BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Neder JA, Berton DC, Arbex FF, Alencar MC, Rocha A, Sperandio PA, Palange P, O'Donnell DE. Physiological and clinical relevance of exercise ventilatory efficiency in COPD. Eur Respir J 2017;49:1602036. [PMID: 28275174 DOI: 10.1183/13993003.02036-2016] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Rocha A, Arbex FF, Sperandio PA, Souza A, Biazzim L, Mancuso F, Berton DC, Hochhegger B, Alencar MCN, Nery LE, O'Donnell DE, Neder JA. Excess Ventilation in Chronic Obstructive Pulmonary Disease-Heart Failure Overlap. Implications for Dyspnea and Exercise Intolerance. Am J Respir Crit Care Med 2017;196:1264-74. [PMID: 28665692 DOI: 10.1164/rccm.201704-0675OC] [Cited by in Crossref: 42] [Cited by in F6Publishing: 11] [Article Influence: 8.4] [Reference Citation Analysis]
2 Ward SA. Exercise physiology: exercise hyperpnea. Current Opinion in Physiology 2019;10:166-72. [DOI: 10.1016/j.cophys.2019.05.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
3 Gonzalez-Garcia M, Barrero M, Maldonado D. Exercise Capacity, Ventilatory Response, and Gas Exchange in COPD Patients With Mild to Severe Obstruction Residing at High Altitude. Front Physiol 2021;12:668144. [PMID: 34220533 DOI: 10.3389/fphys.2021.668144] [Reference Citation Analysis]
4 Medrinal C, Prieur G, Combret Y, Quesada AR, Debeaumont D, Bonnevie T, Gravier FE, Dupuis Lozeron E, Quieffin J, Contal O, Lamia B. Functional Electrical Stimulation-A New Therapeutic Approach to Enhance Exercise Intensity in Chronic Obstructive Pulmonary Disease Patients: A Randomized, Controlled Crossover Trial. Arch Phys Med Rehabil 2018;99:1454-61. [PMID: 29524398 DOI: 10.1016/j.apmr.2018.02.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Rinaldo RF, Mondoni M, Comandini S, Lombardo P, Vigo B, Terraneo S, Santus P, Carugo S, Centanni S, Di Marco F. The role of phenotype on ventilation and exercise capacity in patients affected by COPD: a retrospective study. Multidiscip Respir Med 2020;15:476. [PMID: 32153779 DOI: 10.4081/mrm.2020.476] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Neder JA, Berton DC, Marillier M, Bernard A, de Torres JP, O'donnell DE. Resting VE / V CO 2 adds to inspiratory capacity to predict the burden of exertional dyspnoea in COPD. Eur Respir J 2020;56:1902434. [DOI: 10.1183/13993003.02434-2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Dorelli G, Braggio M, Gabbiani D, Busti F, Caminati M, Senna G, Girelli D, Laveneziana P, Ferrari M, Sartori G, Dalle Carbonare L, Crisafulli E, On Behalf Of The Respicovid Study Investigators. Importance of Cardiopulmonary Exercise Testing amongst Subjects Recovering from COVID-19. Diagnostics (Basel) 2021;11:507. [PMID: 33809260 DOI: 10.3390/diagnostics11030507] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
8 Gonzalez-garcia M, Aguirre-franco CE, Vargas-ramirez L, Barrero M, Torres-duque CA. Effect of pulmonary hypertension on exercise capacity and gas exchange in patients with chronic obstructive pulmonary disease living at high altitude. Chron Respir Dis 2022;19:147997312211040. [DOI: 10.1177/14799731221104095] [Reference Citation Analysis]
9 Jesus JP, Gomes M, Dias-Gonçalves A, Correia JM, Pezarat-Correia P, Mendonca GV. Effects of surgical masks on the responses to constant work-rate cycling performed at different intensity domains. Clin Physiol Funct Imaging 2021. [PMID: 34753208 DOI: 10.1111/cpf.12734] [Reference Citation Analysis]
10 Paneroni M, Vitacca M, Comini L, Salvi B, Saleri M, Schena F, Venturelli M. Relationship between perceived and neuromuscular fatigue in COPD patients with chronic respiratory failure with long-term oxygen therapy: a cross-sectional study. Eur J Appl Physiol 2022. [PMID: 35951129 DOI: 10.1007/s00421-022-05021-2] [Reference Citation Analysis]
