BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 2011;8:66. [PMID: 22165907 DOI: 10.1186/1743-0003-8-66] [Cited by in Crossref: 292] [Cited by in F6Publishing: 171] [Article Influence: 26.5] [Reference Citation Analysis]
Number Citing Articles
1 Kim JK, Choo YJ, Shin H, Choi GS, Chang MC. Prediction of ambulatory outcome in patients with corona radiata infarction using deep learning. Sci Rep 2021;11:7989. [PMID: 33846472 DOI: 10.1038/s41598-021-87176-0] [Reference Citation Analysis]
2 Mikolajczyk T, Ciobanu I, Badea DI, Iliescu A, Pizzamiglio S, Schauer T, Seel T, Seiciu PL, Turner DL, Berteanu M. Advanced technology for gait rehabilitation: An overview. Advances in Mechanical Engineering 2018;10:168781401878362. [DOI: 10.1177/1687814018783627] [Cited by in Crossref: 31] [Cited by in F6Publishing: 7] [Article Influence: 7.8] [Reference Citation Analysis]
3 Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Comput Biol Med 2020;123:103843. [PMID: 32768038 DOI: 10.1016/j.compbiomed.2020.103843] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
4 Ciou SH, Hwang YS, Chen CC, Luh JJ, Chen SC, Chen YL. Football APP based on smart phone with FES in drop foot rehabilitation. Technol Health Care 2017;25:541-55. [PMID: 28211830 DOI: 10.3233/THC-160730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
5 Poveda-García A, Moret-Tatay C, Gómez-Martínez M. The Association between Mental Motor Imagery and Real Movement in Stroke. Healthcare (Basel) 2021;9:1568. [PMID: 34828614 DOI: 10.3390/healthcare9111568] [Reference Citation Analysis]
6 Rajasekaran V, López-Larraz E, Trincado-Alonso F, Aranda J, Montesano L, Del-Ama AJ, Pons JL. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. J Neuroeng Rehabil 2018;15:4. [PMID: 29298691 DOI: 10.1186/s12984-017-0345-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
7 Mustafaoglu R, Erhan B, Yeldan I, Gunduz B, Tarakci E. Does robot-assisted gait training improve mobility, activities of daily living and quality of life in stroke? A single-blinded, randomized controlled trial. Acta Neurol Belg 2020;120:335-44. [PMID: 31989505 DOI: 10.1007/s13760-020-01276-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Yen SC, Schmit BD, Wu M. Using swing resistance and assistance to improve gait symmetry in individuals post-stroke. Hum Mov Sci 2015;42:212-24. [PMID: 26066783 DOI: 10.1016/j.humov.2015.05.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
9 Gomez-Andres A, Grau-Sánchez J, Duarte E, Rodriguez-Fornells A, Tajadura-Jiménez A. Enriching footsteps sounds in gait rehabilitation in chronic stroke patients: a pilot study. Ann N Y Acad Sci 2020;1467:48-59. [PMID: 31799738 DOI: 10.1111/nyas.14276] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
10 Balkaya M, Kröber JM, Rex A, Endres M. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab 2013;33:330-8. [PMID: 23232947 DOI: 10.1038/jcbfm.2012.185] [Cited by in Crossref: 135] [Cited by in F6Publishing: 138] [Article Influence: 13.5] [Reference Citation Analysis]
11 Erdoĝan SB, Özsarfati E, Dilek B, Kadak KS, Hanoĝlu L, Akın A. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng 2019;16:026029. [PMID: 30634177 DOI: 10.1088/1741-2552/aafdca] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
12 Fu Y, Zhou Z, Gong A, Qian Q, Su L, Zhao L. Decoding of Motor Coordination Imagery Involving the Lower Limbs by the EEG-Based Brain Network. Comput Intell Neurosci 2021;2021:5565824. [PMID: 34257636 DOI: 10.1155/2021/5565824] [Reference Citation Analysis]
13 Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G. The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 2014;11:187-98. [PMID: 24479445 DOI: 10.1586/17434440.2014.882766] [Cited by in Crossref: 70] [Cited by in F6Publishing: 47] [Article Influence: 8.8] [Reference Citation Analysis]
14 Hsu CJ, Kim J, Wu M. Combined Visual Feedback with Pelvic Assistance Force Improves Step Length during treadmill walking in Individuals with Post-Stroke Hemiparesis. Annu Int Conf IEEE Eng Med Biol Soc 2018;2018:2333-6. [PMID: 30440874 DOI: 10.1109/EMBC.2018.8512811] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Puentes S, Kadone H, Watanabe H, Ueno T, Yamazaki M, Sankai Y, Marushima A, Suzuki K. Reshaping of Bilateral Gait Coordination in Hemiparetic Stroke Patients After Early Robotic Intervention. Front Neurosci 2018;12:719. [PMID: 30356738 DOI: 10.3389/fnins.2018.00719] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
16 [DOI: 10.1109/icassp.2013.6637838] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
17 Fusco FR, Iosa M, Fusco A, Paolucci S, Morone G. Bilateral upper limb rehabilitation with videogame-based feedback in corticobasal degeneration: a case reports study. Neurocase 2018;24:156-60. [PMID: 30015554 DOI: 10.1080/13554794.2018.1499938] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Tariq M, Trivailo PM, Simic M. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots. Front Hum Neurosci 2018;12:312. [PMID: 30127730 DOI: 10.3389/fnhum.2018.00312] [Cited by in Crossref: 56] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
19 Rasouli F, Kim SH, Reed KB. Superposition principle applies to human walking with two simultaneous interventions. Sci Rep 2021;11:7465. [PMID: 33811243 DOI: 10.1038/s41598-021-86840-9] [Reference Citation Analysis]
20 Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, Pons JL. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10:79. [PMID: 23870328 DOI: 10.1186/1743-0003-10-79] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
21 Guo G, Guffey K, Chen W, Pergami P. Classification of Normal and Pathological Gait in Young Children Based on Foot Pressure Data. Neuroinformatics 2017;15:13-24. [PMID: 27585914 DOI: 10.1007/s12021-016-9313-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
22 Marathe AR, Taylor DM. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters. J Neural Eng 2013;10:036015. [PMID: 23611833 DOI: 10.1088/1741-2560/10/3/036015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
23 Liu Y, Lin L, Chou C, Chang Y, Hsiao Y, Hsu W. Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery. J Med Biol Eng 2019;39:54-69. [DOI: 10.1007/s40846-018-0379-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
24 Lorusso M, Tramontano M, Casciello M, Pece A, Smania N, Morone G, Tamburella F. Efficacy of Overground Robotic Gait Training on Balance in Stroke Survivors: A Systematic Review and Meta-Analysis. Brain Sciences 2022;12:713. [DOI: 10.3390/brainsci12060713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pérez-rodríguez R, Rodríguez C, Costa Ú, Cáceres C, Tormos JM, Medina J, Gómez EJ. Anticipatory assistance-as-needed control algorithm for a multijoint upper limb robotic orthosis in physical neurorehabilitation. Expert Systems with Applications 2014;41:3922-34. [DOI: 10.1016/j.eswa.2013.11.047] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
26 Reinkensmeyer DJ. JNER at 15 years: analysis of the state of neuroengineering and rehabilitation. J Neuroeng Rehabil 2019;16:144. [PMID: 31744511 DOI: 10.1186/s12984-019-0610-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
27 Garcia A DE, Sierra M SD, Gomez-Vargas D, Jiménez MF, Múnera M, Cifuentes CA. Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists. Sensors (Basel) 2021;21:3521. [PMID: 34069340 DOI: 10.3390/s21103521] [Reference Citation Analysis]
28 Fujii K, Abe T, Kubota S, Marushima A, Kawamoto H, Ueno T, Matsushita A, Nakai K, Saotome K, Kadone H, Endo A, Haginoya A, Hada Y, Matsumura A, Sankai Y, Yamazaki M. The voluntary driven exoskeleton Hybrid Assistive Limb (HAL) for postoperative training of thoracic ossification of the posterior longitudinal ligament: a case report. J Spinal Cord Med 2017;40:361-7. [PMID: 26856189 DOI: 10.1080/10790268.2016.1142056] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
