1 |
Neto PCS, Rodrigues AL, Stahlschmidt A, Helal L, Stefani LC. Developing and validating a machine learning ensemble model to predict postoperative delirium in a cohort of high-risk surgical patients: A secondary cohort analysis. Eur J Anaesthesiol 2023. [PMID: 36860180 DOI: 10.1097/EJA.0000000000001811] [Reference Citation Analysis]
|
2 |
Yi Z, Liang Z, Xie T, Li F. Financial risk prediction in supply chain finance based on buyer transaction behavior. Decision Support Systems 2023. [DOI: 10.1016/j.dss.2023.113964] [Reference Citation Analysis]
|
3 |
Liu M, Liu X, Yan A, Qi Y, Li W. Explanation-Guided Minimum Adversarial Attack. Machine Learning for Cyber Security 2023. [DOI: 10.1007/978-3-031-20096-0_20] [Reference Citation Analysis]
|
4 |
Rikta ST, Uddin KMM, Biswas N, Mostafiz R, Sharmin F, Dey SK. XML-GBM lung: An explainable machine learning-based application for the diagnosis of lung cancer. Journal of Pathology Informatics 2023;14:100307. [DOI: 10.1016/j.jpi.2023.100307] [Reference Citation Analysis]
|
5 |
Ayano YM, Schwenker F, Dufera BD, Debelee TG. Interpretable Machine Learning Techniques in ECG-Based Heart Disease Classification: A Systematic Review. Diagnostics (Basel) 2022;13. [PMID: 36611403 DOI: 10.3390/diagnostics13010111] [Reference Citation Analysis]
|
6 |
Eldeeb H, Amashukeli S, Elshawi R. BigFeat: Scalable and Interpretable Automated Feature Engineering Framework. 2022 IEEE International Conference on Big Data (Big Data) 2022. [DOI: 10.1109/bigdata55660.2022.10020768] [Reference Citation Analysis]
|
7 |
Zhang C, Zhang Y, Yang Y, Xu H, Zhang X, Wu Z, Xie M, Feng Y, Feng C, Ma T. Machine learning models for predicting one-year survival in patients with metastatic gastric cancer who experienced upfront radical gastrectomy. Front Mol Biosci 2022;9. [DOI: 10.3389/fmolb.2022.937242] [Reference Citation Analysis]
|
8 |
Uchida M, Bukhari Q, DiSalvo M, Green A, Serra G, Hutt Vater C, Ghosh SS, Faraone SV, Gabrieli JDE, Biederman J. Can machine learning identify childhood characteristics that predict future development of bipolar disorder a decade later? J Psychiatr Res 2022;156:261-7. [PMID: 36274531 DOI: 10.1016/j.jpsychires.2022.09.051] [Reference Citation Analysis]
|
9 |
Feng M, Zhang J, Zhou X, Mo H, Jia L, Zhang C, Hu Y, Yuan W. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma. Journal of Oncology 2022;2022:1-12. [DOI: 10.1155/2022/6356399] [Reference Citation Analysis]
|
10 |
Haque A, Stubbs D, Hubig NC, Spinale FG, Richardson WJ. Interpretable machine learning predicts cardiac resynchronization therapy responses from personalized biochemical and biomechanical features. BMC Med Inform Decis Mak 2022;22:282. [DOI: 10.1186/s12911-022-02015-0] [Reference Citation Analysis]
|
11 |
Di Martino F, Delmastro F. Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10304-3] [Reference Citation Analysis]
|
12 |
Sug H. A Comparison of Statistical Dependency and Functional Dependency between Attributes Based on Data. WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 2022;19:225-236. [DOI: 10.37394/23209.2022.19.23] [Reference Citation Analysis]
|
13 |
Domínguez-Olmedo JL, Gragera-Martínez Á, Mata J, Pachón V. Age-Stratified Analysis of COVID-19 Outcome Using Machine Learning Predictive Models. Healthcare (Basel) 2022;10:2027. [PMID: 36292474 DOI: 10.3390/healthcare10102027] [Reference Citation Analysis]
|
14 |
Liu J, Ren K, Ming T, Qu J, Guo W, Li H. Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: two case studies involving the contiguous USA. Acta Geophys . [DOI: 10.1007/s11600-022-00928-y] [Reference Citation Analysis]
|
15 |
