BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang W, Yue X, Lin W, Wu W, Liu R, Huang F, Liu F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics 2018;19:233. [PMID: 29914348 DOI: 10.1186/s12859-018-2220-4] [Cited by in Crossref: 68] [Cited by in F6Publishing: 87] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Gu Y, Zheng S, Yin Q, Jiang R, Li J. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction. Computers in Biology and Medicine 2022;150:106127. [DOI: 10.1016/j.compbiomed.2022.106127] [Reference Citation Analysis]
2 Zhao BW, Su XR, Hu PW, Ma YP, Zhou X, Hu L. A geometric deep learning framework for drug repositioning over heterogeneous information networks. Brief Bioinform 2022:bbac384. [PMID: 36125202 DOI: 10.1093/bib/bbac384] [Reference Citation Analysis]
3 Sadeghi S, Lu J, Ngom A. An Integrative Heterogeneous Graph Neural Network-Based Method for Multi-Labeled Drug Repurposing. Front Pharmacol 2022;13:908549. [PMID: 35873597 DOI: 10.3389/fphar.2022.908549] [Reference Citation Analysis]
4 Liu J, Peng D, Li J, Dai Z, Zou X, Li Z. Identification of Potential Parkinson's Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network. Molecules 2022;27:4780. [PMID: 35897954 DOI: 10.3390/molecules27154780] [Reference Citation Analysis]
5 Luo ZH, Zhu LD, Wang YM, Hu Qian S, Li M, Zhang W, Chen ZX. DSEATM: drug set enrichment analysis uncovering disease mechanisms by biomedical text mining. Brief Bioinform 2022;23:bbac228. [PMID: 35679594 DOI: 10.1093/bib/bbac228] [Reference Citation Analysis]
6 Gao Z, Ding P, Xu R. KG-Predict: A knowledge graph computational framework for drug repurposing. J Biomed Inform 2022;132:104133. [PMID: 35840060 DOI: 10.1016/j.jbi.2022.104133] [Reference Citation Analysis]
7 Feng H, Xiang Y, Wang X, Xue W, Yue Z. MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network. BMC Bioinformatics 2022;23:271. [PMID: 35820798 DOI: 10.1186/s12859-022-04819-3] [Reference Citation Analysis]
8 Kitsiranuwat S, Suratanee A, Plaimas K. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction. Sci Prog 2022;105:368504221109215. [PMID: 35801312 DOI: 10.1177/00368504221109215] [Reference Citation Analysis]
9 Rintala TJ, Ghosh A, Fortino V. Network approaches for modeling the effect of drugs and diseases. Brief Bioinform 2022:bbac229. [PMID: 35704883 DOI: 10.1093/bib/bbac229] [Reference Citation Analysis]
10 Xu J, Meng Y, Peng L, Cai L, Tang X, Liang Y, Tian G, Yang J. Computational drug repositioning using similarity constrained weight regularization matrix factorization: A case of COVID-19. J Cell Mol Med 2022. [PMID: 35644992 DOI: 10.1111/jcmm.17412] [Reference Citation Analysis]
11 Xuan P, Meng X, Gao L, Zhang T, Nakaguchi T. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction. Brief Bioinform 2022:bbac123. [PMID: 35393616 DOI: 10.1093/bib/bbac123] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chandrasekar T, Raju SK, Ramachandran M, Patan R, Gandomi AH. Lung cancer disease detection using service-oriented architectures and multivariate boosting classifier. Applied Soft Computing 2022. [DOI: 10.1016/j.asoc.2022.108820] [Reference Citation Analysis]
13 Xuan P, Lu Z, Zhang T, Liu Y, Nakaguchi T. Integration of Neighbor Topologies Based on Meta-Paths and Node Attributes for Predicting Drug-Related Diseases. Int J Mol Sci 2022;23:3870. [PMID: 35409235 DOI: 10.3390/ijms23073870] [Reference Citation Analysis]
14 Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022:bbac080. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhang H, Cui H, Zhang T, Cao Y, Xuan P. Learning multi-scale heterogenous network topologies and various pairwise attributes for drug-disease association prediction. Brief Bioinform 2022:bbac009. [PMID: 35136910 DOI: 10.1093/bib/bbac009] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gao CQ, Zhou YK, Xin XH, Min H, Du PF. DDA-SKF: Predicting Drug-Disease Associations Using Similarity Kernel Fusion. Front Pharmacol 2021;12:784171. [PMID: 35095495 DOI: 10.3389/fphar.2021.784171] [Reference Citation Analysis]
