Metabolomic Analysis of Induced Cancer-Associated Fibroblasts. Cancers (Basel) 2022;14:1375. [PMID: 35326527 DOI: 10.3390/cancers14061375] [Reference Citation Analysis]
36 Qorri B, Mokhtari RB, Harless WW, Szewczuk MR. Next Generation of Cancer Drug Repurposing: Therapeutic Combination of Aspirin and Oseltamivir Phosphate Potentiates Gemcitabine to Disable Key Survival Pathways Critical for Pancreatic Cancer Progression. Cancers (Basel) 2022;14:1374. [PMID: 35326525 DOI: 10.3390/cancers14061374] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Wnorowski A, Dudzik D, Bernier M, Wójcik J, Keijzers G, Diaz-ruiz A, Mazur K, Zhang Y, Han H, Scheibye-knudsen M, Jozwiak K, Barbas C, Wainer IW. Deprogramming metabolism in pancreatic cancer with a bi-functional GPR55 inhibitor and biased β2 adrenergic agonist. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-07600-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. J Cancer Sci Clin Ther 2022;6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Deng J, Guo Y, Du J, Gu J, Kong L, Tao B, Li J, Fu D. The Intricate Crosstalk Between Insulin and Pancreatic Ductal Adenocarcinoma: A Review From Clinical to Molecular. Front Cell Dev Biol 2022;10:844028. [DOI: 10.3389/fcell.2022.844028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Tang H, Xue Y, Li B, Xu X, Zhang F, Guo J, Li Q, Yuan T, Chen Y, Pan Y, Ping Y, Li D. Membrane-camouflaged supramolecular nanoparticles for co-delivery of chemotherapeutic and molecular-targeted drugs with siRNA against patient-derived pancreatic carcinoma. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.007] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
41 Reyes-Castellanos G, Abdel Hadi N, Carrier A. Autophagy Contributes to Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Tumors. Cells 2022;11:426. [PMID: 35159234 DOI: 10.3390/cells11030426] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
42 Chang Y, Chang PM, Li C, Chan M, Lee Y, Chen M, Hsiao M. Aldolase A and Phospholipase D1 Synergistically Resist Alkylating Agents and Radiation in Lung Cancer. Front Oncol 2022;11:811635. [DOI: 10.3389/fonc.2021.811635] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Yu Y, Sun X, Chen F, Liu M. Genetic Alteration, Prognostic and Immunological Role of Acyl-CoA Synthetase Long-Chain Family Member 4 in a Pan-Cancer Analysis. Front Genet 2022;13:812674. [DOI: 10.3389/fgene.2022.812674] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
44 Chen H, Zu F, Zeng T, Chen Z, Wei J, Liu P, Li Z, Zhou L, Wang H, Tan H, Tan X. Prognostic Value and Correlation With Tumor Immune Infiltration of a Novel Metabolism-Related Gene Signature in Pancreatic Cancer. Front Oncol 2022;11:757791. [DOI: 10.3389/fonc.2021.757791] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Lan B, Zeng S, Zhang S, Ren X, Xing Y, Kutschick I, Pfeffer S, Frey B, Britzen-Laurent N, Grützmann R, Cordes N, Pilarsky C. CRISPR-Cas9 Screen Identifies DYRK1A as a Target for Radiotherapy Sensitization in Pancreatic Cancer. Cancers (Basel) 2022;14:326. [PMID: 35053488 DOI: 10.3390/cancers14020326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Li Y, Zhang J, Xu J, Liu S. The Metabolism Symbiosis Between Pancreatic Cancer and Tumor Microenvironment. Front Oncol 2021;11:759376. [PMID: 34976805 DOI: 10.3389/fonc.2021.759376] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Nilsson LM, Vilhav C, Karlsson JW, Fagman JB, Giglio D, Engström CE, Naredi P, Nilsson JA. Genetics and Therapeutic Responses to Tumor-Infiltrating Lymphocyte Therapy of Pancreatic Cancer Patient-Derived Xenograft Models. Gastro Hep Advances 2022;1:1037-1048. [DOI: 10.1016/j.gastha.2022.07.