29 Aycardi LF, Cifuentes CA, Múnera M, Bayón C, Ramírez O, Lerma S, Frizera A, Rocon E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J Neuroeng Rehabil 2019;16:15. [PMID: 30691493 DOI: 10.1186/s12984-019-0485-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
30 Miltner WHR. Plasticity and Reorganization in the Rehabilitation of Stroke: The Constraint-Induced Movement Therapy (CIMT) Example. Zeitschrift für Psychologie 2016;224:91-101. [DOI: 10.1027/2151-2604/a000243] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Ibáñez J, Monge-Pereira E, Molina-Rueda F, Serrano JI, Del Castillo MD, Cuesta-Gómez A, Carratalá-Tejada M, Cano-de-la-Cuerda R, Alguacil-Diego IM, Miangolarra-Page JC, Pons JL. Low Latency Estimation of Motor Intentions to Assist Reaching Movements along Multiple Sessions in Chronic Stroke Patients: A Feasibility Study. Front Neurosci 2017;11:126. [PMID: 28367109 DOI: 10.3389/fnins.2017.00126] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
32 Bobrova EV, Reshetnikova VV, Frolov AA, Gerasimenko YP. Use of Imaginary Lower Limb Movements to Control Brain–Computer Interface Systems. Neurosci Behav Physi 2020;50:585-92. [DOI: 10.1007/s11055-020-00940-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
33 [DOI: 10.1109/amc.2014.6823325] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
34 Grüneberg P, Kadone H, Suzuki K. Voluntary initiation of movement: multifunctional integration of subjective agency. Front Psychol 2015;6:688. [PMID: 26052308 DOI: 10.3389/fpsyg.2015.00688] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
35 Obembe AO, Eng JJ. Rehabilitation Interventions for Improving Social Participation After Stroke: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2016;30:384-92. [PMID: 26223681 DOI: 10.1177/1545968315597072] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 6.1] [Reference Citation Analysis]
36 Watanabe K, Kouzaki M, Moritani T. Heterogeneous neuromuscular activation within human rectus femoris muscle during pedaling: Spatial EMG Distribution. Muscle Nerve 2015;52:404-11. [DOI: 10.1002/mus.24544] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
37 Ameli S, Naghdy F, Stirling D, Naghdy G, Aghmesheh M. Objective clinical gait analysis using inertial sensors and six minute walking test. Pattern Recognition 2017;63:246-57. [DOI: 10.1016/j.patcog.2016.08.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.2] [Reference Citation Analysis]
38 Dalal KK, Joshua AM, Nayak A, Mithra P, Misri Z, Unnikrishnan B. Effectiveness of prowling with proprioceptive training on knee hyperextension among stroke subjects using videographic observation- a randomised controlled trial. Gait Posture 2018;61:232-7. [PMID: 29413790 DOI: 10.1016/j.gaitpost.2018.01.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
39 Delafontaine A, Vialleron T, Hussein T, Yiou E, Honeine JL, Colnaghi S. Anticipatory Postural Adjustments During Gait Initiation in Stroke Patients. Front Neurol 2019;10:352. [PMID: 31057474 DOI: 10.3389/fneur.2019.00352] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
40 Tamburella F, Moreno JC, Iosa M, Pisotta I, Cincotti F, Mattia D, Pons JL, Molinari M. Boosting the traditional physiotherapist approach for stroke spasticity using a sensorized ankle foot orthosis: a pilot study. Top Stroke Rehabil 2017;24:447-56. [PMID: 28460597 DOI: 10.1080/10749357.2017.1318340] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
41 Cutini S, Brigadoi S. Unleashing the future potential of functional near-infrared spectroscopy in brain sciences. J Neurosci Methods 2014;232:152-6. [PMID: 24880046 DOI: 10.1016/j.jneumeth.2014.05.024] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 4.5] [Reference Citation Analysis]
42 Almulla L, Al-Naib I, Althobaiti M. Hemodynamic responses during standing and sitting activities: a study toward fNIRS-BCI. Biomed Phys Eng Express 2020;6:055005. [PMID: 33444236 DOI: 10.1088/2057-1976/aba102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
43 Müller P, Del Ama AJ, Moreno JC, Schauer T. Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment. J Neuroeng Rehabil 2020;17:36. [PMID: 32111245 DOI: 10.1186/s12984-020-0640-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Xiong H, Diao X. A review of cable-driven rehabilitation devices. Disabil Rehabil Assist Technol 2020;15:885-97. [PMID: 31287340 DOI: 10.1080/17483107.2019.1629110] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
45 Fusco A, Giovannini S, Castelli L, Coraci D, Gatto DM, Reale G, Pastorino R, Padua L. Virtual Reality and Lower Limb Rehabilitation: Effects on Motor and Cognitive Outcome-A Crossover Pilot Study. J Clin Med 2022;11:2300. [PMID: 35566424 DOI: 10.3390/jcm11092300] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Chung GY, Choi GS, Shin KY, Park JS. Gait changes after using a temporomandibular joint exerciser in patients who underwent lower limb joint surgery. J Phys Ther Sci 2016;28:1584-7. [PMID: 27313377 DOI: 10.1589/jpts.28.1584] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
47 Riccio A, Pichiorri F, Schettini F, Toppi J, Risetti M, Formisano R, Molinari M, Astolfi L, Cincotti F, Mattia D. Interfacing brain with computer to improve communication and rehabilitation after brain damage. Prog Brain Res 2016;228:357-87. [PMID: 27590975 DOI: 10.1016/bs.pbr.2016.04.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
48 Aguirre-ollinger G, Yu H. Omnidirectional Platforms for Gait Training: Admittance-Shaping Control for Enhanced Mobility. J Intell Robot Syst 2021;101. [DOI: 10.1007/s10846-021-01335-z] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Hobbs B, Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Front Neurorobot 2020;14:19. [PMID: 32351377 DOI: 10.3389/fnbot.2020.00019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
50 Skidmore J, Artemiadis P. Unilateral changes in walking surface compliance evoke dorsiflexion in paretic leg of impaired walkers. J Rehabil Assist Technol Eng 2017;4:2055668317738469. [PMID: 31186942 DOI: 10.1177/2055668317738469] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
51 Dierick F, Dehas M, Isambert JL, Injeyan S, Bouché AF, Bleyenheuft Y, Portnoy S. Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy? PLoS One 2017;12:e0178636. [PMID: 28575054 DOI: 10.1371/journal.pone.0178636] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
52 Cesar GM, Buster TW, Mohammadzadeh Gonabadi A, M Burnfield J. Kinematic and muscle demand similarities between pediatric-modified motor-assisted elliptical training at fast speed and fast overground walking: Real-world implications for pediatric gait rehabilitation. Journal of Electromyography and Kinesiology 2022. [DOI: 10.1016/j.jelekin.2022.102639] [Reference Citation Analysis]
53 Morone G, Spitoni GF, De Bartolo D, Ghanbari Ghooshchy S, Di Iulio F, Paolucci S, Zoccolotti P, Iosa M. Rehabilitative devices for a top-down approach. Expert Rev Med Devices 2019;16:187-95. [PMID: 30677307 DOI: 10.1080/17434440.2019.1574567] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
54 Looned R, Webb J, Xiao ZG, Menon C. Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J Neuroeng Rehabil 2014;11:51. [PMID: 24708603 DOI: 10.1186/1743-0003-11-51] [Cited by in Crossref: 49] [Cited by in F6Publishing: 25] [Article Influence: 6.1] [Reference Citation Analysis]
55 [DOI: 10.1145/2674396.2674450] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
56 Guang H, Ji L, Shi Y, Misgeld BJE. Dynamic Modeling and Interactive Performance of PARM: A Parallel Upper-Limb Rehabilitation Robot Using Impedance Control for Patients after Stroke. J Healthc Eng 2018;2018:8647591. [PMID: 29850004 DOI: 10.1155/2018/8647591] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
57 Kotov SV, Turbina LG, Bobrov PD, Frolov AA, Pavlova OG, Kurganskaia ME, Biriukova EV. Rehabilitation of post stroke patients using a bioengineering system "brain-computer interface + exoskeleton". Z nevrol psikhiatr im S S Korsakova 2014;114:66. [DOI: 10.17116/jnevro201411412266-71] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
