BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: de Veer AJ, Peeters JM, Brabers AE, Schellevis FG, Rademakers JJ, Francke AL. Determinants of the intention to use e-Health by community dwelling older people. BMC Health Serv Res 2015;15:103. [PMID: 25889884 DOI: 10.1186/s12913-015-0765-8] [Cited by in Crossref: 130] [Cited by in F6Publishing: 139] [Article Influence: 18.6] [Reference Citation Analysis]
Number Citing Articles
1 Brodbeck J, Jacinto S, Gouveia A, Mendonça N, Madörin S, Brandl L, Schokking L, Rodrigues AM, Gonçalves J, Mooser B, Marques MM, Isaac J, Nogueira V, Matos Pires A, van Velsen L. A Web-Based Self-help Intervention for Coping With the Loss of a Partner: Protocol for Randomized Controlled Trials in 3 Countries. JMIR Res Protoc 2022;11:e37827. [DOI: 10.2196/37827] [Reference Citation Analysis]
2 Rój J. What Determines the Acceptance and Use of eHealth by Older Adults in Poland? IJERPH 2022;19:15643. [DOI: 10.3390/ijerph192315643] [Reference Citation Analysis]
3 Hatch V, Davies WR. Digitally enabled cardiac rehabilitation following coronary revascularization: results from a single centre feasibility study. European Heart Journal Supplements 2022;24:H25-H31. [DOI: 10.1093/eurheartjsupp/suac054] [Reference Citation Analysis]
4 Wang P, Gu H, Chen X. Using A Consolidated Framework Based on MEC Theory to Investigate Online Medicine Purchasing Under the COVID-19 Epidemic: Cross-Sectional Questionnaire Study (Preprint).. [DOI: 10.2196/preprints.41746] [Reference Citation Analysis]
5 Ma Y, Luo M. Older people's intention to use medical apps during the COVID-19 pandemic in China: an application of the Unified Theory of Acceptance and Use of Technology (UTAUT) model and the Technology of Acceptance Model (TAM). Ageing and Society. [DOI: 10.1017/s0144686x22000423] [Reference Citation Analysis]
6 Fakhfakh M, Blanchette V, Plourde KV, Gadio S, Elf M, Jones A, Meijering L, Giguère A, Légaré F. Older adults’ intention to use an electronic decision aid for housing decisions: an online pan-Canadian survey (Preprint).. [DOI: 10.2196/preprints.43106] [Reference Citation Analysis]
7 Mensah IK, Zeng G, Mwakapesa DS. The behavioral intention to adopt mobile health services: The moderating impact of mobile self-efficacy. Front Public Health 2022;10:1020474. [DOI: 10.3389/fpubh.2022.1020474] [Reference Citation Analysis]
8 Bally EL, Cheng D, van Grieken A, Ferri Sanz M, Zanutto O, Carroll A, Darley A, Roozenbeek B, Dippel DW, Raat H. A Qualitative Study of Patients’ Perspectives regarding Digital Health Technology to Support Self-management and to Improve Integrated Stroke Care: the [name deleted to maintain the integrity of the review process] study (Preprint).. [DOI: 10.2196/preprints.42556] [Reference Citation Analysis]
9 Freytag J, Touchett HN, Bryan JL, Lindsay JA, Gould CE. Advances in Psychotherapy for Older Adults Using Video-to-Home Treatment. Advances in Psychiatry and Behavioral Health 2022;2:71-78. [DOI: 10.1016/j.ypsc.2022.03.004] [Reference Citation Analysis]
10 Ong AKS, Kurata YB, Castro SAD, De Leon JPB, Dela Rosa HV, Tomines APJ. Factors influencing the acceptance of telemedicine in the Philippines. Technology in Society 2022;70:102040. [DOI: 10.1016/j.techsoc.2022.102040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zhao Y, Zhang T, Dasgupta RK, Xia R. Narrowing the age‐based digital divide: Developing digital capability through social activities. Information Systems Journal. [DOI: 10.1111/isj.12400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mondragón-Gómez R, Martínez-Vélez NA, Fernández-Torres M, Tiburcio Sainz M. Evaluation of Psychometric Properties of the Acceptability of ICT Use for Mental Health Care Questionnaire. Int J Ment Health Addict 2022;:1-12. [PMID: 35754860 DOI: 10.1007/s11469-021-00747-0] [Reference Citation Analysis]
13 Alswayied G, Guo H, Rookes T, Frost R, Hamilton FL. Assessing the acceptability and effectiveness of mobile-based physical activity (PA) interventions for midlife women during menopause: A systematic review of the literature (Preprint).. [DOI: 10.2196/preprints.40271] [Reference Citation Analysis]
14 Kebede AS, Ozolins L, Holst H, Galvin K. Older people digital engagement; a systematic scoping review (Preprint).. [DOI: 10.2196/preprints.40192] [Reference Citation Analysis]
15 Shi Y, Siddik AB, Masukujjaman M, Zheng G, Hamayun M, Ibrahim AM. The Antecedents of Willingness to Adopt and Pay for the IoT in the Agricultural Industry: An Application of the UTAUT 2 Theory. Sustainability 2022;14:6640. [DOI: 10.3390/su14116640] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Catrini E, Ferrario L, Mazzone A, Varalli L, Gatti F, Cannavacciuolo L, Ponsiglione C, Foglia E. Tools supporting polypharmacy management in Italy: Factors determining digital technologies' intention to use in clinical practice. Health Science Reports 2022;5. [DOI: 10.1002/hsr2.647] [Reference Citation Analysis]