Huynh TM, Ni CF, Su YS, Nguyen VC, Lee IH, Lin CP, Nguyen HH. Predicting Heavy Metal Concentrations in Shallow Aquifer Systems Based on Low-Cost Physiochemical Parameters Using Machine Learning Techniques. Int J Environ Res Public Health 2022;19. [PMID: 36231480 DOI: 10.3390/ijerph191912180] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Li D, Hu J, Zhang L, Li L, Yin Q, Shi J, Guo H, Zhang Y, Zhuang P. Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine. Eur J Pharmacol 2022;933:175260. [PMID: 36116517 DOI: 10.1016/j.ejphar.2022.175260] [Reference Citation Analysis]
|
17 |
Accardo A, Restivo L, Ajčević M, Miladinović A, Iscra K, Silveri G, Merlo M, Sinagra G. Toward a diagnostic CART model for Ischemic heart disease and idiopathic dilated cardiomyopathy based on heart rate total variability. Med Biol Eng Comput 2022;60:2655-2663. [DOI: 10.1007/s11517-022-02618-9] [Reference Citation Analysis]
|
18 |
Xie Y, Ding H, Du X, Chai C, Wei X, Sun J, Zhuo C, Wang L, Li J, Tian H, Liang M, Zhang S, Yu C, Qin W. Morphometric Integrated Classification Index: A Multisite Model-Based, Interpretable, Shareable and Evolvable Biomarker for Schizophrenia. Schizophr Bull 2022;48:1217-27. [PMID: 35925032 DOI: 10.1093/schbul/sbac096] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Wang L, Guo J, Tian Z, Seery S, Jin Y, Zhang S. Developing a Hybrid Risk Assessment Tool for Familial Hypercholesterolemia: A Machine Learning Study of Chinese Arteriosclerotic Cardiovascular Disease Patients. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.893986] [Reference Citation Analysis]
|
20 |
Liao B, Jia X, Zhang T, Sun R. DHDIP: an interpretable model for hypertension and hyperlipidemia prediction based on EMR data. Computer Methods and Programs in Biomedicine 2022. [DOI: 10.1016/j.cmpb.2022.107088] [Reference Citation Analysis]
|
21 |
Zhu J, Wu W, Zhang Y, Lin S, Jiang Y, Liu R, Zhang H, Wang X. Computational Analysis of Pathological Image Enables Interpretable Prediction for Microsatellite Instability. Front Oncol 2022;12:825353. [DOI: 10.3389/fonc.2022.825353] [Reference Citation Analysis]
|
22 |
Gutierrez I, Santos D, Castro J, Gomez D, Espinola R, Guevara JA. On measuring features importance in Machine Learning models in a two-dimensional representation scenario. 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2022. [DOI: 10.1109/fuzz-ieee55066.2022.9882566] [Reference Citation Analysis]
|
23 |
Momenzadeh A, Shamsa A, Meyer JG. Bias or biology? Importance of model interpretation in machine learning studies from electronic health records. JAMIA Open 2022;5. [DOI: 10.1093/jamiaopen/ooac063] [Reference Citation Analysis]
|
24 |
Leitner J, Chiang P, Khan B, Dey S. An mHealth Lifestyle Intervention Service for Improving Blood Pressure using Machine Learning and IoMTs. 2022 IEEE International Conference on Digital Health (ICDH) 2022. [DOI: 10.1109/icdh55609.2022.00030] [Reference Citation Analysis]
|
25 |
Fan B, Klatt J, Moor MM, Daniels LA, Sanchez-Pinto LN, Agyeman PKA, Schlapbach LJ, Borgwardt KM; Swiss Pediatric Sepsis Study . Prediction of recovery from multiple organ dysfunction syndrome in pediatric sepsis patients. Bioinformatics 2022;38:i101-8. [PMID: 35758775 DOI: 10.1093/bioinformatics/btac229] [Reference Citation Analysis]
|
26 |
Shafi J, Basu S, Kavila SD. Role of Explainable Artificial Intelligence (XAI) in Prediction of Non-Communicable Diseases (NCDs). Advances in Medical Technologies and Clinical Practice 2022. [DOI: 10.4018/978-1-6684-3791-9.ch005] [Reference Citation Analysis]
|
27 |
Safaei N, Safaei B, Seyedekrami S, Talafidaryani M, Masoud A, Wang S, Li Q, Moqri M. E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database. PLoS ONE 2022;17:e0262895. [DOI: 10.1371/journal.pone.0262895] [Reference Citation Analysis]
|
28 |
Shulha M, Rahimi S, Sandhu A, Sharma G, D'souza V, Harmouche R, Hovdebo J. Explainable machine learning for decision support in healthcare: A scoping review (Preprint).. [DOI: 10.2196/preprints.39196] [Reference Citation Analysis]
|
29 |
Monje L, Carrasco RA, Moral CR, Sánchez-montañés M. Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain. Mathematics 2022;10:1428. [DOI: 10.3390/math10091428] [Reference Citation Analysis]