58 Huizenga D, Rashford L, Darcy B, Lundin E, Medas R, Shultz ST, DuBose E, Reed KB. Wearable gait device for stroke gait rehabilitation at home. Top Stroke Rehabil 2021;28:443-55. [PMID: 33261520 DOI: 10.1080/10749357.2020.1834272] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Katsuhira J, Yamamoto S, Machida N, Ohmura Y, Fuchi M, Ohta M, Ibayashi S, Yozu A, Matsudaira K. Immediate synergistic effect of a trunk orthosis with joints providing resistive force and an ankle-foot orthosis on hemiplegic gait. Clin Interv Aging 2018;13:211-20. [PMID: 29440881 DOI: 10.2147/CIA.S146881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
60 Kaushik P, Ali M, Salman M, Tabassum H, Parvez S. Harnessing the mitochondrial integrity for neuroprotection: Therapeutic role of piperine against experimental ischemic stroke. Neurochem Int 2021;149:105138. [PMID: 34284077 DOI: 10.1016/j.neuint.2021.105138] [Reference Citation Analysis]
61 Tamburella F, Lorusso M, Tagliamonte NL, Bentivoglio F, Bigioni A, Pisotta I, Lancini M, Pasinetti S, Ghidelli M, Masciullo M, Saraceni VM, Molinari M. Load Auditory Feedback Boosts Crutch Usage in Subjects With Central Nervous System Lesions: A Pilot Study. Front Neurol 2021;12:700472. [PMID: 34295303 DOI: 10.3389/fneur.2021.700472] [Reference Citation Analysis]
62 Khan RA, Naseer N, Qureshi NK, Noori FM, Nazeer H, Khan MU. fNIRS-based Neurorobotic Interface for gait rehabilitation. J Neuroeng Rehabil 2018;15:7. [PMID: 29402310 DOI: 10.1186/s12984-018-0346-2] [Cited by in Crossref: 43] [Cited by in F6Publishing: 25] [Article Influence: 10.8] [Reference Citation Analysis]
63 Sanz-Esteban I, Cano-de-la-Cuerda R, San-Martín-Gómez A, Jiménez-Antona C, Monge-Pereira E, Estrada-Barranco C, Serrano JI. Cortical activity during sensorial tactile stimulation in healthy adults through Vojta therapy. A randomized pilot controlled trial. J Neuroeng Rehabil 2021;18:13. [PMID: 33478517 DOI: 10.1186/s12984-021-00824-4] [Reference Citation Analysis]
64 Rodrigues TA, Goroso DG, Westgate PM, Carrico C, Batistella LR, Sawaki L. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial. Am J Phys Med Rehabil 2017;96:S165-70. [PMID: 28796648 DOI: 10.1097/PHM.0000000000000810] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
65 Meyer AJ, Eskinazi I, Jackson JN, Rao AV, Patten C, Fregly BJ. Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions. Front Bioeng Biotechnol 2016;4:77. [PMID: 27790612 DOI: 10.3389/fbioe.2016.00077] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
66 Setoguchi D, Kinoshita K, Kamada S, Sakamoto T, Kise N, Kotani N, Goto K, Shiota E, Inoue T, Yamamoto T. Hybrid Assistive Limb improves restricted hip extension after total hip arthroplasty. Assistive Technology. [DOI: 10.1080/10400435.2020.1712498] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Yoon HS, Cha YJ, Sohn MK, You JSH. Effect of rehabilitation on the somatosensory evoked potentials and gait performance of hemiparetic stroke patients. Technol Health Care 2018;26:145-50. [PMID: 29710747 DOI: 10.3233/THC-174432] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
68 Sun R, Wong WW, Wang J, Tong RK. Changes in Electroencephalography Complexity using a Brain Computer Interface-Motor Observation Training in Chronic Stroke Patients: A Fuzzy Approximate Entropy Analysis. Front Hum Neurosci 2017;11:444. [PMID: 28928649 DOI: 10.3389/fnhum.2017.00444] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
69 Choo YJ, Kim JK, Kim JH, Chang MC, Park D. Machine learning analysis to predict the need for ankle foot orthosis in patients with stroke. Sci Rep 2021;11:8499. [PMID: 33875716 DOI: 10.1038/s41598-021-87826-3] [Reference Citation Analysis]
70 Katsuhira J, Miura N, Yasui T, Mitomi T, Yamamoto S. Efficacy of a newly designed trunk orthosis with joints providing resistive force in adults with post-stroke hemiparesis. Prosthet Orthot Int 2016;40:129-36. [PMID: 25134532 DOI: 10.1177/0309364614545420] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
71 Ghai S, Ghai I. Effects of (music-based) rhythmic auditory cueing training on gait and posture post-stroke: A systematic review & dose-response meta-analysis. Sci Rep 2019;9:2183. [PMID: 30778101 DOI: 10.1038/s41598-019-38723-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
72 Sburlea AI, Montesano L, Minguez J. Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects. J Neural Eng 2017;14:036004. [PMID: 28291737 DOI: 10.1088/1741-2552/aa5f2f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
73 van Asseldonk EH, Boonstra TA. Transcranial Direct Current Stimulation of the Leg Motor Cortex Enhances Coordinated Motor Output During Walking With a Large Inter-Individual Variability. Brain Stimulation 2016;9:182-90. [DOI: 10.1016/j.brs.2015.10.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
74 Piccinini L, Cimolin V, Storm F, Di Girolamo G, Biffi E, Galli M, Condoluci C. Quantification of the effects of robotic-assisted gait training on upper and lower body strategy during gait in diplegic children with Cerebral Palsy using summary parameters. Comput Methods Biomech Biomed Engin 2021;:1-8. [PMID: 34121521 DOI: 10.1080/10255842.2021.1938009] [Reference Citation Analysis]
75 Derungs A, Amft O. Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis. Sci Rep 2020;10:11450. [PMID: 32651412 DOI: 10.1038/s41598-020-68225-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
76 Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019;16:143. [PMID: 31744520 DOI: 10.1186/s12984-019-0614-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
77 Chew E, Turner DA. Can a Robot Bring Your Life Back? A Systematic Review for Robotics in Rehabilitation. Adv Exp Med Biol 2019;1170:1-35. [PMID: 32067201 DOI: 10.1007/978-3-030-24230-5_1] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Calabrò RS, Naro A, Russo M, Bramanti P, Carioti L, Balletta T, Buda A, Manuli A, Filoni S, Bramanti A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J Neuroeng Rehabil 2018;15:35. [PMID: 29695280 DOI: 10.1186/s12984-018-0377-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 11.5] [Reference Citation Analysis]
79 Nagy A, Angeli C, Hőgye Z, Bajusz-Leny Á, Réti G, Nagy AC, Jenei Z. Effectiveness of the conductive educational approach added to conventional physiotherapy in the improvement of gait parameters of poststroke patients: randomized-controlled pilot study. Int J Rehabil Res 2017;40:366-9. [PMID: 28885236 DOI: 10.1097/MRR.0000000000000252] [Reference Citation Analysis]
80 Shushtari M, Nasiri R, Arami A. Online Reference Trajectory Adaptation: A Personalized Control Strategy for Lower Limb Exoskeletons. IEEE Robot Autom Lett 2022;7:128-34. [DOI: 10.1109/lra.2021.3115572] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Kim S, Cho S. Effects of H-Reflex Onset Latency on Gait in Elderly and Hemiplegic Individuals. Medicina 2022;58:716. [DOI: 10.3390/medicina58060716] [Reference Citation Analysis]
82 Li M, Xu G, Xie J, Chen C. A review: Motor rehabilitation after stroke with control based on human intent. Proc Inst Mech Eng H 2018;232:344-60. [PMID: 29409401 DOI: 10.1177/0954411918755828] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 6.8] [Reference Citation Analysis]
83 Puyuelo-Quintana G, Cano-de-la-Cuerda R, Plaza-Flores A, Garces-Castellote E, Sanz-Merodio D, Goñi-Arana A, Marín-Ojea J, García-Armada E. A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study. J Neuroeng Rehabil 2020;17:60. [PMID: 32375815 DOI: 10.1186/s12984-020-00690-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Shi XQ, Heung HL, Tang ZQ, Li Z, Tong KY. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors. J Stroke Cerebrovasc Dis 2021;30:105812. [PMID: 33895427 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105812] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Skidmore J, Artemiadis P. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation. J Neuroeng Rehabil 2016;13:32. [PMID: 27004528 DOI: 10.1186/s12984-016-0140-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