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Vetrano IG, Dei Cas M, Nazzi V, Eoli M, Innocenti N, Saletti V, Potenza A, Carrozzini T, Pollaci G, Gorla G, Paroni R, Ghidoni R, Gatti L. The Lipid Asset Is Unbalanced in Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021;23:61. [PMID: 35008487 DOI: 10.3390/ijms23010061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Iacobazzi RM, Arduino I, Di Fonte R, Lopedota AA, Serratì S, Racaniello G, Bruno V, Laquintana V, Lee BC, Silvestris N, Leonetti F, Denora N, Porcelli L, Azzariti A. Microfluidic-Assisted Preparation of Targeted pH-Responsive Polymeric Micelles Improves Gemcitabine Effectiveness in PDAC: In Vitro Insights. Cancers (Basel) 2021;14:5. [PMID: 35008170 DOI: 10.3390/cancers14010005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Benedetti R, Benincasa G, Glass K, Chianese U, Vietri MT, Congi R, Altucci L, Napoli C. Effects of novel SGLT2 inhibitors on cancer incidence in hyperglycemic patients: a meta-analysis of randomized clinical trials. Pharmacol Res 2021;175:106039. [PMID: 34929299 DOI: 10.1016/j.phrs.2021.106039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
51 Parte S, Nimmakayala RK, Batra SK, Ponnusamy MP. Acinar to ductal cell trans-differentiation: A prelude to dysplasia and pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2021;1877:188669. [PMID: 34915061 DOI: 10.1016/j.bbcan.2021.188669] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Tang S, Hang Y, Ding L, Tang W, Yu A, Zhang C, Sil D, Xie Y, Oupický D. Intraperitoneal siRNA Nanoparticles for Augmentation of Gemcitabine Efficacy in the Treatment of Pancreatic Cancer. Mol Pharm 2021;18:4448-58. [PMID: 34699242 DOI: 10.1021/acs.molpharmaceut.1c00653] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Zhu PF, Wang MX, Chen ZL, Yang L. Targeting the Tumor Microenvironment: A Literature Review of the Novel Anti-Tumor Mechanism of Statins. Front Oncol 2021;11:761107. [PMID: 34858839 DOI: 10.3389/fonc.2021.761107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
54 Andersen HB, Ialchina R, Pedersen SF, Czaplinska D. Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets. Cancer Metastasis Rev 2021. [PMID: 34855109 DOI: 10.1007/s10555-021-10004-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Hackney AB, Chung WY, Isherwood J, Dennison AR, Martin N. Stearoyl-CoA desaturase 1 inhibitor supplemented with gemcitabine treatment reduces the viability and fatty acid content of pancreatic cancer cells in vitro. Journal of Pancreatology 2021;4:170-7. [DOI: 10.1097/jp9.0000000000000082] [Reference Citation Analysis]
56 Pretta A, Lai E, Persano M, Donisi C, Pinna G, Cimbro E, Parrino A, Spanu D, Mariani S, Liscia N, Dubois M, Migliari M, Impera V, Saba G, Pusceddu V, Puzzoni M, Ziranu P, Scartozzi M. Uncovering key targets of success for immunotherapy in pancreatic cancer. Expert Opin Ther Targets 2021;:1-19. [PMID: 34806517 DOI: 10.1080/14728222.2021.2010044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
57 Suzuki T, Otsuka M, Seimiya T, Iwata T, Kishikawa T, Koike K. The biological role of metabolic reprogramming in pancreatic cancer. MedComm (2020) 2020;1:302-10. [PMID: 34766124 DOI: 10.1002/mco2.37] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
58 Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021;18:804-23. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 55.0] [Reference Citation Analysis]
59 Chen Q, Pu N, Yin H, Zhang J, Zhao G, Lou W, Wu W. A metabolism-relevant signature as a predictor for prognosis and therapeutic response in pancreatic cancer. Exp Biol Med (Maywood) 2021;:15353702211049220. [PMID: 34632851 DOI: 10.1177/15353702211049220] [Reference Citation Analysis]
60 Fang K, Qu H, Wang J, Tang D, Yan C, Ma J, Gao L. Characterization of Modification Patterns, Biological Function, Clinical Implication, and Immune Microenvironment Association of m6A Regulators in Pancreatic Cancer. Front Genet 2021;12:702072. [PMID: 34603372 DOI: 10.3389/fgene.2021.702072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
61 Qiu H, Wang D, Miao H. Analysis of the Effect of Robots in the Treatment of Pancreatic Cancer Based on Smart Medicine. J Healthc Eng 2021;2021:9734882. [PMID: 34589193 DOI: 10.1155/2021/9734882] [Reference Citation Analysis]