17 Kwan YH, Phang JK, Woon TH, Liew J, Dubreuil M, Proft F, Ramiro S, Molto A, Navarro-compan V, De Hooge M, Meghnathi B, Ziade N, Zhao SS, Llop M, Baraliakos X, Fong W. Social media use among an international group of spondyloarthritis experts: Results of an online survey conducted among members of Assessment of SpondyloArthritis international Society (ASAS) (Preprint).. [DOI: 10.2196/preprints.39155] [Reference Citation Analysis]
18 Zhou J, Tan R, Lin H. Development of an integrated conceptual path model for a smart elderly care information system. Univ Access Inf Soc. [DOI: 10.1007/s10209-022-00879-7] [Reference Citation Analysis]
19 Damberg S. Predicting future use intention of fitness apps among fitness app users in the United Kingdom: the role of health consciousness. IJSMS 2022;23:369-84. [DOI: 10.1108/ijsms-01-2021-0013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
20 Almazroi AA, Mohammed F, Al-Kumaim NH, Hoque MR. An empirical study of factors influencing e-health services adoption among public in Saudi Arabia. Health Informatics J 2022;28:14604582221102316. [PMID: 35702832 DOI: 10.1177/14604582221102316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lutfi A. Factors Influencing the Continuance Intention to Use Accounting Information System in Jordanian SMEs from the Perspectives of UTAUT: Top Management Support and Self-Efficacy as Predictor Factors. Economies 2022;10:75. [DOI: 10.3390/economies10040075] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
22 Schretzlmaier P, Hecker A, Ammenwerth E. Suitability of the Unified Theory of Acceptance and Use of Technology 2 Model for Predicting mHealth Acceptance Using Diabetes as an Example: Qualitative Methods Triangulation Study. JMIR Hum Factors 2022;9:e34918. [PMID: 35262493 DOI: 10.2196/34918] [Reference Citation Analysis]
23 Chen J, Wijesundara JG, Enyim GE, Lombardini LM, Gerber BS, Houston TK, Sadasivam RS. Understanding Patients' Intention to Use Digital Health Apps That Support Postdischarge Symptom Monitoring by Providers Among Patients With Acute Coronary Syndrome: Survey Study. JMIR Hum Factors 2022;9:e34452. [PMID: 35254269 DOI: 10.2196/34452] [Reference Citation Analysis]
24 Chua CH, Seow FC, Tang FM, Lim LM. Factors affecting telepractice use in COVID-19. Proceedings of Singapore Healthcare. [DOI: 10.1177/20101058221074120] [Reference Citation Analysis]
25 Yu J, de Antonio A, Villalba-Mora E. Design of an Integrated Acceptance Framework for Older Users and eHealth: Influential Factor Analysis. J Med Internet Res 2022;24:e31920. [PMID: 35089155 DOI: 10.2196/31920] [Reference Citation Analysis]
26 Wu P, Zhang R, Zhu X, Liu M. Factors Influencing Continued Usage Behavior on Mobile Health Applications. Healthcare 2022;10:208. [DOI: 10.3390/healthcare10020208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
27 Tsao Y, Barus FAS, Ho C. Impacts of the fifth-generation technology on sustainability. International Journal of Logistics Research and Applications. [DOI: 10.1080/13675567.2022.2026903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kim J, Pighin MA, Lopez JE, Choi YK. Systematic Usability Evaluation of Voice-Activated Health Management Apps for Older Adults. (Preprint).. [DOI: 10.2196/preprints.36389] [Reference Citation Analysis]
29 Hee Ko KK, Kim SK, Lee Y, Lee JY, Stoyanov SR. Validation of a Korean version of mobile app rating scale (MARS) for apps targeting disease management. Health Informatics J 2022;28:14604582221091975. [PMID: 35404685 DOI: 10.1177/14604582221091975] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Alqudah AA, Shaalan K. Extending UTAUT to Understand the Acceptance of Queue Management Technology by Physicians in UAE. Proceedings of International Conference on Emerging Technologies and Intelligent Systems 2022. [DOI: 10.1007/978-3-030-85990-9_77] [Reference Citation Analysis]
31 Osta A, Kokkinaki A, Chedrawi C. Online Health Communities: The Impact of AI Conversational Agents on Users. Information Systems 2022. [DOI: 10.1007/978-3-030-95947-0_35] [Reference Citation Analysis]
32 Ahadzadeh AS, Wu SL, Ong FS, Deng R. The Mediating Influence of the Unified Theory of Acceptance and Use of Technology on the Relationship Between Internal Health Locus of Control and Mobile Health Adoption: Cross-sectional Study. J Med Internet Res 2021;23:e28086. [PMID: 34964718 DOI: 10.2196/28086] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Linardon J, Westrupp EM, Macdonald JA, Mikocka-Walus A, Stokes MA, Greenwood CJ, Youssef GJ, Teague S, Hutchinson D, Sciberras E, Fuller-Tyszkiewicz M. Monitoring Australian parents' shifting receptiveness to digital mental health interventions during the COVID-19 pandemic. Aust N Z J Psychiatry 2021;:48674211065985. [PMID: 34963330 DOI: 10.1177/00048674211065985] [Reference Citation Analysis]
34 Ma Y, Zhong X, Lin B, He W. Factors Influencing the Intention of MSM to Use the PrEP Intelligent Reminder System. Risk Manag Healthc Policy 2021;14:4739-48. [PMID: 34866946 DOI: 10.2147/RMHP.S337287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Trkman M, Popovič A, Trkman P. The impact of perceived crisis severity on intention to use voluntary proximity tracing applications. International Journal of Information Management 2021;61:102395. [DOI: 10.1016/j.ijinfomgt.2021.102395] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