17 Müller B, Castro LJ, Rebholz-schuhmann D. Ontology-based identification and prioritization of candidate drugs for epilepsy from literature. J Biomed Semant 2022;13. [DOI: 10.1186/s13326-021-00258-w] [Reference Citation Analysis]
18 Meng Y, Lu C, Jin M, Xu J, Zeng X, Yang J. A weighted bilinear neural collaborative filtering approach for drug repositioning. Brief Bioinform 2022:bbab581. [PMID: 35039838 DOI: 10.1093/bib/bbab581] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 19.0] [Reference Citation Analysis]
19 Chao CT, Tsai YT, Lee WT, Yeh HY, Chiang CK. Deep Learning-Assisted Repurposing of Plant Compounds for Treating Vascular Calcification: An In Silico Study with Experimental Validation. Oxid Med Cell Longev 2022;2022:4378413. [PMID: 35035662 DOI: 10.1155/2022/4378413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jiang H, Huang Y. An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network. BMC Bioinformatics 2022;23:9. [PMID: 34983364 DOI: 10.1186/s12859-021-04553-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Zhao BW, Hu L, You ZH, Wang L, Su XR. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks. Brief Bioinform 2021:bbab515. [PMID: 34891172 DOI: 10.1093/bib/bbab515] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Sadeghi S, Lu J, Ngom A. A Network-Based Drug Repurposing Method Via Non-Negative Matrix Factorization. Bioinformatics 2021:btab826. [PMID: 34875000 DOI: 10.1093/bioinformatics/btab826] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Kentour M, Lu J. An investigation into the deep learning approach in sentimental analysis using graph-based theories. PLoS One 2021;16:e0260761. [PMID: 34855856 DOI: 10.1371/journal.pone.0260761] [Reference Citation Analysis]
24 Li S, Pan X. A computational drug repositioning model based on hybrid similarity side information powered graph neural network. Future Generation Computer Systems 2021;125:24-31. [DOI: 10.1016/j.future.2021.06.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Gao L, Cui H, Zhang T, Sheng N, Xuan P. Prediction of drug-disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets. Brief Bioinform 2021:bbab467. [PMID: 34850815 DOI: 10.1093/bib/bbab467] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Wu X, Zeng W, Lin F, Zhou X. NeuRank: learning to rank with neural networks for drug-target interaction prediction. BMC Bioinformatics 2021;22:567. [PMID: 34836495 DOI: 10.1186/s12859-021-04476-y] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
27 Hu P, Huang YA, Mei J, Leung H, Chen ZH, Kuang ZM, You ZH, Hu L. Learning from low-rank multimodal representations for predicting disease-drug associations. BMC Med Inform Decis Mak 2021;21:308. [PMID: 34736437 DOI: 10.1186/s12911-021-01648-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Yang H, Ding Y, Tang J, Guo F. Drug–disease associations prediction via Multiple Kernel-based Dual Graph Regularized Least Squares. Applied Soft Computing 2021;112:107811. [DOI: 10.1016/j.asoc.2021.107811] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
29 Prieto Santamaría L, García Del Valle EP, Zanin M, Hernández Chan GS, Pérez Gallardo Y, Rodríguez-González A. Classifying diseases by using biological features to identify potential nosological models. Sci Rep 2021;11:21096. [PMID: 34702888 DOI: 10.1038/s41598-021-00554-6] [Reference Citation Analysis]
30 Yan S, Yang A, Kong S, Bai B, Li X. Predictive intelligence powered attentional stacking matrix factorization algorithm for the computational drug repositioning. Applied Soft Computing 2021;110:107633. [DOI: 10.1016/j.asoc.2021.107633] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