|
30 |
Bueno I, Carrasco RA, Ureña R, Herrera-viedma E. A business context aware decision-making approach for selecting the most appropriate sentiment analysis technique in e-marketing situations. Information Sciences 2022;589:300-20. [DOI: 10.1016/j.ins.2021.12.080] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Momenzadeh A, Shamsa A, Meyer JG. Clinical interpretation of machine learning models for prediction of diabetic complications using electronic health records.. [DOI: 10.1101/2022.03.11.22272039] [Reference Citation Analysis]
|
32 |
Hakkoum H, Abnane I, Idri A. Interpretability in the medical field: A systematic mapping and review study. Applied Soft Computing 2022;117:108391. [DOI: 10.1016/j.asoc.2021.108391] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
33 |
Kocbek S, Kocbek P, Gosak L, Fijačko N, Štiglic G. Extracting New Temporal Features to Improve the Interpretability of Undiagnosed Type 2 Diabetes Mellitus Prediction Models. JPM 2022;12:368. [DOI: 10.3390/jpm12030368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
34 |
Romero M, Finke J, Rocha C. A top-down supervised learning approach to hierarchical multi-label classification in networks. Appl Netw Sci 2022;7. [DOI: 10.1007/s41109-022-00445-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
35 |
Zhang Y, Razbek J, Li D, Yang L, Bao L, Xia W, Mao H, Daken M, Zhang X, Cao M. Construction of Xinjiang metabolic syndrome risk prediction model based on interpretable models. BMC Public Health 2022;22:251. [PMID: 35135534 DOI: 10.1186/s12889-022-12617-y] [Reference Citation Analysis]
|
36 |
Khera P, Kumar N. Novel machine learning-based hybrid strategy for severity assessment of Parkinson’s disorders. Med Biol Eng Comput. [DOI: 10.1007/s11517-022-02518-y] [Reference Citation Analysis]
|
37 |
Jin D, Sergeeva E, Weng WH, Chauhan G, Szolovits P. Explainable deep learning in healthcare: A methodological survey from an attribution view. WIREs Mech Dis 2022;:e1548. [PMID: 35037736 DOI: 10.1002/wsbm.1548] [Reference Citation Analysis]
|
38 |
Iscra K, Miladinović A, Ajčević M, Starita S, Restivo L, Merlo M, Accardo A. Interpretable machine learning models to support differential diagnosis between Ischemic Heart Disease and Dilated Cardiomyopathy. Procedia Computer Science 2022;207:1378-1387. [DOI: 10.1016/j.procs.2022.09.194] [Reference Citation Analysis]
|
39 |
Koshimizu H, Okuno Y. Artificial Intelligence and Hypertension Management. Artificial Intelligence in Medicine 2022. [DOI: 10.1007/978-3-030-64573-1_263] [Reference Citation Analysis]
|
40 |
Khalid NHM, Ismail AR, Aziz NA. Interpretation of Machine Learning Model Using Medical Record Visual Analytics. Lecture Notes in Electrical Engineering 2022. [DOI: 10.1007/978-981-16-8515-6_48] [Reference Citation Analysis]
|
41 |
Kshirsagar M, Gupt KK, Vaidya G, Ryan C, Sullivan JP, Kshirsagar V. Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI. International Journal of Natural Computing Research 2022;11:1-23. [DOI: 10.4018/ijncr.310006] [Reference Citation Analysis]
|
42 |
Anderková V, Babič F. How to Reduce the Time Necessary for Evaluation of Tree-Based Models. Lecture Notes in Computer Science 2022. [DOI: 10.1007/978-3-031-14463-9_19] [Reference Citation Analysis]
|
43 |
Malkawi A, Almarzooq Z, Al-mallah MH, Al’aref SJ. Artificial Intelligence-Based Cardiovascular Risk Stratification. Artificial Intelligence in Cardiothoracic Imaging 2022. [DOI: 10.1007/978-3-030-92087-6_39] [Reference Citation Analysis]
|
44 |
Opoku Asare K, Visuri A, Vega J, Ferreira D. Me in the Wild: An Exploratory Study Using Smartphones to Detect the Onset of Depression. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022. [DOI: 10.1007/978-3-031-06368-8_9] [Reference Citation Analysis]
|
45 |