36 Schretzlmaier P, Hecker A, Ammenwerth E. Suitability of the Unified Theory of Acceptance and Use of Technology 2 Model for Predicting mHealth Acceptance Using Diabetes as an Example: Qualitative Methods Triangulation Study (Preprint).. [DOI: 10.2196/preprints.34918] [Reference Citation Analysis]
37 Alqudah AA, Al-emran M, Shaalan K. Technology Acceptance in Healthcare: A Systematic Review. Applied Sciences 2021;11:10537. [DOI: 10.3390/app112210537] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
38 De Veirman AE, Thewissen VH, Spruijt MG, Bolman CA. Factors associated with eMental health adoption readiness and use by mental health counsellors in general practices (Preprint).. [DOI: 10.2196/preprints.34754] [Reference Citation Analysis]
39 Yadav L, Gill TK, Taylor A, De Young J, Chehade MJ. Identifying Opportunities, and Motivation to Enhance Capabilities, Influencing the Development of a Personalized Digital Health Hub Model of Care for Hip Fractures: Mixed Methods Exploratory Study. J Med Internet Res 2021;23:e26886. [PMID: 34709183 DOI: 10.2196/26886] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Agrawal L, Ndabu T, Mulgund P, Sharman R. Factors Affecting the Extent of Patients' Electronic Medical Record Use: An Empirical Study Focusing on System and Patient Characteristics. J Med Internet Res 2021;23:e30637. [PMID: 34709181 DOI: 10.2196/30637] [Reference Citation Analysis]
41 Reinhardt G, Schwarz PE, Harst L. Non-use of telemedicine: A scoping review. Health Informatics J 2021;27:14604582211043147. [PMID: 34696613 DOI: 10.1177/14604582211043147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
42 Chen J, Wijesundara JG, Enyim GE, Lombardini LM, Gerber BS, Houston TK, Sadasivam RS. Understanding Patients’ Intention to Use Digital Health Apps That Support Postdischarge Symptom Monitoring by Providers Among Patients With Acute Coronary Syndrome: Survey Study (Preprint).. [DOI: 10.2196/preprints.34452] [Reference Citation Analysis]
43 Park M, Bui LK, Jeong M, Choi EJ, Lee N, Kwak M, Kim J, Kim J, Jung J, Giap TT, Guk H, Na J. ICT-based person-centered community care platform (IPC3P) to enhance shared decision-making for integrated health and social care services. Int J Med Inform 2021;156:104590. [PMID: 34619572 DOI: 10.1016/j.ijmedinf.2021.104590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Huang H, Chen Z, Cao S, Xiao M, Xie L, Zhao Q. Adoption Intention and Factors Influencing the Use of Gerontechnology in Chinese Community-Dwelling Older Adults: A Mixed-Methods Study. Front Public Health 2021;9:687048. [PMID: 34604153 DOI: 10.3389/fpubh.2021.687048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Cormi C, Sanchez S, de l'Estoile V, Ollivier L, Letty A, Berrut G, Mulin E. Telepsychiatry to Provide Mental Health Support to Healthcare Professionals during the COVID-19 Crisis: A Cross-Sectional Survey among 321 Healthcare Professionals in France. Int J Environ Res Public Health 2021;18:10146. [PMID: 34639447 DOI: 10.3390/ijerph181910146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Wu Y, Liu Y, Su Z, Sun S, Liu C, Ding W, Gao Y. Demands for Telenursing-Based Long-Term Care Among Disabled Older Adults in Qingdao, China: A Cross-Sectional Study. Patient Prefer Adherence 2021;15:1981-90. [PMID: 34522091 DOI: 10.2147/PPA.S326413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Palos-Sanchez PR, Saura JR, Rios Martin MÁ, Aguayo-Camacho M. Toward a Better Understanding of the Intention to Use mHealth Apps: Exploratory Study. JMIR Mhealth Uhealth 2021;9:e27021. [PMID: 34499044 DOI: 10.2196/27021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
48 Xu L, Li P, Hou X, Yu H, Tang T, Liu T, Xiang S, Wu X, Huang C. Middle-aged and elderly users' continuous usage intention of health maintenance-oriented WeChat official accounts: empirical study based on a hybrid model in China. BMC Med Inform Decis Mak 2021;21:257. [PMID: 34479566 DOI: 10.1186/s12911-021-01625-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Wilson J, Heinsch M, Betts D, Booth D, Kay-Lambkin F. Barriers and facilitators to the use of e-health by older adults: a scoping review. BMC Public Health 2021;21:1556. [PMID: 34399716 DOI: 10.1186/s12889-021-11623-w] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
50 Yu J, de Antonio A, Villalba-mora E. Design of an Integrated Acceptance Framework for Older Users and eHealth: Influential Factor Analysis (Preprint).. [DOI: 10.2196/preprints.31920] [Reference Citation Analysis]
51 Rentrop V, Damerau M, Schweda A, Steinbach J, Schüren LC, Niedergethmann M, Skoda E, Teufel M, Bäuerle A. Predicting Acceptance of e-Mental Health Interventions in Patients with Obesity by using an extended Unified Theory of Acceptance Model: Cross-sectional study (Preprint). JMIR Formative Research. [DOI: 10.2196/31229] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Rentrop V, Damerau M, Schweda A, Steinbach J, Schüren LC, Niedergethmann M, Skoda E, Teufel M, Bäuerle A. Predicting Acceptance of e–Mental Health Interventions in Patients With Obesity by Using an Extended Unified Theory of Acceptance Model: Cross-sectional Study (Preprint).. [DOI: 10.2196/preprints.31229] [Reference Citation Analysis]