31 Wen Q, Liu R, Zhang P. Clinical connectivity map for drug repurposing: using laboratory results to bridge drugs and diseases. BMC Med Inform Decis Mak 2021;21:263. [PMID: 34560862 DOI: 10.1186/s12911-021-01617-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Fu H, Huang F, Liu X, Qiu Y, Zhang W. MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks. Bioinformatics 2021:btab651. [PMID: 34499148 DOI: 10.1093/bioinformatics/btab651] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
33 Yi HC, You ZH, Huang DS, Kwoh CK. Graph representation learning in bioinformatics: trends, methods and applications. Brief Bioinform 2021:bbab340. [PMID: 34471921 DOI: 10.1093/bib/bbab340] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
34 Schuler J, Falls Z, Mangione W, Hudson ML, Bruggemann L, Samudrala R. Evaluating the performance of drug-repurposing technologies. Drug Discov Today 2022;27:49-64. [PMID: 34400352 DOI: 10.1016/j.drudis.2021.08.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
35 Sadeghi SS, Keyvanpour MR. Computational Drug Repurposing: Classification of the Research Opportunities and Challenges. Curr Comput Aided Drug Des 2020;16:354-64. [PMID: 31198115 DOI: 10.2174/1573409915666190613113822] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Wang J, Wang W, Yan C, Luo J, Zhang G. Predicting Drug-Disease Association Based on Ensemble Strategy. Front Genet 2021;12:666575. [PMID: 34012464 DOI: 10.3389/fgene.2021.666575] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
37 Ma Y, Liu L, Chen Q, Ma Y. An Inductive Logistic Matrix Factorization Model for Predicting Drug-Metabolite Association With Vicus Regularization. Front Microbiol 2021;12:650366. [PMID: 33868209 DOI: 10.3389/fmicb.2021.650366] [Reference Citation Analysis]
38 Zhao BW, You ZH, Wong L, Zhang P, Li HY, Wang L. MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning. Front Genet 2021;12:657182. [PMID: 34054920 DOI: 10.3389/fgene.2021.657182] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
39 Ma Y, Li Q, Hu N, Li L. SeBioGraph: Semi-supervised Deep Learning for the Graph via Sustainable Knowledge Transfer. Front Neurorobot 2021;15:665055. [PMID: 33867966 DOI: 10.3389/fnbot.2021.665055] [Reference Citation Analysis]
40 Karimi M, Hasanzadeh A, Shen Y. Network-principled deep generative models for designing drug combinations as graph sets. Bioinformatics 2020;36:i445-54. [PMID: 32657357 DOI: 10.1093/bioinformatics/btaa317] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
41 Chen H, Zhang Z, Zhang J. In silico drug repositioning based on the integration of chemical, genomic and pharmacological spaces. BMC Bioinformatics 2021;22:52. [PMID: 33557749 DOI: 10.1186/s12859-021-03988-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Jarada TN, Rokne JG, Alhajj R. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks. BMC Bioinformatics 2021;22:28. [PMID: 33482713 DOI: 10.1186/s12859-020-03950-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
43 Peng J, Lu G, Shang X. A Survey of Network Representation Learning Methods for Link Prediction in Biological Network. Curr Pharm Des 2020;26:3076-84. [PMID: 31951161 DOI: 10.2174/1381612826666200116145057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Shi W, Chen X, Deng L. A Review of Recent Developments and Progress in Computational Drug Repositioning. Curr Pharm Des 2020;26:3059-68. [PMID: 31951162 DOI: 10.2174/1381612826666200116145559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Lakizadeh A, Hassan Mir-ashrafi SM. Drug repurposing improvement using a novel data integration framework based on the drug side effect. Informatics in Medicine Unlocked 2021;23:100523. [DOI: 10.1016/j.imu.2021.100523] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Ding Y, Tang J, Guo F. The Computational Models of Drug-target Interaction Prediction. Protein Pept Lett 2020;27:348-58. [PMID: 30968771 DOI: 10.2174/0929866526666190410124110] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