86 Swinnen E, Lefeber N, Willaert W, De Neef F, Bruyndonckx L, Spooren A, Michielsen M, Ramon T, Kerckhofs E. Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists. Top Stroke Rehabil 2017;24:299-308. [PMID: 27996894 DOI: 10.1080/10749357.2016.1266750] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
87 Meester D, Al-Yahya E, Dawes H, Martin-Fagg P, Piñon C. Associations between prefrontal cortex activation and H-reflex modulation during dual task gait. Front Hum Neurosci 2014;8:78. [PMID: 24600375 DOI: 10.3389/fnhum.2014.00078] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
88 He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl) 2017;10:89-107. [PMID: 28533700 DOI: 10.2147/MDER.S107134] [Cited by in Crossref: 46] [Cited by in F6Publishing: 19] [Article Influence: 9.2] [Reference Citation Analysis]
89 Phongamwong C, Rowe P, Chase K, Kerr A, Millar L. Treadmill training augmented with real-time visualisation feedback and function electrical stimulation for gait rehabilitation after stroke: a feasibility study. BMC Biomed Eng 2019;1:20. [PMID: 32903355 DOI: 10.1186/s42490-019-0020-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Sánchez N, Winstein CJ. Lost in Translation: Simple Steps in Experimental Design of Neurorehabilitation-Based Research Interventions to Promote Motor Recovery Post-Stroke. Front Hum Neurosci 2021;15:644335. [PMID: 33958994 DOI: 10.3389/fnhum.2021.644335] [Reference Citation Analysis]
91 Morone G, Paolucci S, Cherubini A, De Angelis D, Venturiero V, Coiro P, Iosa M. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat 2017;13:1303-11. [PMID: 28553117 DOI: 10.2147/NDT.S114102] [Cited by in Crossref: 114] [Cited by in F6Publishing: 50] [Article Influence: 22.8] [Reference Citation Analysis]
92 Sibbritt D, Steel A, Peng W, Adams J. Utilisation of self-care products and practices and its associated factors among stroke survivors. Int J Clin Pract 2021;75:e13821. [PMID: 33159830 DOI: 10.1111/ijcp.13821] [Reference Citation Analysis]
93 Carratalá-tejada M, Cuesta-gómez A, Ortiz-gutiérrez R, Molina-rueda F, Luna-oliva L, Miangolarra-page JC. Reflex Locomotion Therapy for Balance, Gait, and Fatigue Rehabilitation in Subjects with Multiple Sclerosis. JCM 2022;11:567. [DOI: 10.3390/jcm11030567] [Reference Citation Analysis]
94 Gil-castillo J, Barria P, Aguilar Cárdenas R, Baleta Abarza K, Andrade Gallardo A, Biskupovic Mancilla A, Azorín JM, Moreno JC. A Robot-Assisted Therapy to Increase Muscle Strength in Hemiplegic Gait Rehabilitation. Front Neurorobot 2022;16:837494. [DOI: 10.3389/fnbot.2022.837494] [Reference Citation Analysis]
95 Asgher U, Khan MJ, Asif Nizami MH, Khalil K, Ahmad R, Ayaz Y, Naseer N. Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI). Front Neurorobot 2021;15:605751. [PMID: 33815084 DOI: 10.3389/fnbot.2021.605751] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Sánchez-Sánchez ML, Belda-Lois JM, Mena-del Horno S, Viosca-Herrero E, Gisbert-Morant B, Igual-Camacho C, Bermejo-Bosch I. Functional principal component analysis as a new methodology for the analysis of the impact of two rehabilitation protocols in functional recovery after stroke. J Neuroeng Rehabil 2014;11:134. [PMID: 25208616 DOI: 10.1186/1743-0003-11-134] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
97 Kamono A, Ogihara N. Weight-shift ability significantly correlates with walking velocity in post-acute stroke patients. Proc Inst Mech Eng H 2018;232:361-70. [DOI: 10.1177/0954411918757814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
98 Zabel S, Lockhart Z, Badiani N, Cornish J, Falzon L, Flis A, Patterson K, Gregor S, Vaughan-Graham J. Physiotherapy students' perspectives on the use and implementation of exoskeletons as a rehabilitative technology in clinical settings. Disabil Rehabil Assist Technol 2020;:1-8. [PMID: 32928001 DOI: 10.1080/17483107.2020.1818139] [Reference Citation Analysis]
99 Villa-parra AC, Broche L, Delisle-rodríguez D, Sagaró R, Bastos T, Frizera-neto A. Design of active orthoses for a robotic gait rehabilitation system. Front Mech Eng 2015;10:242-54. [DOI: 10.1007/s11465-015-0350-1] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
100 Iyer SS, Joseph JV, Vashista V. Evolving Toward Subject-Specific Gait Rehabilitation Through Single-Joint Resistive Force Interventions. Front Neurorobot 2020;14:15. [PMID: 32226372 DOI: 10.3389/fnbot.2020.00015] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Sabathiel N, Irimia DC, Allison BZ, Guger C, Edlinger G. Paired Associative Stimulation with Brain-Computer Interfaces: A New Paradigm for Stroke Rehabilitation. In: Schmorrow DD, Fidopiastis CM, editors. Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience. Cham: Springer International Publishing; 2016. pp. 261-72. [DOI: 10.1007/978-3-319-39955-3_25] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
102 Huang X, Naghdy F, Naghdy G, Du H, Todd C. Robot-assisted post-stroke motion rehabilitation in upper extremities: a survey. International Journal on Disability and Human Development 2017;16. [DOI: 10.1515/ijdhd-2016-0035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
103 Iosa M, Morone G, Cherubini A, Paolucci S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. J Med Biol Eng 2016;36:1-11. [PMID: 27069459 DOI: 10.1007/s40846-016-0115-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
104 Lee IW, Kim YN, Lee DK. Effect of a virtual reality exercise program accompanied by cognitive tasks on the balance and gait of stroke patients. J Phys Ther Sci 2015;27:2175-7. [PMID: 26311949 DOI: 10.1589/jpts.27.2175] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
105 Duenas VH, Cousin CA, Parikh A, Freeborn P, Fox EJ, Dixon WE. Motorized and Functional Electrical Stimulation Induced Cycling via Switched Repetitive Learning Control. IEEE Trans Contr Syst Technol 2019;27:1468-79. [DOI: 10.1109/tcst.2018.2827334] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
106 Jiang N, Gizzi L, Mrachacz-Kersting N, Dremstrup K, Farina D. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin Neurophysiol 2015;126:154-9. [PMID: 24910150 DOI: 10.1016/j.clinph.2014.05.003] [Cited by in Crossref: 83] [Cited by in F6Publishing: 50] [Article Influence: 10.4] [Reference Citation Analysis]
107 [DOI: 10.1109/medcom.2014.7006026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
108 De Luca A, Vernetti H, Capra C, Pisu I, Cassiano C, Barone L, Gaito F, Danese F, Antonio Checchia G, Lentino C, Giannoni P, Casadio M. Recovery and compensation after robotic assisted gait training in chronic stroke survivors. Disabil Rehabil Assist Technol 2019;14:826-38. [PMID: 29741134 DOI: 10.1080/17483107.2018.1466926] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
109 Boehm WL, Gruben KG. Development of KIINCE: A kinetic feedback-based robotic environment for study of neuromuscular coordination and rehabilitation of human standing and walking. J Rehabil Assist Technol Eng 2018;5:2055668318793585. [PMID: 31191950 DOI: 10.1177/2055668318793585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
110 Liu Y, Dai W, Lu H, Liu Y, Zhou Z. Brain-computer interface for human-multirobot strategic consensus with a differential world model. Appl Intell 2021;51:3645-63. [DOI: 10.1007/s10489-020-01963-2] [Reference Citation Analysis]
111 Contreras-Vidal JL, Bortole M, Zhu F, Nathan K, Venkatakrishnan A, Francisco GE, Soto R, Pons JL. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. Am J Phys Med Rehabil 2018;97:541-50. [PMID: 29481376 DOI: 10.1097/PHM.0000000000000914] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
112 Pilutti LA, Hicks AL. Rehabilitation of Ambulatory Limitations. Physical Medicine and Rehabilitation Clinics of North America 2013;24:277-90. [DOI: 10.1016/j.pmr.2012.11.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