53 Arfi WB, Nasr IB, Kondrateva G, Hikkerova L. The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technological Forecasting and Social Change 2021;167:120688. [DOI: 10.1016/j.techfore.2021.120688] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 39.0] [Reference Citation Analysis]
54 Li P, Xu L, Tang T, Wu X, Huang C. Willingness to Adopt Health Information Among Social Question-and-Answer Community Users in China: Cross-sectional Survey Study. J Med Internet Res 2021;23:e27811. [PMID: 33970865 DOI: 10.2196/27811] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Terp R, Kayser L, Lindhardt T. Older Patients' Competence, Preferences, and Attitudes Toward Digital Technology Use: Explorative Study. JMIR Hum Factors 2021;8:e27005. [PMID: 33988512 DOI: 10.2196/27005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
56 Zhang C, Peng XQ, Jiang YZ, Liu R, Qi ZX, Zhou M, Zhao SQ, Ge JJ, You H, Li ZG. Online medical services utilization evaluated through the lens of socioecological theory and the information-motivation-behavioral skills model: evidence from China. Ann N Y Acad Sci 2021. [PMID: 33983658 DOI: 10.1111/nyas.14609] [Reference Citation Analysis]
57 Octavius GS, Antonio F. Antecedents of Intention to Adopt Mobile Health (mHealth) Application and Its Impact on Intention to Recommend: An Evidence from Indonesian Customers. Int J Telemed Appl 2021;2021:6698627. [PMID: 34012467 DOI: 10.1155/2021/6698627] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
58 Alanzi TM, Althumairi A, Aljaffary A, Alfayez A, Alsalman D, Alanezi F, Alhodaib H, AlShammari MM, Al-Dossary R, Al-Rayes S, Hariri B, AlThani B. Evaluation of the Mawid mobile healthcare application in delivering services during the COVID-19 pandemic in Saudi Arabia. Int Health 2021:ihab018. [PMID: 33864074 DOI: 10.1093/inthealth/ihab018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
59 Chumkasian W, Fernandez R, Win KT, Petsoglou C, Lord H. Adaptation of the MAUQ and usability evaluation of a mobile phone-based system to promote eye donation. Int J Med Inform 2021;151:104462. [PMID: 33933903 DOI: 10.1016/j.ijmedinf.2021.104462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Mekonnen ZA, Gelaye KA, Were MC, Tilahun B. Mothers intention and preference to use mobile phone text message reminders for child vaccination in Northwest Ethiopia. BMJ Health Care Inform 2021;28:e100193. [PMID: 33608258 DOI: 10.1136/bmjhci-2020-100193] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
61 Ahadzadeh AS, Wu SL, Ong FS, Deng R. The Mediating Influence of the Unified Theory of Acceptance and Use of Technology on the Relationship Between Internal Health Locus of Control and Mobile Health Adoption: Cross-sectional Study (Preprint).. [DOI: 10.2196/preprints.28086] [Reference Citation Analysis]
62 Li P, Xu L, Tang T, Wu X, Huang C. Willingness to Adopt Health Information Among Social Question-and-Answer Community Users in China: Cross-sectional Survey Study (Preprint).. [DOI: 10.2196/preprints.27811] [Reference Citation Analysis]
63 Ma Q, Chan AHS, Teh P. Insights into Older Adults’ Technology Acceptance through Meta-Analysis. International Journal of Human–Computer Interaction 2021;37:1049-62. [DOI: 10.1080/10447318.2020.1865005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
64 Terp R, Kayser L, Lindhardt T. Older Patients’ Competence, Preferences, and Attitudes Toward Digital Technology Use: Explorative Study (Preprint).. [DOI: 10.2196/preprints.27005] [Reference Citation Analysis]
65 Palos-sanchez PR, Saura JR, Rios Martin MÁ, Aguayo-camacho M. Toward a Better Understanding of the Intention to Use mHealth Apps: Exploratory Study (Preprint).. [DOI: 10.2196/preprints.27021] [Reference Citation Analysis]
66 Yadav L, Gill TK, Taylor A, De Young J, Chehade MJ. Identifying Opportunities, and Motivation to Enhance Capabilities, Influencing the Development of a Personalized Digital Health Hub Model of Care for Hip Fractures: Mixed Methods Exploratory Study (Preprint).. [DOI: 10.2196/preprints.26886] [Reference Citation Analysis]
67 Serrano KM, Mendes GHS, Lizarelli FL, Ganga GMD. Assessing the telemedicine acceptance for adults in Brazil. Int J Health Care Qual Assur 2020;ahead-of-print. [PMID: 33369378 DOI: 10.1108/IJHCQA-06-2020-0098] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
68 Baudier P, Kondrateva G, Ammi C, Chang V, Schiavone F. Patients' perceptions of teleconsultation during COVID-19: A cross-national study. Technol Forecast Soc Change 2021;163:120510. [PMID: 33318716 DOI: 10.1016/j.techfore.2020.120510] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
69 Anderberg P, Skär L, Abrahamsson L, Berglund JS. Older People's Use and Nonuse of the Internet in Sweden. Int J Environ Res Public Health 2020;17:E9050. [PMID: 33291654 DOI: 10.3390/ijerph17239050] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
70 Alam MZ, Alam MMD, Uddin MA, Mohd Noor NA. Do mobile health (mHealth) services ensure the quality of health life? An integrated approach from a developing country context. Journal of Marketing Communications. [DOI: 10.1080/13527266.2020.1848900] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