47 Huang K, Xiao C, Glass LM, Zitnik M, Sun J. SkipGNN: predicting molecular interactions with skip-graph networks. Sci Rep 2020;10:21092. [PMID: 33273494 DOI: 10.1038/s41598-020-77766-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
48 Yang M, Wu G, Zhao Q, Li Y, Wang J. Computational drug repositioning based on multi-similarities bilinear matrix factorization. Brief Bioinform 2021;22:bbaa267. [PMID: 33147616 DOI: 10.1093/bib/bbaa267] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 0.5] [Reference Citation Analysis]
49 Huang L, Luo H, Li S, Wu FX, Wang J. Drug-drug similarity measure and its applications. Brief Bioinform 2021;22:bbaa265. [PMID: 33152756 DOI: 10.1093/bib/bbaa265] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
50 Yu Z, Huang F, Zhao X, Xiao W, Zhang W. Predicting drug-disease associations through layer attention graph convolutional network. Brief Bioinform 2021;22:bbaa243. [PMID: 33078832 DOI: 10.1093/bib/bbaa243] [Cited by in Crossref: 7] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
51 Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y, Lin SM, Zhang W, Zhang P, Sun H. Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics 2020;36:1241-51. [PMID: 31584634 DOI: 10.1093/bioinformatics/btz718] [Cited by in Crossref: 21] [Cited by in F6Publishing: 45] [Article Influence: 10.5] [Reference Citation Analysis]
52 Huang F, Yue X, Xiong Z, Yu Z, Liu S, Zhang W. Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations. Brief Bioinform 2021;22:bbaa140. [PMID: 32725161 DOI: 10.1093/bib/bbaa140] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
53 Nicholson DN, Greene CS. Constructing knowledge graphs and their biomedical applications. Comput Struct Biotechnol J 2020;18:1414-28. [PMID: 32637040 DOI: 10.1016/j.csbj.2020.05.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
54 Guo ZH, You ZH, Wang YB, Huang DS, Yi HC, Chen ZH. Bioentity2vec: Attribute- and behavior-driven representation for predicting multi-type relationships between bioentities. Gigascience 2020;9:giaa032. [PMID: 32533701 DOI: 10.1093/gigascience/giaa032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
55 Huang F, Qiu Y, Li Q, Liu S, Ni F. Predicting Drug-Disease Associations via Multi-Task Learning Based on Collective Matrix Factorization. Front Bioeng Biotechnol 2020;8:218. [PMID: 32373595 DOI: 10.3389/fbioe.2020.00218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
56 Guo ZH, You ZH, Huang DS, Yi HC, Zheng K, Chen ZH, Wang YB. MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm. Brief Bioinform 2021;22:2085-95. [PMID: 32232320 DOI: 10.1093/bib/bbaa037] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
57 Guo ZH, You ZH, Huang DS, Yi HC, Chen ZH, Wang YB. A learning based framework for diverse biomolecule relationship prediction in molecular association network. Commun Biol 2020;3:118. [PMID: 32170157 DOI: 10.1038/s42003-020-0858-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
58 Dang TT, Nguyen TH, Ho TB. Causality Assessment of Adverse Drug Reaction: Controlling Confounding Induced by Polypharmacy. Curr Pharm Des 2019;25:1134-43. [PMID: 31038058 DOI: 10.2174/1381612825666190416115714] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Wang X, Yan R. DDAPRED: a computational method for predicting drug repositioning using regularized logistic matrix factorization. J Mol Model 2020;26:60. [PMID: 32062701 DOI: 10.1007/s00894-020-4315-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