Guembe B, Azeta A, Misra S, Ahuja R. Trustworthy Machine Learning Approaches for Cyberattack Detection: A Review. Computational Science and Its Applications – ICCSA 2022 Workshops 2022. [DOI: 10.1007/978-3-031-10548-7_20] [Reference Citation Analysis]
|
46 |
Levi S. Living standards shape individual attitudes on genetically modified food around the world. Food Quality and Preference 2022;95:104371. [DOI: 10.1016/j.foodqual.2021.104371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
47 |
Jeon K, Lee N, Jeong S, Park MJ, Song W. Immature granulocyte percentage for prediction of sepsis in severe burn patients: a machine leaning-based approach. BMC Infect Dis 2021;21:1258. [PMID: 34915849 DOI: 10.1186/s12879-021-06971-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
48 |
Politikos DV, Petasis G, Katselis G. Interpretable machine learning to forecast hypoxia in a lagoon. Ecological Informatics 2021;66:101480. [DOI: 10.1016/j.ecoinf.2021.101480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
49 |
Syrowatka A, Song W, Amato MG, Foer D, Edrees H, Co Z, Kuznetsova M, Dulgarian S, Seger DL, Simona A, Bain PA, Purcell Jackson G, Rhee K, Bates DW. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: a scoping review. Lancet Digit Health 2021:S2589-7500(21)00229-6. [PMID: 34836823 DOI: 10.1016/S2589-7500(21)00229-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
50 |
Wang H, Wu W, Han C, Zheng J, Cai X, Chang S, Shi J, Xu N, Ai Z. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. JMIR Med Inform 2021;9:e30079. [PMID: 34806984 DOI: 10.2196/30079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
51 |
Minh D, Wang HX, Li YF, Nguyen TN. Explainable artificial intelligence: a comprehensive review. Artif Intell Rev. [DOI: 10.1007/s10462-021-10088-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
52 |
Chiang PH, Wong M, Dey S. Using Wearables and Machine Learning to Enable Personalized Lifestyle Recommendations to Improve Blood Pressure. IEEE J Transl Eng Health Med 2021;9:2700513. [PMID: 34765324 DOI: 10.1109/JTEHM.2021.3098173] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
53 |
Wang D, Liu K, Mohaisen D, Wang P, Lu CT, Fu Y. Towards Semantically-Rich Spatial Network Representation Learning via Automated Feature Topic Pairing. Front Big Data 2021;4:762899. [PMID: 34746772 DOI: 10.3389/fdata.2021.762899] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
54 |
Hu Y, Chen R, Gao H, Lin H, Wang J, Wang X, Liu J, Zeng Y. Explainable machine learning model for predicting spontaneous bacterial peritonitis in cirrhotic patients with ascites. Sci Rep 2021;11:21639. [PMID: 34737270 DOI: 10.1038/s41598-021-00218-5] [Reference Citation Analysis]
|
55 |
Hakkoum H, Idri A, Abnane I. Assessing and Comparing Interpretability Techniques for Artificial Neural Networks Breast Cancer Classification. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2021;9:587-599. [DOI: 10.1080/21681163.2021.1901784] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
56 |
Nkolele R, Wang H. Explainable Machine Learning: A Manuscript on the Customer Churn in the Telecommunications Industry. 2021 Ethics and Explainability for Responsible Data Science (EE-RDS) 2021. [DOI: 10.1109/ee-rds53766.2021.9708561] [Reference Citation Analysis]
|
57 |
Ma M, Liu R, Wen C, Xu W, Xu Z, Wang S, Wu J, Pan D, Zheng B, Qin G, Chen W. Predicting the molecular subtype of breast cancer and identifying interpretable imaging features using machine learning algorithms. Eur Radiol 2021. [PMID: 34647174 DOI: 10.1007/s00330-021-08271-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Søgaard A. Explainable Natural Language Processing. Synthesis Lectures on Human Language Technologies 2021;14:1-123. [DOI: 10.2200/s01118ed1v01y202107hlt051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
59 |
Ostberg NP, Zafar MA, Elefteriades JA. Machine learning: principles and applications for thoracic surgery. Eur J Cardiothorac Surg 2021;60:213-21. [PMID: 33748840 DOI: 10.1093/ejcts/ezab095] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