71 Vergouw JW, Smits-Pelser H, Kars MC, van Houwelingen T, van Os-Medendorp H, Kort H, Bleijenberg N. Needs, barriers and facilitators of older adults towards eHealth in general practice: a qualitative study. Prim Health Care Res Dev 2020;21:e54. [PMID: 33263272 DOI: 10.1017/S1463423620000547] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
72 Jaana M, Paré G. Comparison of Mobile Health Technology Use for Self-Tracking Between Older Adults and the General Adult Population in Canada: Cross-Sectional Survey. JMIR Mhealth Uhealth 2020;8:e24718. [PMID: 33104517 DOI: 10.2196/24718] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
73 Heger I, Köhler S, van Boxtel M, de Vugt M, Hajema K, Verhey F, Deckers K. Raising awareness for dementia risk reduction through a public health campaign: a pre-post study. BMJ Open 2020;10:e041211. [PMID: 33158836 DOI: 10.1136/bmjopen-2020-041211] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
74 Abd-Alrazaq A, Alalwan AA, McMillan B, Bewick BM, Househ M, Al-Zyadat AT. Patients' Adoption of Electronic Personal Health Records in England: Secondary Data Analysis. J Med Internet Res 2020;22:e17499. [PMID: 33026353 DOI: 10.2196/17499] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
75 van Buul AR, Derksen C, Hoedemaker O, van Dijk O, Chavannes NH, Kasteleyn MJ. eHealth Program to Reduce Hospitalizations Due to Acute Exacerbation of Chronic Obstructive Pulmonary Disease: Retrospective Study (Preprint).. [DOI: 10.2196/preprints.24726] [Reference Citation Analysis]
76 Jaana M, Paré G. Comparison of Mobile Health Technology Use for Self-Tracking Between Older Adults and the General Adult Population in Canada: Cross-Sectional Survey (Preprint).. [DOI: 10.2196/preprints.24718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Robinson SA, Wan ES, Shimada SL, Richardson CR, Moy ML. Age and Attitudes Towards an Internet-Mediated, Pedometer-Based Physical Activity Intervention for Chronic Obstructive Pulmonary Disease: Secondary Analysis. JMIR Aging 2020;3:e19527. [PMID: 32902390 DOI: 10.2196/19527] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Vaziri DD, Giannouli E, Frisiello A, Kaartinen N, Wieching R, Schreiber D, Wulf V. Exploring influencing factors of technology use for active and healthy ageing support in older adults. Behaviour & Information Technology 2020;39:1011-21. [DOI: 10.1080/0144929x.2019.1637457] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
79 Li P, Luo Y, Yu X, Wen J, Mason E, Li W, Jalali MS. Patients' Perceptions of Barriers and Facilitators to the Adoption of E-Hospitals: Cross-Sectional Study in Western China. J Med Internet Res 2020;22:e17221. [PMID: 32525483 DOI: 10.2196/17221] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
80 Kavandi H, Jaana M. Factors that affect health information technology adoption by seniors: A systematic review. Health Soc Care Community 2020;28:1827-42. [DOI: 10.1111/hsc.13011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 17.0] [Reference Citation Analysis]
81 He K, Zhang J, Zeng Y. Households’ willingness to pay for energy utilization of crop straw in rural China:Based on an improved UTAUT model. Energy Policy 2020;140:111373. [DOI: 10.1016/j.enpol.2020.111373] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
82 Robinson SA, Wan ES, Shimada SL, Richardson CR, Moy ML. Age and Attitudes Towards an Internet-Mediated, Pedometer-Based Physical Activity Intervention for Chronic Obstructive Pulmonary Disease: Secondary Analysis (Preprint).. [DOI: 10.2196/preprints.19527] [Reference Citation Analysis]
83 Kaium MA, Bao Y, Alam MZ, Hoque MR. Understanding continuance usage intention of mHealth in a developing country: An empirical investigation. IJPHM 2020;14:251-72. [DOI: 10.1108/ijphm-06-2019-0041] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
84 Klimova B, Maresova P, Lee S. Elderly's Attitude towards the Selected Types of e-Health. Healthcare (Basel) 2020;8:E38. [PMID: 32069853 DOI: 10.3390/healthcare8010038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Wang X, Liu Y, Liu H. Examining Users' Adoption of Precision Medicine: The Moderating Role of Medical Technical Knowledge. Int J Environ Res Public Health 2020;17:E1113. [PMID: 32050551 DOI: 10.3390/ijerph17031113] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
86 Alam MZ, Hu W, Hoque MR, Kaium MA. Adoption intention and usage behavior of mHealth services in Bangladesh and China: A cross-country analysis. IJPHM 2020;14:37-60. [DOI: 10.1108/ijphm-03-2019-0023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
87 Sampa MB, Hossain MN, Hoque MR, Islam R, Yokota F, Nishikitani M, Fukuda A, Ahmed A. Influence of Factors on the Adoption and <i>Use</i> of ICT-Based eHealth Technology by Urban Corporate People. JSSM 2020;13:1-19. [DOI: 10.4236/jssm.2020.131001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