60 Zhang W, Xu H, Li X, Gao Q, Wang L, Mathelier A. DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion. Bioinformatics 2020;36:2839-47. [DOI: 10.1093/bioinformatics/btaa062] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
61 Yu L, Xu F, Gao L. Predict New Therapeutic Drugs for Hepatocellular Carcinoma Based on Gene Mutation and Expression. Front Bioeng Biotechnol 2020;8:8. [PMID: 32047745 DOI: 10.3389/fbioe.2020.00008] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
62 Li Z, Huang Q, Chen X, Wang Y, Li J, Xie Y, Dai Z, Zou X. Identification of Drug-Disease Associations Using Information of Molecular Structures and Clinical Symptoms via Deep Convolutional Neural Network. Front Chem 2019;7:924. [PMID: 31998700 DOI: 10.3389/fchem.2019.00924] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
63 Rohani N, Eslahchi C, Katanforoush A. ISCMF: Integrated similarity-constrained matrix factorization for drug–drug interaction prediction. Netw Model Anal Health Inform Bioinforma 2020;9. [DOI: 10.1007/s13721-019-0215-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
64 Fan Y, Cui J, Zhu Q. Heterogeneous graph inference based on similarity network fusion for predicting lncRNA–miRNA interaction. RSC Adv 2020;10:11634-42. [DOI: 10.1039/c9ra11043g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Yang K, Zhao X, Waxman D, Zhao X. Predicting drug-disease associations with heterogeneous network embedding. Chaos 2019;29:123109. [DOI: 10.1063/1.5121900] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
66 Jiang HJ, You ZH, Huang YA. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks. J Transl Med 2019;17:382. [PMID: 31747915 DOI: 10.1186/s12967-019-2127-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
67 Chen X, Shi W, Deng L. Prediction of Disease Comorbidity Using HeteSim Scores based on Multiple Heterogeneous Networks. CGT 2019;19:232-41. [DOI: 10.2174/1566523219666190917155959] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
68 Li S, Xie M, Liu X. A Novel Approach Based on Bipartite Network Recommendation and KATZ Model to Predict Potential Micro-Disease Associations. Front Genet 2019;10:1147. [PMID: 31803235 DOI: 10.3389/fgene.2019.01147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
69 Moridi M, Ghadirinia M, Sharifi-Zarchi A, Zare-Mirakabad F. The assessment of efficient representation of drug features using deep learning for drug repositioning. BMC Bioinformatics 2019;20:577. [PMID: 31726977 DOI: 10.1186/s12859-019-3165-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
70 Xuan P, Cui H, Shen T, Sheng N, Zhang T. HeteroDualNet: A Dual Convolutional Neural Network With Heterogeneous Layers for Drug-Disease Association Prediction via Chou's Five-Step Rule. Front Pharmacol 2019;10:1301. [PMID: 31780934 DOI: 10.3389/fphar.2019.01301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
71 [DOI: 10.1109/bibm47256.2019.8983205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
72 Gong Y, Niu Y, Zhang W, Li X. A network embedding-based multiple information integration method for the MiRNA-disease association prediction. BMC Bioinformatics 2019;20:468. [PMID: 31510919 DOI: 10.1186/s12859-019-3063-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
73 Jiang HJ, Huang YA, You ZH. Predicting Drug-Disease Associations via Using Gaussian Interaction Profile and Kernel-Based Autoencoder. Biomed Res Int 2019;2019:2426958. [PMID: 31534955 DOI: 10.1155/2019/2426958] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