60 |
Nagpal S, Pinna NK, Srivastava D, Singh R, Mande SS. (Machine) Learning the mutation signatures of SARS-CoV-2: a primer for predictive prognosis.. [DOI: 10.1101/2021.08.30.458244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
61 |
Lee E, Jung SY, Hwang HJ, Jung J. Patient-Level Cancer Prediction Models From a Nationwide Patient Cohort: Model Development and Validation. JMIR Med Inform 2021;9:e29807. [PMID: 34459743 DOI: 10.2196/29807] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
62 |
Yun H, Choi J, Park JH. XGBoost Algorithm Prediction of Critical Care Outcome for Adult Patients Presenting to Emergency Department Using Initial Triage Information. JMIR Med Inform 2021. [PMID: 34346889 DOI: 10.2196/30770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
63 |
Yuan X, Suvarna M, Low S, Dissanayake PD, Lee KB, Li J, Wang X, Ok YS. Applied Machine Learning for Prediction of CO2 Adsorption on Biomass Waste-Derived Porous Carbons. Environ Sci Technol 2021;55:11925-36. [PMID: 34291911 DOI: 10.1021/acs.est.1c01849] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
|
64 |
Ponomartseva DA, Derevitskii IV, Kovalchuk SV, Babenko AY. Prediction model for thyrotoxic atrial fibrillation: a retrospective study. BMC Endocr Disord 2021;21:150. [PMID: 34246271 DOI: 10.1186/s12902-021-00809-3] [Reference Citation Analysis]
|
65 |
Woodman RJ, Bryant K, Sorich MJ, Pilotto A, Mangoni AA. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study. J Med Internet Res 2021;23:e26139. [PMID: 34152274 DOI: 10.2196/26139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
66 |
Yun H, Choi J, Park JH. Prediction of Critical Care Outcome for Adult Patients Presenting to Emergency Department Using Initial Triage Information: An XGBoost Algorithm Analysis (Preprint).. [DOI: 10.2196/preprints.30770] [Reference Citation Analysis]
|
67 |
Nakamura K, Kojima R, Uchino E, Ono K, Yanagita M, Murashita K, Itoh K, Nakaji S, Okuno Y. Health improvement framework for actionable treatment planning using a surrogate Bayesian model. Nat Commun 2021;12:3088. [PMID: 34035243 DOI: 10.1038/s41467-021-23319-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
68 |
Gulum MA, Trombley CM, Kantardzic M. A Review of Explainable Deep Learning Cancer Detection Models in Medical Imaging. Applied Sciences 2021;11:4573. [DOI: 10.3390/app11104573] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
|
69 |
Farzaneh N, Williamson CA, Gryak J, Najarian K. A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication. NPJ Digit Med 2021;4:78. [PMID: 33963275 DOI: 10.1038/s41746-021-00445-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
70 |
Khan O, Badhiwala JH, Akbar MA, Fehlings MG. Prediction of Worse Functional Status After Surgery for Degenerative Cervical Myelopathy: A Machine Learning Approach. Neurosurgery 2021;88:584-91. [PMID: 33289519 DOI: 10.1093/neuros/nyaa477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
71 |
Chen X, Wang Z, Bromfield SG, DeVries A, Pryor D, Willey V. Identification and Comparison of Patient Characteristics for Those Hospitalized with COVID-19 versus Influenza Using Machine Learning in a Commercially Insured US Population. Pragmat Obs Res 2021;12:9-13. [PMID: 33935528 DOI: 10.2147/POR.S304220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
72 |
Lee E, Jung SY, Hwang HJ, Jung J. Patient-Level Cancer Prediction Models From a Nationwide Patient Cohort: Model Development and Validation (Preprint).. [DOI: 10.2196/preprints.29807] [Reference Citation Analysis]
|
73 |
Cummings BC, Ansari S, Motyka JR, Wang G, Medlin RP Jr, Kronick SL, Singh K, Park PK, Napolitano LM, Dickson RP, Mathis MR, Sjoding MW, Admon AJ, Blank R, McSparron JI, Ward KR, Gillies CE. Predicting Intensive Care Transfers and Other Unforeseen Events: Analytic Model Validation Study and Comparison to Existing Methods. JMIR Med Inform 2021;9:e25066. [PMID: 33818393 DOI: 10.2196/25066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