88 Lu X, Zhang R, Zhu X. An Empirical Study on Patients' Acceptance of Physician-Patient Interaction in Online Health Communities. Int J Environ Res Public Health 2019;16:E5084. [PMID: 31842465 DOI: 10.3390/ijerph16245084] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
89 Liu Z, Su J, Ji L. Detection and Characterization of E-Health Research: A Bibliometrics (2001–2016). Scientometrics Recent Advances 2019. [DOI: 10.5772/intechopen.88610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
90 Li P, Luo Y, Yu X, Wen J, Mason E, Li W, Jalali MS. Patients’ Perceptions of Barriers and Facilitators to the Adoption of E-Hospitals: Cross-Sectional Study in Western China (Preprint).. [DOI: 10.2196/preprints.17221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
91 Marandi RZ, Gazerani P. Aging and eye tracking: in the quest for objective biomarkers. Future Neurology 2019;14:FNL33. [DOI: 10.2217/fnl-2019-0012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
92 Alanazi MH, Soh B. Behavioral Intention to Use IoT Technology in Healthcare Settings. Eng Technol Appl Sci Res 2019;9:4769-74. [DOI: 10.48084/etasr.3063] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
93 Gu D, Li T, Wang X, Yang X, Yu Z. Visualizing the intellectual structure and evolution of electronic health and telemedicine research. International Journal of Medical Informatics 2019;130:103947. [DOI: 10.1016/j.ijmedinf.2019.08.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
94 Alam K, Mahumud RA, Alam F, Keramat SA, Erdiaw-Kwasie MO, Sarker AR. Determinants of access to eHealth services in regional Australia. Int J Med Inform 2019;131:103960. [PMID: 31518858 DOI: 10.1016/j.ijmedinf.2019.103960] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
95 Duarte P, Pinho JC. A mixed methods UTAUT2-based approach to assess mobile health adoption. Journal of Business Research 2019;102:140-50. [DOI: 10.1016/j.jbusres.2019.05.022] [Cited by in Crossref: 87] [Cited by in F6Publishing: 93] [Article Influence: 29.0] [Reference Citation Analysis]
96 Gow CX, Wong SC, Lim CS. Effect of Output Quality and Result Demonstrability on Generation Y’s Behavioural Intention in Adopting Mobile Health Applications. Asia-Pacific Journal of Management Research and Innovation 2019;15:111-121. [DOI: 10.1177/2319510x19872597] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
97 Boekhout JM, Peels DA, Berendsen BAJ, Bolman C, Lechner L. A Web-Based and Print-Delivered Computer-Tailored Physical Activity Intervention for Older Adults: Pretest-Posttest Intervention Study Comparing Delivery Mode Preference and Attrition. J Med Internet Res 2019;21:e13416. [PMID: 31464186 DOI: 10.2196/13416] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
98 Zhang Y, Liu C, Luo S, Xie Y, Liu F, Li X, Zhou Z. Factors Influencing Patients' Intentions to Use Diabetes Management Apps Based on an Extended Unified Theory of Acceptance and Use of Technology Model: Web-Based Survey. J Med Internet Res 2019;21:e15023. [PMID: 31411146 DOI: 10.2196/15023] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 23.7] [Reference Citation Analysis]
99 Abd-Alrazaq A, Bewick BM, Farragher T, Gardner P. Factors Affecting Patients' Use of Electronic Personal Health Records in England: Cross-Sectional Study. J Med Internet Res 2019;21:e12373. [PMID: 31368442 DOI: 10.2196/12373] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
100 Aria R, Archer N. The role of support and sustainability elements in the adoption of an online self-management support system for chronic illnesses. Journal of Biomedical Informatics 2019;95:103215. [DOI: 10.1016/j.jbi.2019.103215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
101 López-Pelayo H, Caballeria E, Díaz E, Sánchez A, Segura L, Colom J, Wallace P, Gual A. Digital brief interventions for risky drinkers are not the panacea: A pilot study exploring barriers for its implementation according to professionals' perceptions. Health Informatics J 2020;26:925-33. [PMID: 31213133 DOI: 10.1177/1460458219855177] [Reference Citation Analysis]
102 Jarvis M, Sartorius B, Chipps J. Technology acceptance of older persons living in residential care. Information Development 2020;36:339-53. [DOI: 10.1177/0266666919854164] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
103 Heger I, Deckers K, van Boxtel M, de Vugt M, Hajema K, Verhey F, Köhler S. Dementia awareness and risk perception in middle-aged and older individuals: baseline results of the MijnBreincoach survey on the association between lifestyle and brain health. BMC Public Health 2019;19:678. [PMID: 31159779 DOI: 10.1186/s12889-019-7010-z] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
104 Harst L, Lantzsch H, Scheibe M. Theories Predicting End-User Acceptance of Telemedicine Use: Systematic Review. J Med Internet Res 2019;21:e13117. [PMID: 31115340 DOI: 10.2196/13117] [Cited by in Crossref: 134] [Cited by in F6Publishing: 140] [Article Influence: 44.7] [Reference Citation Analysis]
105 Cabrita M, Tabak M, Vollenbroek-Hutten MM. Older Adults' Attitudes Toward Ambulatory Technology to Support Monitoring and Coaching of Healthy Behaviors: Qualitative Study. JMIR Aging 2019;2:e10476. [PMID: 31518252 DOI: 10.2196/10476] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