113 Volodeeva E, Samarina S, Glotova M, Kurtin A. Effectiveness of complex rehabilitation in post-stroke patients treated with cellex. Z nevrol psikhiatr im S S Korsakova 2020;120:34. [DOI: 10.17116/jnevro202012008134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Mane R, Chouhan T, Guan C. BCI for stroke rehabilitation: motor and beyond. J Neural Eng 2020;17:041001. [DOI: 10.1088/1741-2552/aba162] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
115 Liu D, Chen W, Chavarriaga R, Pei Z, Millán JDR. Decoding of Self-paced Lower-Limb Movement Intention: A Case Study on the Influence Factors. Front Hum Neurosci 2017;11:560. [PMID: 29218004 DOI: 10.3389/fnhum.2017.00560] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
116 Shoffstall AJ, Taylor DM, Lavik EB. Engineering therapies in the CNS: what works and what can be translated. Neurosci Lett 2012;519:147-54. [PMID: 22330751 DOI: 10.1016/j.neulet.2012.01.058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
117 Morone G, Pisotta I, Pichiorri F, Kleih S, Paolucci S, Molinari M, Cincotti F, Kübler A, Mattia D. Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability. Arch Phys Med Rehabil 2015;96:S71-8. [PMID: 25721550 DOI: 10.1016/j.apmr.2014.05.026] [Cited by in Crossref: 63] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
118 Zhou Z, Zhou Y, Wang N, Gao F, Wei K, Wang Q. A proprioceptive neuromuscular facilitation integrated robotic ankle–foot system for post stroke rehabilitation. Robotics and Autonomous Systems 2015;73:111-22. [DOI: 10.1016/j.robot.2014.09.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
119 Turner DL, Ramos-Murguialday A, Birbaumer N, Hoffmann U, Luft A. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Front Neurol 2013;4:184. [PMID: 24312073 DOI: 10.3389/fneur.2013.00184] [Cited by in Crossref: 56] [Cited by in F6Publishing: 40] [Article Influence: 6.2] [Reference Citation Analysis]
120 Fujita T, Ohashi Y, Kurita M, Yamane K, Yamamoto Y, Sone T, Ohira Y, Otsuki K, Iokawa K. Functions necessary for gait independence in patients with stroke: A study using decision tree. J Stroke Cerebrovasc Dis 2020;29:104998. [PMID: 32689598 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
121 Jie LJ, Kleynen M, Meijer K, Beurskens A, Braun S. The Effects of Implicit and Explicit Motor Learning in Gait Rehabilitation of People After Stroke: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2018;7:e142. [PMID: 29793902 DOI: 10.2196/resprot.9595] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
122 Kesar TM, Stinear JW, Wolf SL. The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: Challenges and opportunities. Restor Neurol Neurosci 2018;36:333-48. [PMID: 29758954 DOI: 10.3233/RNN-170801] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
123 Clark DJ, Kautz SA, Bauer AR, Chen YT, Christou EA. Synchronous EMG activity in the piper frequency band reveals the corticospinal demand of walking tasks. Ann Biomed Eng 2013;41:1778-86. [PMID: 23740367 DOI: 10.1007/s10439-013-0832-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
124 Al-rawashdeh G, Mamat R, Hafhizah Binti Abd Rahim N. Hybrid Water Cycle Optimization Algorithm With Simulated Annealing for Spam E-mail Detection. IEEE Access 2019;7:143721-34. [DOI: 10.1109/access.2019.2944089] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
125 Straudi S, Basaglia N. Neuroplasticity-Based Technologies and Interventions for Restoring Motor Functions in Multiple Sclerosis. Adv Exp Med Biol 2017;958:171-85. [PMID: 28093714 DOI: 10.1007/978-3-319-47861-6_11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
126 Vismara L, Cimolin V, Buffone F, Bigoni M, Clerici D, Cerfoglio S, Galli M, Mauro A. Brain Asymmetry and Its Effects on Gait Strategies in Hemiplegic Patients: New Rehabilitative Conceptions. Brain Sci 2022;12:798. [PMID: 35741683 DOI: 10.3390/brainsci12060798] [Reference Citation Analysis]
127 Sierra M SD, Múnera M, Provot T, Bourgain M, Cifuentes CA. Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness. Sensors (Basel) 2021;21:3242. [PMID: 34067133 DOI: 10.3390/s21093242] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Ray NT, Reisman DS, Higginson JS. Combined user-driven treadmill control and functional electrical stimulation increases walking speeds poststroke. J Biomech 2021;124:110480. [PMID: 34126560 DOI: 10.1016/j.jbiomech.2021.110480] [Reference Citation Analysis]
129 Tamburella F, Moreno JC, Herrera Valenzuela DS, Pisotta I, Iosa M, Cincotti F, Mattia D, Pons JL, Molinari M. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback. J Neuroeng Rehabil 2019;16:95. [PMID: 31337400 DOI: 10.1186/s12984-019-0558-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
130 Spaich EG, Svaneborg N, Jørgensen HR, Andersen OK. Rehabilitation of the hemiparetic gait by nociceptive withdrawal reflex-based functional electrical therapy: a randomized, single-blinded study. J Neuroeng Rehabil 2014;11:81. [PMID: 24885645 DOI: 10.1186/1743-0003-11-81] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
131 Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 2015;86:38-54. [PMID: 25856485 DOI: 10.1016/j.neuron.2015.02.042] [Cited by in Crossref: 199] [Cited by in F6Publishing: 164] [Article Influence: 28.4] [Reference Citation Analysis]
132 Guzik A, Drużbicki M, Perenc L, Wolan-Nieroda A, Turolla A, Kiper P. Establishing the Minimal Clinically Important Differences for Sagittal Hip Range of Motion in Chronic Stroke Patients. Front Neurol 2021;12:700190. [PMID: 34539552 DOI: 10.3389/fneur.2021.700190] [Reference Citation Analysis]
133 Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, Millán Jdel R, Riener R, Vallery H, Gassert R. Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil 2015;12:1. [PMID: 25557982 DOI: 10.1186/1743-0003-12-1] [Cited by in Crossref: 328] [Cited by in F6Publishing: 107] [Article Influence: 46.9] [Reference Citation Analysis]
134 Alia C, Spalletti C, Lai S, Panarese A, Lamola G, Bertolucci F, Vallone F, Di Garbo A, Chisari C, Micera S, Caleo M. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation. Front Cell Neurosci 2017;11:76. [PMID: 28360842 DOI: 10.3389/fncel.2017.00076] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 15.2] [Reference Citation Analysis]
135 Monge-Pereira E, Molina-Rueda F, Rivas-Montero FM, Ibáñez J, Serrano JI, Alguacil-Diego IM, Miangolarra-Page JC. Electroencephalography as a post-stroke assessment method: An updated review. Neurologia 2017;32:40-9. [PMID: 25288536 DOI: 10.1016/j.nrl.2014.07.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
136 Khan H, Naseer N, Yazidi A, Eide PK, Hassan HW, Mirtaheri P. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review. Front Hum Neurosci 2020;14:613254. [PMID: 33568979 DOI: 10.3389/fnhum.2020.613254] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Lee J. Brain–computer interfaces and dualism: a problem of brain, mind, and body. AI & Soc 2016;31:29-40. [DOI: 10.1007/s00146-014-0545-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
138 Grüneberg P, Kadone H, Kuramoto N, Ueno T, Hada Y, Yamazaki M, Sankai Y, Suzuki K. Robot-assisted voluntary initiation reduces control-related difficulties of initiating joint movement: A phenomenal questionnaire study on shaping and compensation of forward gait. PLoS One 2018;13:e0194214. [PMID: 29529071 DOI: 10.1371/journal.pone.0194214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Kim J, Kim J, Park K. Gait Training Algorithm of an End-Effector Typed Hybrid Walking Rehabilitation Robot. Int J Precis Eng Manuf 2019;20:1767-75. [DOI: 10.1007/s12541-019-00185-y] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
140 Bowden MG, Embry AE, Perry LA, Duncan PW. Rehabilitation of walking after stroke. Curr Treat Options Neurol 2012;14:521-30. [PMID: 22991142 DOI: 10.1007/s11940-012-0198-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