74 |
Padmanabhan S, Tran TQB, Dominiczak AF. Artificial Intelligence in Hypertension: Seeing Through a Glass Darkly. Circ Res 2021;128:1100-18. [PMID: 33793339 DOI: 10.1161/CIRCRESAHA.121.318106] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
|
75 |
Caufield JH, Sigdel D, Fu J, Choi H, Guevara-Gonzalez V, Wang D, Ping P. Cardiovascular Informatics: building a bridge to data harmony. Cardiovasc Res 2021:cvab067. [PMID: 33751044 DOI: 10.1093/cvr/cvab067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
76 |
Syed M, Syed S, Sexton K, Syeda HB, Garza M, Zozus M, Syed F, Begum S, Syed AU, Sanford J, Prior F. Application of Machine Learning in Intensive Care Unit (ICU) Settings Using MIMIC Dataset: Systematic Review. Informatics (MDPI) 2021;8:16. [PMID: 33981592 DOI: 10.3390/informatics8010016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
77 |
Levi S. Why hate carbon taxes? Machine learning evidence on the roles of personal responsibility, trust, revenue recycling, and other factors across 23 European countries. Energy Research & Social Science 2021;73:101883. [DOI: 10.1016/j.erss.2020.101883] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
|
78 |
Levi S. Country-level conditions like prosperity, democracy, and regulatory culture predict individual climate change belief. Commun Earth Environ 2021;2. [DOI: 10.1038/s43247-021-00118-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
79 |
Diao X, Huo Y, Yan Z, Wang H, Yuan J, Wang Y, Cai J, Zhao W. An Application of Machine Learning to Etiological Diagnosis of Secondary Hypertension: Retrospective Study Using Electronic Medical Records. JMIR Med Inform 2021;9:e19739. [PMID: 33492233 DOI: 10.2196/19739] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
80 |
Kinkead M, Millar S, Mclaughlin N, O’kane P. Towards Explainable CNNs for Android Malware Detection. Procedia Computer Science 2021;184:959-65. [DOI: 10.1016/j.procs.2021.03.118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
81 |
Davagdorj K, Bae J, Pham V, Theera-umpon N, Ryu KH. Explainable Artificial Intelligence Based Framework for Non-Communicable Diseases Prediction. IEEE Access 2021;9:123672-88. [DOI: 10.1109/access.2021.3110336] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
82 |
Seiffer C, Gerling A, Schreier U, Ziekow H. A Reference Process and Domain Model for Machine Learning Based Production Fault Analysis. Enterprise Information Systems 2021. [DOI: 10.1007/978-3-030-75418-1_8] [Reference Citation Analysis]
|
83 |
Ito T, Ochiai K, Fukazawa Y. C-LIME: A Consistency-Oriented LIME for Time-Series Health-Risk Predictions. Knowledge Management and Acquisition for Intelligent Systems 2021. [DOI: 10.1007/978-3-030-69886-7_5] [Reference Citation Analysis]
|
84 |
Gulum MA, Trombley CM, Kantardzic M. Multiple Interpretations Improve Deep Learning Transparency for Prostate Lesion Detection. Heterogeneous Data Management, Polystores, and Analytics for Healthcare 2021. [DOI: 10.1007/978-3-030-71055-2_11] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
85 |
Koshimizu H, Okuno Y. Artificial Intelligence and Hypertension Management. Artificial Intelligence in Medicine 2021. [DOI: 10.1007/978-3-030-58080-3_263-1] [Reference Citation Analysis]
|
86 |
Cava WL, Lee PC, Ajmal I, Ding X, Solanki P, Cohen JB, Moore JH, Herman DS. Application of concise machine learning to construct accurate and interpretable EHR computable phenotypes.. [DOI: 10.1101/2020.12.12.20248005] [Reference Citation Analysis]
|
87 |
[DOI: 10.1109/bigdata50022.2020.9378460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
88 |
Zhu J, Wu W, Zhang Y, Lin S, Jiang Y, Liu R, Wang X, Zhang H. Computational analysis of pathological image enables interpretable prediction for microsatellite instability.. [DOI: 10.1101/2020.12.07.20244616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