106 Kernebeck S, Holle D, Pogscheba P, Jordan F, Mertl F, Huldtgren A, Bader S, Kirste T, Teipel S, Holle B, Halek M. A Tablet App- and Sensor-Based Assistive Technology Intervention for Informal Caregivers to Manage the Challenging Behavior of People With Dementia (the insideDEM Study): Protocol for a Feasibility Study. JMIR Res Protoc 2019;8:e11630. [PMID: 30806626 DOI: 10.2196/11630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
107 Ware P, Dorai M, Ross HJ, Cafazzo JA, Laporte A, Boodoo C, Seto E. Patient Adherence to a Mobile Phone-Based Heart Failure Telemonitoring Program: A Longitudinal Mixed-Methods Study. JMIR Mhealth Uhealth 2019;7:e13259. [PMID: 30806625 DOI: 10.2196/13259] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 20.0] [Reference Citation Analysis]
108 Chiu CJ. Relationship Between Internet Behaviors and Social Engagement in Middle-Aged and Older Adults in Taiwan. Int J Environ Res Public Health 2019;16:E416. [PMID: 30709050 DOI: 10.3390/ijerph16030416] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
109 Boekhout JM, Peels DA, Berendsen BAJ, Bolman C, Lechner L. A Web-Based and Print-Delivered Computer-Tailored Physical Activity Intervention for Older Adults: Pretest-Posttest Intervention Study Comparing Delivery Mode Preference and Attrition (Preprint).. [DOI: 10.2196/preprints.13416] [Reference Citation Analysis]
110 [DOI: 10.1145/3312714.3312730] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
111 Hiwale S, Ulman S, Subbaraman K. Barriers to Adoptions of IoT-Based Solutions for Disease Screening. Pre-Screening Systems for Early Disease Prediction, Detection, and Prevention 2019. [DOI: 10.4018/978-1-5225-7131-5.ch002] [Reference Citation Analysis]
112 Francis J, Ball C, Kadylak T, Cotten SR. Aging in the Digital Age: Conceptualizing Technology Adoption and Digital Inequalities. Ageing and Digital Technology 2019. [DOI: 10.1007/978-981-13-3693-5_3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
113 Ware P, Dorai M, Ross HJ, Cafazzo JA, Laporte A, Boodoo C, Seto E. Patient Adherence to a Mobile Phone–Based Heart Failure Telemonitoring Program: A Longitudinal Mixed-Methods Study (Preprint).. [DOI: 10.2196/preprints.13259] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
114 Firet L, Teunissen D, Verhoeks C, Lagro-Janssen A. Expectations regarding eHealth among women with stress urinary incontinence. Int Urogynecol J 2019;30:1955-63. [PMID: 30594948 DOI: 10.1007/s00192-018-3849-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
115 Harst L, Lantzsch H, Scheibe M. Theories Predicting End-User Acceptance of Telemedicine Use: Systematic Review (Preprint).. [DOI: 10.2196/preprints.13117] [Reference Citation Analysis]
116 Ware P, Ross HJ, Cafazzo JA, Laporte A, Gordon K, Seto E. User-Centered Adaptation of an Existing Heart Failure Telemonitoring Program to Ensure Sustainability and Scalability: Qualitative Study. JMIR Cardio 2018;2:e11466. [PMID: 31758774 DOI: 10.2196/11466] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
117 Woo K, Shang J, Dowding DW. Patient factors associated with the initiation of telehealth services among heart failure patients at home. Home Health Care Serv Q 2018;37:277-93. [PMID: 30482130 DOI: 10.1080/01621424.2018.1523767] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
118 Melchiorre MG, Lamura G, Barbabella F; ICARE4EU Consortium. eHealth for people with multimorbidity: Results from the ICARE4EU project and insights from the "10 e's" by Gunther Eysenbach. PLoS One 2018;13:e0207292. [PMID: 30427924 DOI: 10.1371/journal.pone.0207292] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
119 van Buul AR, Wildschut TS, Bonten TN, Kasteleyn MJ, Slats AM, Chavannes NH, Taube C. A systematic diagnostic evaluation combined with an internet-based self-management support system for patients with asthma or COPD. Int J Chron Obstruct Pulmon Dis 2018;13:3297-306. [PMID: 30349234 DOI: 10.2147/COPD.S175361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
120 Jaana M, Sherrard H, Paré G. A prospective evaluation of telemonitoring use by seniors with chronic heart failure: Adoption, self-care, and empowerment. Health Informatics J 2018;25:1800-14. [DOI: 10.1177/1460458218799458] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
121 van Doorn-van Atten MN, de Groot LC, Romea AC, Schwartz S, de Vries JH, Haveman-Nies A. Implementation of a multicomponent telemonitoring intervention to improve nutritional status of community-dwelling older adults: a process evaluation. Public Health Nutr 2019;22:363-74. [PMID: 30175698 DOI: 10.1017/S1368980018002185] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
122 Kernebeck S, Holle D, Pogscheba P, Jordan F, Mertl F, Huldtgren A, Bader S, Kirste T, Teipel S, Holle B, Halek M. A Tablet App– and Sensor-Based Assistive Technology Intervention for Informal Caregivers to Manage the Challenging Behavior of People With Dementia (the insideDEM Study): Protocol for a Feasibility Study (Preprint).. [DOI: 10.2196/preprints.11630] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