141 [DOI: 10.1109/icra.2016.7487561] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
142 Kobravi HR, Farzaneh Y, Faryar Majd M, Sheikh M, Akbarzadeh A. A Human Interactive Hybrid FES-Robotic System Applicable to Improvement of Foot Drop after Stroke: Case Report of a Patient with Chronic Stroke. Arch Bone Jt Surg 2020;8:744-7. [PMID: 33313358 DOI: 10.22038/abjs.2020.48595.2410] [Reference Citation Analysis]
143 Bragoni M, Broccoli M, Iosa M, Morone G, De Angelis D, Venturiero V, Coiro P, Pratesi L, Mezzetti G, Fusco A, Paolucci S. Influence of psychologic features on rehabilitation outcomes in patients with subacute stroke trained with robotic-aided walking therapy. Am J Phys Med Rehabil 2013;92:e16-25. [PMID: 24052026 DOI: 10.1097/PHM.0b013e3182a20a34] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 2.9] [Reference Citation Analysis]
144 Pignolo L, Basta G, Carozzo S, Bilotta M, Todaro MR, Serra S, Ciancarelli I, Tonin P, Cerasa A. A body-weight-supported visual feedback system for gait recovering in stroke patients: A randomized controlled study. Gait Posture 2020;82:287-93. [PMID: 33002839 DOI: 10.1016/j.gaitpost.2020.09.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
145 Irimia DC, Cho W, Ortner R, Allison BZ, Ignat BE, Edlinger G, Guger C. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study. Artif Organs 2017;41:E178-84. [PMID: 29148137 DOI: 10.1111/aor.13054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
146 Rahmati SM, Karimi A. The Design and Control of a Footplate-Based Gait Robo-Assisted System for Lower Limb Actuator. Machines 2022;10:546. [DOI: 10.3390/machines10070546] [Reference Citation Analysis]
147 Chisholm K, Klumper K, Mullins A, Ahmadi M. A task oriented haptic gait rehabilitation robot. Mechatronics 2014;24:1083-91. [DOI: 10.1016/j.mechatronics.2014.07.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
148 van Nunen MP, Gerrits KH, Konijnenbelt M, Janssen TW, de Haan A. Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol 2015;10:141-8. [PMID: 24611590 DOI: 10.3109/17483107.2013.873489] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
149 Iosa M, Morone G, Fusco A, Castagnoli M, Fusco FR, Pratesi L, Paolucci S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil 2015;22:306-16. [PMID: 26258456 DOI: 10.1179/1074935714Z.0000000036] [Cited by in Crossref: 75] [Cited by in F6Publishing: 23] [Article Influence: 10.7] [Reference Citation Analysis]
150 Nizamis K, Athanasiou A, Almpani S, Dimitrousis C, Astaras A. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Sensors (Basel) 2021;21:2084. [PMID: 33809721 DOI: 10.3390/s21062084] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
151 Shin H, Agyeman R, Rafiq M, Chang MC, Choi GS. Automated segmentation of chronic stroke lesion using efficient U-Net architecture. Biocybernetics and Biomedical Engineering 2022;42:285-94. [DOI: 10.1016/j.bbe.2022.01.002] [Reference Citation Analysis]
152 Luque-Moreno C, Cano-Bravo F, Kiper P, Solís-Marcos I, Moral-Munoz JA, Agostini M, Oliva-Pascual-Vaca Á, Turolla A. Reinforced Feedback in Virtual Environment for Plantar Flexor Poststroke Spasticity Reduction and Gait Function Improvement. Biomed Res Int 2019;2019:6295263. [PMID: 31950046 DOI: 10.1155/2019/6295263] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
153 Yang H, Guan C, Wang CC, Ang KK. Detection of motor imagery of brisk walking from electroencephalogram. Journal of Neuroscience Methods 2015;244:33-44. [DOI: 10.1016/j.jneumeth.2014.05.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
154 [DOI: 10.1109/aim.2015.7222568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
155 Sburlea AI, Montesano L, Minguez J. Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration. J Neural Eng 2015;12:036007. [DOI: 10.1088/1741-2560/12/3/036007] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
156 Raab D, Diószeghy-Léránt B, Wünnemann M, Zumfelde C, Cramer E, Rühlemann A, Wagener J, Gegenbauer S, Geu Flores F, Jäger M, Zietz D, Hefter H, Kecskemethy A, Siebler M. A Novel Multiple-Cue Observational Clinical Scale for Functional Evaluation of Gait After Stroke - The Stroke Mobility Score (SMS). Med Sci Monit 2020;26:e923147. [PMID: 32930152 DOI: 10.12659/MSM.923147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
157 Koseoglu BF, Dogan A, Tatli HU, Sezgin Ozcan D, Polat CS. Can kinesio tape be used as an ankle training method in the rehabilitation of the stroke patients? Complement Ther Clin Pract 2017;27:46-51. [PMID: 28438279 DOI: 10.1016/j.ctcp.2017.03.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
158 Cho JE, Yoo JS, Kim KE, Cho ST, Jang WS, Cho KH, Lee WH. Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients. Biomed Res Int 2018;2018:4085298. [PMID: 29546057 DOI: 10.1155/2018/4085298] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
159 Mohammadi R, Abdollahi Khorasgani M, Tabatabaei M, Grampurohit N. Effects of Elastic Therapeutic Taping on Joint Position Sense of the Ankle in Stroke Survivors. Am J Phys Med Rehabil 2019;98:830-4. [PMID: 30964751 DOI: 10.1097/PHM.0000000000001191] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
160 Titus AW, Hillier S, Louw QA, Inglis-Jassiem G. An analysis of trunk kinematics and gait parameters in people with stroke. Afr J Disabil 2018;7:310. [PMID: 29707514 DOI: 10.4102/ajod.v7i0.310] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
161 Yeung LF, Lau CCY, Lai CWK, Soo YOY, Chan ML, Tong RKY. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial. J Neuroeng Rehabil 2021;18:19. [PMID: 33514393 DOI: 10.1186/s12984-021-00814-6] [Reference Citation Analysis]
162 Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces in the completely locked-in state and chronic stroke. Prog Brain Res 2016;228:131-61. [PMID: 27590968 DOI: 10.1016/bs.pbr.2016.04.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
163 Gomez-vargas D, Ballen-moreno F, Rodriguez-guerrero C, Munera M, Cifuentes CA. Experimental characterization of the T-FLEX ankle exoskeleton for gait assistance. Mechatronics 2021;78:102608. [DOI: 10.1016/j.mechatronics.2021.102608] [Reference Citation Analysis]
164 Peters J, Abou L, Wong E, Dossou MS, Sosnoff JJ, Rice LA. Smartphone-based gait and balance assessment in survivors of stroke: a systematic review. Disabil Rehabil Assist Technol 2022;:1-11. [PMID: 35584288 DOI: 10.1080/17483107.2022.2072527] [Reference Citation Analysis]
165 Tan CK, Kadone H, Watanabe H, Marushima A, Hada Y, Yamazaki M, Sankai Y, Matsumura A, Suzuki K. Differences in Muscle Synergy Symmetry Between Subacute Post-stroke Patients With Bioelectrically-Controlled Exoskeleton Gait Training and Conventional Gait Training. Front Bioeng Biotechnol 2020;8:770. [PMID: 32850696 DOI: 10.3389/fbioe.2020.00770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
166 Yang JK, Ahn NE, Kim DH, Kim DY. Plantar Pressure Distribution During Robotic-Assisted Gait in Post-stroke Hemiplegic Patients. Ann Rehabil Med 2014;38:145-52. [PMID: 24855607 DOI: 10.5535/arm.2014.38.2.145] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
167 Zhu Y, Li C, Jin H, Sun L. Classifying Motion Intention of Step Length and Synchronous Walking Speed by Functional Near-Infrared Spectroscopy. Cyborg and Bionic Systems 2021;2021:1-11. [DOI: 10.34133/2021/9821787] [Reference Citation Analysis]
168 Siqueira-Batista R, Souza CR, Maia PM, Siqueira SL. ROBOTIC SURGERY: BIOETHICAL ASPECTS. Arq Bras Cir Dig 2016;29:287-90. [PMID: 28076489 DOI: 10.1590/0102-6720201600040018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
169 De Bartolo D, Belluscio V, Vannozzi G, Morone G, Antonucci G, Giordani G, Santucci S, Resta F, Marinozzi F, Bini F, Paolucci S, Iosa M. Sensorized Assessment of Dynamic Locomotor Imagery in People with Stroke and Healthy Subjects. Sensors (Basel) 2020;20:E4545. [PMID: 32823786 DOI: 10.3390/s20164545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