62 Shindo H, Harada-Shoji N, Ebata A, Sato M, Soga T, Miyashita M, Tada H, Kawai M, Kosaka S, Onuki K, Usami S, Furumoto S, Hayashi S, Abe T, Suzuki T, Ishida T, Sasano H. Targeting Amino Acid Metabolic Reprogramming via L-Type Amino Acid Transporter 1 (LAT1) for Endocrine-Resistant Breast Cancer. Cancers (Basel) 2021;13:4375. [PMID: 34503187 DOI: 10.3390/cancers13174375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
63 Gu Z, Du Y, Zhao X, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett 2021;521:98-108. [PMID: 34461181 DOI: 10.1016/j.canlet.2021.08.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
64 Chang CK, Shih TT, Tien YW, Chang MC, Chang YT, Yang SH, Cheng MF, Chen BB. Metabolic Alterations in Pancreatic Cancer Detected by In Vivo 1H-MR Spectroscopy: Correlation with Normal Pancreas, PET Metabolic Activity, Clinical Stages, and Survival Outcome. Diagnostics (Basel) 2021;11:1541. [PMID: 34573881 DOI: 10.3390/diagnostics11091541] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
65 Cobo I, Paliwal S, Melià-alomà J, Torres A, Martínez-villarreal J, García F, Millán I, del Pozo N, Park J, Macdonald RJ, Muñoz J, Real FX. NFIC regulates ribosomal biology and ER stress in pancreatic acinar cells and suppresses PDAC initiation.. [DOI: 10.1101/2021.08.09.455477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
66 Roth HE, Bhinderwala F, Franco R, Zhou Y, Powers R. DNAJA1 Dysregulates Metabolism Promoting an Antiapoptotic Phenotype in Pancreatic Ductal Adenocarcinoma. J Proteome Res 2021;20:3925-39. [PMID: 34264680 DOI: 10.1021/acs.jproteome.1c00233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
67 Wang F, Huang L, Zhang J, Fan J, Wu H, Xu J. Dyslipidemia in Chinese Pancreatic Cancer Patients: A Two-Center Retrospective Study. J Cancer 2021;12:5338-44. [PMID: 34335950 DOI: 10.7150/jca.60340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Grapa CM, Mocan L, Crisan D, Florea M, Mocan T. Biomarkers in Pancreatic Cancer as Analytic Targets for Nanomediated Imaging and Therapy. Materials (Basel) 2021;14:3083. [PMID: 34199998 DOI: 10.3390/ma14113083] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Kumar R, Lathwal A, Raghava GP. Prediction of pancreatic adenocarcinoma patient risk status using alternative splicing events.. [DOI: 10.1101/2021.06.02.446780] [Reference Citation Analysis]
70 Huo J, Wu L, Zang Y. Development and Validation of a Novel Metabolic-Related Signature Predicting Overall Survival for Pancreatic Cancer. Front Genet 2021;12:561254. [PMID: 34122496 DOI: 10.3389/fgene.2021.561254] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Wu Y, Zeng H, Yu Q, Huang H, Fervers B, Chen ZS, Lu L. A Circulating Exosome RNA Signature Is a Potential Diagnostic Marker for Pancreatic Cancer, a Systematic Study. Cancers (Basel) 2021;13:2565. [PMID: 34073722 DOI: 10.3390/cancers13112565] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
72 Kokkinos J, Jensen A, Sharbeen G, McCarroll JA, Goldstein D, Haghighi KS, Phillips PA. Does the Microenvironment Hold the Hidden Key for Functional Precision Medicine in Pancreatic Cancer? Cancers (Basel) 2021;13:2427. [PMID: 34067833 DOI: 10.3390/cancers13102427] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
73 Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29(8): 421-434 [DOI: 10.11569/wcjd.v29.i8.421] [Reference Citation Analysis]
74 Huang WK, Chen Y, Su H, Chen TY, Gao J, Liu Y, Yeh CN, Li S. ARHGAP25 Inhibits Pancreatic Adenocarcinoma Growth by Suppressing Glycolysis via AKT/mTOR Pathway. Int J Biol Sci 2021;17:1808-20. [PMID: 33994864 DOI: 10.7150/ijbs.55919] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
75 Hayasaka R, Tabata S, Hasebe M, Ikeda S, Ohnuma S, Mori M, Soga T, Tomita M, Hirayama A. Metabolomic Analysis of Small Extracellular Vesicles Derived from Pancreatic Cancer Cells Cultured under Normoxia and Hypoxia. Metabolites 2021;11:215. [PMID: 33915936 DOI: 10.3390/metabo11040215] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