123 Ware P, Ross HJ, Cafazzo JA, Laporte A, Gordon K, Seto E. User-Centered Adaptation of an Existing Heart Failure Telemonitoring Program to Ensure Sustainability and Scalability: Qualitative Study (Preprint).. [DOI: 10.2196/preprints.11466] [Reference Citation Analysis]
124 van Doorn-van Atten MN, Haveman-nies A, Heery D, de Vries JHM, de Groot LCPGM. Feasibility and Effectiveness of Nutritional Telemonitoring for Home Care Clients: A Pilot Study. The Gerontologist 2019;59:158-66. [DOI: 10.1093/geront/gny059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
125 Jaana M, Sherrard H. Rural-Urban Comparison of Telehome Monitoring for Patients with Chronic Heart Failure. Telemed J E Health 2019;25:101-8. [PMID: 29847242 DOI: 10.1089/tmj.2017.0303] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
126 van Houwelingen CT, Ettema RG, Antonietti MG, Kort HS. Understanding Older People's Readiness for Receiving Telehealth: Mixed-Method Study. J Med Internet Res 2018;20:e123. [PMID: 29625950 DOI: 10.2196/jmir.8407] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 15.5] [Reference Citation Analysis]
127 Quaosar GAA, Hoque MR, Bao Y. Investigating Factors Affecting Elderly's Intention to Use m-Health Services: An Empirical Study. Telemedicine and e-Health 2018;24:309-14. [DOI: 10.1089/tmj.2017.0111] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 13.3] [Reference Citation Analysis]
128 Cabrita M, Tabak M, Vollenbroek-hutten MM. Older Adults’ Attitudes Toward Ambulatory Technology to Support Monitoring and Coaching of Healthy Behaviors: Qualitative Study (Preprint).. [DOI: 10.2196/preprints.10476] [Reference Citation Analysis]
129 Buller-Taylor T, McGuinness L, Yan M, Janjua NZ. Reducing patient and provider knowledge gaps: An evaluation of a community informed hepatitis C online course. Patient Educ Couns 2018;101:1095-102. [PMID: 29370951 DOI: 10.1016/j.pec.2018.01.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
130 Lei J, Liu Z, Yang Y, Feng J, Li X, Gao Y, Li J, Yuan Y. Hot Topics and Fronts in E-health Research: A Scientometric Analysis in CiteSpace.. [DOI: 10.2196/preprints.9699] [Reference Citation Analysis]
131 LaMonica HM, English A, Hickie IB, Ip J, Ireland C, West S, Shaw T, Mowszowski L, Glozier N, Duffy S, Gibson AA, Naismith SL. Examining Internet and eHealth Practices and Preferences: Survey Study of Australian Older Adults With Subjective Memory Complaints, Mild Cognitive Impairment, or Dementia. J Med Internet Res 2017;19:e358. [PMID: 29070481 DOI: 10.2196/jmir.7981] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
132 Lo A, Jenkins PH, Choobineh J. Patient’s Acceptance of IT-Assisted Self-Monitoring: A Multiple-Case Study. Journal of Computer Information Systems 2017;59:319-33. [DOI: 10.1080/08874417.2017.1365666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
133 Runz-Jørgensen SM, Schiøtz ML, Christensen U. Perceived value of eHealth among people living with multimorbidity: a qualitative study. J Comorb 2017;7:96-111. [PMID: 29359124 DOI: 10.15256/joc.2017.7.98] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
134 de Lima Salgado A, do Amaral LA, Castro PC, de Mattos Fortes RP. Designing for Parental Control: Enriching Usability and Accessibility in the Context of Smart Toys. Computing in Smart Toys 2017. [DOI: 10.1007/978-3-319-62072-5_7] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
135 Pevnick JM, Fuller G, Duncan R, Spiegel BM. A Large-Scale Initiative Inviting Patients to Share Personal Fitness Tracker Data with Their Providers: Initial Results. PLoS One 2016;11:e0165908. [PMID: 27846287 DOI: 10.1371/journal.pone.0165908] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
136 Koo M, Lu M, Lin S. Predictors of Internet use for health information among male and female Internet users: Findings from the 2009 Taiwan National Health Interview Survey. International Journal of Medical Informatics 2016;94:155-63. [DOI: 10.1016/j.ijmedinf.2016.07.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
137 Klimova B. Use of the Internet as a prevention tool against cognitive decline in normal aging. Clin Interv Aging 2016;11:1231-7. [PMID: 27672317 DOI: 10.2147/CIA.S113758] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
138 Cimperman M, Makovec Brenčič M, Trkman P. Analyzing older users' home telehealth services acceptance behavior-applying an Extended UTAUT model. Int J Med Inform 2016;90:22-31. [PMID: 27103194 DOI: 10.1016/j.ijmedinf.2016.03.002] [Cited by in Crossref: 225] [Cited by in F6Publishing: 234] [Article Influence: 37.5] [Reference Citation Analysis]
139 Borges AP, Cardoso C. Opportunities and Threats for E-Health on an Ageing Society. Encyclopedia of E-Health and Telemedicine 2016. [DOI: 10.4018/978-1-4666-9978-6.ch076] [Reference Citation Analysis]
140 [DOI: 10.1145/2971603.2971616] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
141 Narkwilai M, Funilkul S, Supasitthimethee U. Factors influencing the Thai elderly's intention to use social network for Quality of Life: A case study LINE application. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) 2015. [DOI: 10.1109/iciteed.2015.7409016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]