170 Boudreau SA, Lontis ER, Caltenco H, Svensson P, Sessle BJ, Andreasen Struijk LN, Arendt-nielsen L. Features of cortical neuroplasticity associated with multidirectional novel motor skill training: a TMS mapping study. Exp Brain Res 2013;225:513-26. [DOI: 10.1007/s00221-012-3391-2] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
171 Motiian S, Pergami P, Guffey K, Mancinelli CA, Doretto G. Automated extraction and validation of children's gait parameters with the Kinect. Biomed Eng Online 2015;14:112. [PMID: 26626555 DOI: 10.1186/s12938-015-0102-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
172 Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 2015;12:54. [PMID: 26076696 DOI: 10.1186/s12984-015-0048-y] [Cited by in Crossref: 160] [Cited by in F6Publishing: 71] [Article Influence: 22.9] [Reference Citation Analysis]
173 Zhu F, Kern M, Fowkes E, Afzal T, Contreras-Vidal JL, Francisco GE, Chang SH. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. J Neural Eng 2021;18. [PMID: 33752175 DOI: 10.1088/1741-2552/abf0d5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Ramírez-Fernández C, Morán AL, García-Canseco E, Gómez-Montalvo JR. Evaluation Results of an Ontology-based Design Model of Virtual Environments for Upper Limb Motor Rehabilitation of Stroke Patients. Methods Inf Med 2017;56:145-55. [PMID: 28220927 DOI: 10.3414/ME16-02-0017] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
175 Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol. 2016;12:513-525. [PMID: 27539560 DOI: 10.1038/nrneurol.2016.113] [Cited by in Crossref: 283] [Cited by in F6Publishing: 154] [Article Influence: 47.2] [Reference Citation Analysis]
176 Hsu W, Lin L, Chou C, Hsiao Y, Liu Y. EEG Classification of Imaginary Lower Limb Stepping Movements Based on Fuzzy Support Vector Machine with Kernel-Induced Membership Function. Int J Fuzzy Syst 2017;19:566-79. [DOI: 10.1007/s40815-016-0259-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
177 Monge-pereira E, Molina-rueda F, Rivas-montero F, Ibáñez J, Serrano J, Alguacil-diego I, Miangolarra-page J. Electroencephalography as a post-stroke assessment method: An updated review. Neurología (English Edition) 2017;32:40-9. [DOI: 10.1016/j.nrleng.2014.07.004] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
178 Chen IH, Novak V, Manor B. Infarct hemisphere and noninfarcted brain volumes affect locomotor performance following stroke. Neurology 2014;82:828-34. [PMID: 24489132 DOI: 10.1212/WNL.0000000000000186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
179 Hasson CJ, Goodman SE. Learning to shape virtual patient locomotor patterns: internal representations adapt to exploit interactive dynamics. J Neurophysiol 2019;121:321-35. [PMID: 30403561 DOI: 10.1152/jn.00408.2018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
180 Zhu Y, Zhang L, Ouyang G, Meng D, Qian K, Ma J, Wang T. Acupuncture in subacute stroke: no benefits detected. Phys Ther 2013;93:1447-55. [PMID: 23723385 DOI: 10.2522/ptj.20110138] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
181 Afzal MR, Pyo S, Oh MK, Park YS, Yoon J. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking. J Neuroeng Rehabil 2018;15:33. [PMID: 29661237 DOI: 10.1186/s12984-018-0372-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
182 Villa-parra A, Delisle-rodríguez D, López-delis A, Bastos-filho T, Sagaró R, Frizera-neto A. Towards a Robotic Knee Exoskeleton Control Based on Human Motion Intention through EEG and sEMGsignals. Procedia Manufacturing 2015;3:1379-86. [DOI: 10.1016/j.promfg.2015.07.296] [Cited by in Crossref: 15] [Article Influence: 2.1] [Reference Citation Analysis]
183 Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, Sakane M, Eguchi K, Ochiai N. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol 2013;13:141. [PMID: 24099524 DOI: 10.1186/1471-2377-13-141] [Cited by in Crossref: 111] [Cited by in F6Publishing: 74] [Article Influence: 12.3] [Reference Citation Analysis]
184 López-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Birbaumer N, Ramos-Murguialday A. Brain-machine interfaces for rehabilitation in stroke: A review. NeuroRehabilitation 2018;43:77-97. [PMID: 30056435 DOI: 10.3233/NRE-172394] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
185 Huggins JE, Guger C, Aarnoutse E, Allison B, Anderson CW, Bedrick S, Besio W, Chavarriaga R, Collinger JL, Do AH, Herff C, Hohmann M, Kinsella M, Lee K, Lotte F, Müller-Putz G, Nijholt A, Pels E, Peters B, Putze F, Rupp R, Schalk G, Scott S, Tangermann M, Tubig P, Zander T. Workshops of the Seventh International Brain-Computer Interface Meeting: Not Getting Lost in Translation. Brain Comput Interfaces (Abingdon) 2019;6:71-101. [PMID: 33033729 DOI: 10.1080/2326263X.2019.1697163] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Asín Prieto G, Cano-de-la-cuerda R, López-larraz E, Metrot J, Molinari M, van Dokkum LEH. Emerging Perspectives in Stroke Rehabilitation. In: Pons JL, Torricelli D, editors. Emerging Therapies in Neurorehabilitation. Berlin: Springer Berlin Heidelberg; 2014. pp. 3-21. [DOI: 10.1007/978-3-642-38556-8_1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
187 Shamsi F, Nami M, Aligholi H, Borhani-haghighi A, Zahediannasb R, Hekmatnia M, Karimi MT. The effects of action observation training as an add-on rehabilitation strategy on the walking ability of patients with chronic stroke. Journal of Bodywork and Movement Therapies 2022;29:33-9. [DOI: 10.1016/j.jbmt.2021.09.029] [Reference Citation Analysis]
188 Silvoni S, Cavinato M, Volpato C, Cisotto G, Genna C, Agostini M, Turolla A, Ramos-Murguialday A, Piccione F. Kinematic and neurophysiological consequences of an assisted-force-feedback brain-machine interface training: a case study. Front Neurol 2013;4:173. [PMID: 24223567 DOI: 10.3389/fneur.2013.00173] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
189 Bayón C, Ramírez O, Serrano J, Castillo MD, Pérez-somarriba A, Belda-lois J, Martínez-caballero I, Lerma-lara S, Cifuentes C, Frizera A, Rocon E. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robotics and Autonomous Systems 2017;91:101-14. [DOI: 10.1016/j.robot.2016.12.015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 5] [Article Influence: 6.6] [Reference Citation Analysis]
190 Moro SB, Carrieri M, Avola D, Brigadoi S, Lancia S, Petracca A, Spezialetti M, Ferrari M, Placidi G, Quaresima V. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study. J Neural Eng 2016;13:036002. [PMID: 27001948 DOI: 10.1088/1741-2560/13/3/036002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
191 Tieri G, Morone G, Paolucci S, Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Review of Medical Devices 2018;15:107-17. [DOI: 10.1080/17434440.2018.1425613] [Cited by in Crossref: 110] [Cited by in F6Publishing: 58] [Article Influence: 27.5] [Reference Citation Analysis]
192 Rhyu H, Rhi S. THE EFFECTS OF TRAINING ON DIFFERENT SURFACES, ON BALANCE AND GAIT PERFORMANCE IN STROKE HEMIPLEGIA. Rev Bras Med Esporte 2021;27:592-6. [DOI: 10.1590/1517-8692202127062020_0089] [Reference Citation Analysis]
193 Bortole M, Controzzi M, Pisotta I, Úbeda A. BMIs for Motor Rehabilitation: Key Concepts and Challenges. In: Pons JL, Torricelli D, editors. Emerging Therapies in Neurorehabilitation. Berlin: Springer Berlin Heidelberg; 2014. pp. 235-47. [DOI: 10.1007/978-3-642-38556-8_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
194 Rea M, Rana M, Lugato N, Terekhin P, Gizzi L, Brötz D, Fallgatter A, Birbaumer N, Sitaram R, Caria A. Lower Limb Movement Preparation in Chronic Stroke: A Pilot Study Toward an fNIRS-BCI for Gait Rehabilitation. Neurorehabil Neural Repair 2014;28:564-75. [PMID: 24482298 DOI: 10.1177/1545968313520410] [Cited by in Crossref: 52] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