74 Xuan P, Song Y, Zhang T, Jia L. Prediction of Potential Drug-Disease Associations through Deep Integration of Diversity and Projections of Various Drug Features. Int J Mol Sci 2019;20:E4102. [PMID: 31443472 DOI: 10.3390/ijms20174102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Xuan P, Zhao L, Zhang T, Ye Y, Zhang Y. Inferring Drug-Related Diseases Based on Convolutional Neural Network and Gated Recurrent Unit. Molecules 2019;24:E2712. [PMID: 31349692 DOI: 10.3390/molecules24152712] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
76 Xuan P, Ye Y, Zhang T, Zhao L, Sun C. Convolutional Neural Network and Bidirectional Long Short-Term Memory-Based Method for Predicting Drug-Disease Associations. Cells 2019;8:E705. [PMID: 31336774 DOI: 10.3390/cells8070705] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
77 Wei X, Zhang Y, Huang Y, Fang Y. Predicting drug–disease associations by network embedding and biomedical data integration. DTA 2019;53:217-29. [DOI: 10.1108/dta-01-2019-0004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
78 García del Valle EP, Lagunes García G, Prieto Santamaría L, Zanin M, Menasalvas Ruiz E, Rodríguez-gonzález A. Disease networks and their contribution to disease understanding: A review of their evolution, techniques and data sources. Journal of Biomedical Informatics 2019;94:103206. [DOI: 10.1016/j.jbi.2019.103206] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
79 Xiong Y, Qiao Y, Kihara D, Zhang H, Zhu X, Wei D. Survey of Machine Learning Techniques for Prediction of the Isoform Specificity of Cytochrome P450 Substrates. CDM 2019;20:229-35. [DOI: 10.2174/1389200219666181019094526] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
80 Gao YC, Zhou XH, Zhang W. An Ensemble Strategy to Predict Prognosis in Ovarian Cancer Based on Gene Modules. Front Genet 2019;10:366. [PMID: 31068972 DOI: 10.3389/fgene.2019.00366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
81 Wu G, Liu J, Yue X. Prediction of drug-disease associations based on ensemble meta paths and singular value decomposition. BMC Bioinformatics 2019;20:134. [PMID: 30925858 DOI: 10.1186/s12859-019-2644-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
82 Xuan P, Cao Y, Zhang T, Wang X, Pan S, Shen T, Wren J. Drug repositioning through integration of prior knowledge and projections of drugs and diseases. Bioinformatics 2019;35:4108-19. [DOI: 10.1093/bioinformatics/btz182] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
83 Yu LH, Huang QW, Zhou XH. Identification of Cancer Hallmarks Based on the Gene Co-expression Networks of Seven Cancers. Front Genet 2019;10:99. [PMID: 30838028 DOI: 10.3389/fgene.2019.00099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
84 Jiang L, Xiao Y, Ding Y, Tang J, Guo F. Discovering Cancer Subtypes via an Accurate Fusion Strategy on Multiple Profile Data. Front Genet 2019;10:20. [PMID: 30804977 DOI: 10.3389/fgene.2019.00020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
85 Kim J, Ko Y, Seo J. A Bootstrapping Approach With CRF and Deep Learning Models for Improving the Biomedical Named Entity Recognition in Multi-Domains. IEEE Access 2019;7:70308-18. [DOI: 10.1109/access.2019.2914168] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
86 Tang G, Shi J, Wu W, Yue X, Zhang W. Sequence-based bacterial small RNAs prediction using ensemble learning strategies. BMC Bioinformatics 2018;19:503. [PMID: 30577759 DOI: 10.1186/s12859-018-2535-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
87 Zhang W, Yue X, Tang G, Wu W, Huang F, Zhang X. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLoS Comput Biol 2018;14:e1006616. [PMID: 30533006 DOI: 10.1371/journal.pcbi.1006616] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 16.0] [Reference Citation Analysis]
88 Zhang W, Chen Y, Li D, Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. Journal of Biomedical Informatics 2018;88:90-7. [DOI: 10.1016/j.jbi.2018.11.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]