76 Phyo JB, Woo A, Yu HJ, Lim K, Cho BH, Jung HS, Lee MY. Label-Free SERS Analysis of Urine Using a 3D-Stacked AgNW-Glass Fiber Filter Sensor for the Diagnosis of Pancreatic Cancer and Prostate Cancer. Anal Chem 2021;93:3778-85. [PMID: 33576598 DOI: 10.1021/acs.analchem.0c04200] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 22.0] [Reference Citation Analysis]
77 Chiu CF, Hsu MI, Yeh HY, Park JM, Shen YS, Tung TH, Huang JJ, Wu HT, Huang SY. Eicosapentaenoic Acid Inhibits KRAS Mutant Pancreatic Cancer Cell Growth by Suppressing Hepassocin Expression and STAT3 Phosphorylation. Biomolecules 2021;11:370. [PMID: 33801246 DOI: 10.3390/biom11030370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Abdel Hadi N, Reyes-Castellanos G, Carrier A. Targeting Redox Metabolism in Pancreatic Cancer. Int J Mol Sci 2021;22:1534. [PMID: 33546421 DOI: 10.3390/ijms22041534] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
79 Amrutkar M, Gladhaug IP. Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021;13:601. [PMID: 33546284 DOI: 10.3390/cancers13040601] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
80 Rizzo AM, Colombo I, Montorfano G, Zava S, Corsetto PA. Exogenous Fatty Acids Modulate ER Lipid Composition and Metabolism in Breast Cancer Cells. Cells 2021;10:175. [PMID: 33467111 DOI: 10.3390/cells10010175] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
81 Espiau-Romera P, Courtois S, Parejo-Alonso B, Sancho P. Molecular and Metabolic Subtypes Correspondence for Pancreatic Ductal Adenocarcinoma Classification.J Clin Med. 2020;9. [PMID: 33371431 DOI: 10.3390/jcm9124128] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
82 Gu ZT, Li ZZ, Wang CF. Research advances of intracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2020; 28(22): 1150-1161 [DOI: 10.11569/wcjd.v28.i22.1150] [Reference Citation Analysis]
83 Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020;21:E8781. [PMID: 33233631 DOI: 10.3390/ijms21228781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
84 Rai V, Agrawal S. Targets (Metabolic Mediators) of Therapeutic Importance in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020;21:E8502. [PMID: 33198082 DOI: 10.3390/ijms21228502] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
85 Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2021;1875:188461. [PMID: 33157162 DOI: 10.1016/j.bbcan.2020.188461] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
86 Chen C, Wu H, Kong D, Xu Y, Zhang Z, Chen F, Zou L, Li Z, Shui J, Luo H, Liu SH, Yu J, Wang K, Brunicardi FC. Transcriptome sequencing analysis reveals unique and shared antitumor effects of three statins in pancreatic cancer. Oncol Rep 2020;44:2569-80. [PMID: 33125137 DOI: 10.3892/or.2020.7810] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
87 Han X, Zhang WH, Wang WQ, Yu XJ, Liu L. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim Biophys Acta Rev Cancer 2020;1874:188444. [PMID: 33031899 DOI: 10.1016/j.bbcan.2020.188444] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
88 Nollmann FI, Ruess DA. Targeting Mutant KRAS in Pancreatic Cancer: Futile or Promising? Biomedicines 2020;8:E281. [PMID: 32796566 DOI: 10.3390/biomedicines8080281] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
89 Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020;8:E270. [PMID: 32756381 DOI: 10.3390/biomedicines8080270] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
90 Bulle A, Dekervel J, Deschuttere L, Nittner D, Van Cutsem E, Verslype C, van Pelt J. Anti-Cancer Activity of Acriflavine as Metabolic Inhibitor of OXPHOS in Pancreas Cancer Xenografts. Onco Targets Ther 2020;13:6907-16. [PMID: 32764982 DOI: 10.2147/OTT.S245134] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
91 Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel) 2020;12:E862. [PMID: 32252351 DOI: 10.3390/cancers12040862] [Cited by in Crossref: 47] [Cited by in F6Publishing: 57] [Article Influence: 23.5] [Reference Citation Analysis]