89 |
Woodman RJ, Bryant K, Sorich MJ, Pilotto A, Mangoni AA. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study (Preprint).. [DOI: 10.2196/preprints.26139] [Reference Citation Analysis]
|
90 |
Kawakita S, Beaumont JL, Jucaud V, Everly MJ. Personalized prediction of delayed graft function for recipients of deceased donor kidney transplants with machine learning. Sci Rep. 2020;10:18409. [PMID: 33110142 DOI: 10.1038/s41598-020-75473-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
91 |
Dai C, Fan Y, Li Y, Bao X, Li Y, Su M, Yao Y, Deng K, Xing B, Feng F, Feng M, Wang R. Development and Interpretation of Multiple Machine Learning Models for Predicting Postoperative Delayed Remission of Acromegaly Patients During Long-Term Follow-Up. Front Endocrinol (Lausanne) 2020;11:643. [PMID: 33042013 DOI: 10.3389/fendo.2020.00643] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
92 |
Davagdorj K, Pham VH, Theera-Umpon N, Ryu KH. XGBoost-Based Framework for Smoking-Induced Noncommunicable Disease Prediction. Int J Environ Res Public Health 2020;17:E6513. [PMID: 32906777 DOI: 10.3390/ijerph17186513] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
|
93 |
Cummings BC, Ansari S, Motyka JR, Wang G, Medlin RP, Kronick SL, Singh K, Park PK, Napolitano LM, Dickson RP, Mathis MR, Sjoding MW, Admon AJ, Ward KR, Gillies CE. Validation and comparison of PICTURE analytic and Epic Deterioration Index for COVID-19.. [DOI: 10.1101/2020.07.08.20145078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
94 |
Piccininni M, Konigorski S, Rohmann JL, Kurth T. Directed acyclic graphs and causal thinking in clinical risk prediction modeling. BMC Med Res Methodol 2020;20:179. [PMID: 32615926 DOI: 10.1186/s12874-020-01058-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
95 |
Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L. Interpretability of machine learning‐based prediction models in healthcare. WIREs Data Mining Knowl Discov 2020;10. [DOI: 10.1002/widm.1379] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 21.0] [Reference Citation Analysis]
|
96 |
Yang R. Who dies from COVID-19? Post-hoc explanations of mortality prediction models using coalitional game theory, surrogate trees, and partial dependence plots.. [DOI: 10.1101/2020.06.07.20124933] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
97 |
Diao X, Huo Y, Yan Z, Wang H, Yuan J, Wang Y, Cai J, Zhao W. An Application of Machine Learning to Etiological Diagnosis of Secondary Hypertension: Retrospective Study Using Electronic Medical Records (Preprint).. [DOI: 10.2196/preprints.19739] [Reference Citation Analysis]
|
98 |
Ye X, Zeng QT, Facelli JC, Brixner DI, Conway M, Bray BE. Predicting Optimal Hypertension Treatment Pathways Using Recurrent Neural Networks. Int J Med Inform 2020;139:104122. [PMID: 32339929 DOI: 10.1016/j.ijmedinf.2020.104122] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
|
99 |
Kia A, Timsina P, Joshi HN, Klang E, Gupta RR, Freeman RM, Reich DL, Tomlinson MS, Dudley JT, Kohli-Seth R, Mazumdar M, Levin MA. MEWS++: Enhancing the Prediction of Clinical Deterioration in Admitted Patients through a Machine Learning Model. J Clin Med 2020;9:E343. [PMID: 32012659 DOI: 10.3390/jcm9020343] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
100 |
Syed AH, Khan T. Machine Learning-Based Application for Predicting Risk of Type 2 Diabetes Mellitus (T2DM) in Saudi Arabia: A Retrospective Cross-Sectional Study. IEEE Access 2020;8:199539-61. [DOI: 10.1109/access.2020.3035026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
101 |
Hong Y, Hou B, Jiang H, Zhang J. Machine learning and artificial neural network accelerated computational discoveries in materials science. WIREs Comput Mol Sci 2020;10. [DOI: 10.1002/wcms.1450] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
|