195 Hayami N, Williams HE, Shibagaki K, Vette AH, Suzuki Y, Nakazawa K, Nomura T, Milosevic M. Development and Validation of a Closed-Loop Functional Electrical Stimulation-Based Controller for Gait Rehabilitation Using a Finite State Machine Model. IEEE Trans Neural Syst Rehabil Eng 2022;30:1642-51. [PMID: 35709114 DOI: 10.1109/TNSRE.2022.3183571] [Reference Citation Analysis]
196 Morone G, Annicchiarico R, Iosa M, Federici A, Paolucci S, Cortés U, Caltagirone C. Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial. J Neuroeng Rehabil 2016;13:47. [PMID: 27225043 DOI: 10.1186/s12984-016-0155-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
197 Cardoso VF, Delisle-Rodriguez D, Romero-Laiseca MA, Loterio FA, Gurve D, Floriano A, Valadão C, Silva L, Krishnan S, Frizera-Neto A, Freire Bastos-Filho T. Effect of a Brain-Computer Interface Based on Pedaling Motor Imagery on Cortical Excitability and Connectivity. Sensors (Basel) 2021;21:2020. [PMID: 33809317 DOI: 10.3390/s21062020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
198 Matarasso AK, Rieke JD, White K, Yusufali MM, Daly JJ. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study. PLoS One 2021;16:e0250431. [PMID: 33956845 DOI: 10.1371/journal.pone.0250431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
199 van Meulen FB, Klaassen B, Held J, Reenalda J, Buurke JH, van Beijnum BJ, Luft A, Veltink PH. Objective Evaluation of the Quality of Movement in Daily Life after Stroke. Front Bioeng Biotechnol 2015;3:210. [PMID: 26793705 DOI: 10.3389/fbioe.2015.00210] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
200 Pisotta I, Perruchoud D, Ionta S. Hand-in-hand advances in biomedical engineering and sensorimotor restoration. J Neurosci Methods 2015;246:22-9. [PMID: 25769276 DOI: 10.1016/j.jneumeth.2015.03.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
201 Castermans T, Duvinage M, Cheron G, Dutoit T. Towards effective non-invasive brain-computer interfaces dedicated to gait rehabilitation systems. Brain Sci 2013;4:1-48. [PMID: 24961699 DOI: 10.3390/brainsci4010001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
202 Sburlea AI, Montesano L, Cano de la Cuerda R, Alguacil Diego IM, Miangolarra-Page JC, Minguez J. Detecting intention to walk in stroke patients from pre-movement EEG correlates. J Neuroeng Rehabil 2015;12:113. [PMID: 26654594 DOI: 10.1186/s12984-015-0087-4] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
203 Takeuchi N, Izumi S. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat 2013;2013:128641. [PMID: 23738231 DOI: 10.1155/2013/128641] [Cited by in Crossref: 100] [Cited by in F6Publishing: 61] [Article Influence: 11.1] [Reference Citation Analysis]
204 Sallés L, Gironès X, Martín-casas P, Lafuente JV. A neurocognitive approach to recovery of movement following stroke. Physical Therapy Reviews 2016;20:283-9. [DOI: 10.1080/10833196.2015.1111579] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
205 Sivakumar R, Jena S. Effect of unstable surface sitting on paretic anterior tibial muscle following stroke. J Bodyw Mov Ther 2020;24:269-73. [PMID: 31987556 DOI: 10.1016/j.jbmt.2019.06.001] [Reference Citation Analysis]
206 Ferreira LA, Neto HP, Grecco LA, Christovão TC, Duarte NA, Lazzari RD, Galli M, Oliveira CS. Effect of Ankle-foot Orthosis on Gait Velocity and Cadence of Stroke Patients: A Systematic Review. J Phys Ther Sci 2013;25:1503-8. [PMID: 24396220 DOI: 10.1589/jpts.25.1503] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 5.4] [Reference Citation Analysis]
207 Kassab A, Lan JL, Vannasing P, Sawan M. Functional near-infrared spectroscopy caps for brain activity monitoring: a review. Appl Opt 2015;54:576. [DOI: 10.1364/ao.54.000576] [Cited by in Crossref: 18] [Article Influence: 2.6] [Reference Citation Analysis]
208 Vasanthakumar M, Vinod B, Mohanta JK, Mohan S. Design and Robust Motion Control of a Planar 1P-2P RP Hybrid Manipulator for Lower Limb Rehabilitation Applications. J Intell Robot Syst 2019;96:17-30. [DOI: 10.1007/s10846-018-0972-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
209 Mahmoudi Z, Mohammadi R, Sadeghi T, Kalbasi G. The Effects of Electrical Stimulation of Lower Extremity Muscles on Balance in Stroke Patients: A Systematic Review of Literatures. J Stroke Cerebrovasc Dis 2021;30:105793. [PMID: 34034126 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105793] [Reference Citation Analysis]
210 Chen S, Kang J, Peng C, Hsu C, Lin Y, Lai C. Adjustable Parameters and the Effectiveness of Adjunct Robot-Assisted Gait Training in Individuals with Chronic Stroke. IJERPH 2022;19:8186. [DOI: 10.3390/ijerph19138186] [Reference Citation Analysis]
211 Biswas A, Natarajan M, Subramanian SK, Solomon JM. Development and feasibility testing of action observation training videos in acute stroke survivors. F1000Res 2022;11:524. [DOI: 10.12688/f1000research.118969.1] [Reference Citation Analysis]
212 Bhagat NA, Yozbatiran N, Sullivan JL, Paranjape R, Losey C, Hernandez Z, Keser Z, Grossman R, Francisco GE, O'Malley MK, Contreras-Vidal JL. Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation. Neuroimage Clin 2020;28:102502. [PMID: 33395991 DOI: 10.1016/j.nicl.2020.102502] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Choo YJ, Chang MC. Effectiveness of an ankle-foot orthosis on walking in patients with stroke: a systematic review and meta-analysis. Sci Rep 2021;11:15879. [PMID: 34354172 DOI: 10.1038/s41598-021-95449-x] [Reference Citation Analysis]
214 Lee SH, Lee HJ, Shim Y, Chang WH, Choi BO, Ryu GH, Kim YH. Wearable hip-assist robot modulates cortical activation during gait in stroke patients: a functional near-infrared spectroscopy study. J Neuroeng Rehabil 2020;17:145. [PMID: 33121535 DOI: 10.1186/s12984-020-00777-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
215 Ravindran A, Rieke JD, Zapata JDA, White KD, Matarasso A, Yusufali MM, Rana M, Gunduz A, Modarres M, Sitaram R, Daly JJ. Four methods of brain pattern analyses of fMRI signals associated with wrist extension versus wrist flexion studied for potential use in future motor learning BCI. PLoS One 2021;16:e0254338. [PMID: 34403422 DOI: 10.1371/journal.pone.0254338] [Reference Citation Analysis]
216 Spiess MR, Steenbrink F, Esquenazi A. Getting the Best Out of Advanced Rehabilitation Technology for the Lower Limbs: Minding Motor Learning Principles. PM R 2018;10:S165-73. [PMID: 30269803 DOI: 10.1016/j.pmrj.2018.06.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
217 Venkatakrishnan A, Francisco GE, Contreras-Vidal JL. Applications of Brain-Machine Interface Systems in Stroke Recovery and Rehabilitation. Curr Phys Med Rehabil Rep 2014;2:93-105. [PMID: 25110624 DOI: 10.1007/s40141-014-0051-4] [Cited by in Crossref: 50] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
218 Mehta S, Pereira S, Janzen S, Mays R, Viana R, Lobo L, Teasell RW. Cardiovascular Conditioning for Comfortable Gait Speed and Total Distance Walked During the Chronic Stage of Stroke: A Meta-Analysis. Topics in Stroke Rehabilitation 2014;19:463-70. [DOI: 10.1310/tsr1906-463] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
219 Iosa M, Morone G, Fusco A, Bragoni M, Coiro P, Multari M, Venturiero V, De Angelis D, Pratesi L, Paolucci S. Seven capital devices for the future of stroke rehabilitation. Stroke Res Treat 2012;2012:187965. [PMID: 23304640 DOI: 10.1155/2012/187965] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
220 Jiang J, Lee K, Ji J. Review of anatomy-based ankle–foot robotics for mind, motor and motion recovery following stroke: design considerations and needs. Int J Intell Robot Appl 2018;2:267-82. [DOI: 10.1007/s41315-018-0065-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
221 Cho W, Sabathiel N, Ortner R, Lechner A, Irimia DC, Allison BZ, Edlinger G, Guger C. Paired Associative Stimulation Using Brain-Computer Interfaces for Stroke Rehabilitation: A Pilot Study. Eur J Transl Myol 2016;26:6132. [PMID: 27990240 DOI: 10.4081/ejtm.2016.6132] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]