11 Gravier F, Bonnevie T, Boujibar F, Médrinal C, Prieur G, Combret Y, Muir J, Cuvelier A, Baste J, Debeaumont D. Effect of prehabilitation on ventilatory efficiency in non–small cell lung cancer patients: A cohort study. The Journal of Thoracic and Cardiovascular Surgery 2019;157:2504-2512.e1. [DOI: 10.1016/j.jtcvs.2019.02.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
12 Kampouras A, Hatziagorou E, Avramidou V, Georgopoulou V, Kirvassilis F, Hebestreit H, Tsanakas J. Ventilation efficiency to exercise in patients with cystic fibrosis. Pediatr Pulmonol 2019;54:1584-90. [DOI: 10.1002/ppul.24438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Arce SC, De Vito EL. More Breathing, Less Fitness: Lessons from Exercise Physiology in Chronic Obstructive Pulmonary Disease-Heart Failure Overlap. Am J Respir Crit Care Med 2017;196:1233-4. [PMID: 28763244 DOI: 10.1164/rccm.201707-1430ED] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
14 Miyazaki A, Miki K, Maekura R, Tsujino K, Hashimoto H, Miki M, Yanagi H, Koba T, Nii T, Matsuki T, Kida H. Increased Oxygen Extraction by Pulmonary Rehabilitation Improves Exercise Tolerance and Ventilatory Efficiency in Advanced Chronic Obstructive Pulmonary Disease. JCM 2022;11:963. [DOI: 10.3390/jcm11040963] [Reference Citation Analysis]
15 Crisafulli E, Vigna M, Ielpo A, Tzani P, Mangia A, Teopompi E, Aiello M, Alfieri V, Bertorelli G, Palange P, Chetta A. Heart rate recovery is associated with ventilatory constraints and excess ventilation during exercise in patients with chronic obstructive pulmonary disease. Eur J Prev Cardiol 2018;25:1667-74. [PMID: 30033754 DOI: 10.1177/2047487318789756] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
16 Phillips DB, Collins SÉ, Stickland MK. Measurement and Interpretation of Exercise Ventilatory Efficiency. Front Physiol 2020;11:659. [PMID: 32714201 DOI: 10.3389/fphys.2020.00659] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
17 Neder JA, Berton DC, Phillips DB, O'Donnell DE. Exertional ventilation/carbon dioxide output relationship in COPD: from physiological mechanisms to clinical applications. Eur Respir Rev 2021;30:200190. [PMID: 34526312 DOI: 10.1183/16000617.0190-2020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Hyrylä VV, Rissanen AE, Peltonen JE, Koponen AS, Tikkanen HO, Tarvainen MP. Altered Expiratory Flow Dynamics at Peak Exercise in Adult Men With Well-Controlled Type 1 Diabetes. Front Physiol 2022;13:836814. [DOI: 10.3389/fphys.2022.836814] [Reference Citation Analysis]
19 López R, Caviedes I, Graf J. Minute ventilation to carbon dioxide production ratio is a simple and non-invasive index of ventilatory inefficiency in mechanically ventilated patients: proof of concept. Intensive Care Med 2017;43:1542-3. [PMID: 28567572 DOI: 10.1007/s00134-017-4844-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
20 Neder JA. Ventilatory demand-capacity imbalance during incremental exercise in COPD: an in silico perspective. Eur Respir J 2020;56:2000495. [PMID: 32341112 DOI: 10.1183/13993003.00495-2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Ward SA. Ventilation/carbon dioxide output relationships during exercise in health. Eur Respir Rev 2021;30:200160. [PMID: 33853883 DOI: 10.1183/16000617.0160-2020] [Reference Citation Analysis]
22 He J, Fu J, Zhao W, Ren C, Liu P, Chen L, Li D, Zhou L, Tang L, Liu X, Ye S, Liu X, Ma Y, Zhang Y, Ma X, Zhang L, Zhang G, Li N, Fan D. Exercise Physiology Impairments of Patients With Amyotrophic Lateral Sclerosis: Cardiopulmonary Exercise Testing Findings. Front Physiol 2022;13:792660. [DOI: 10.3389/fphys.2022.792660] [Reference Citation Analysis]
23 Caviedes I. Ventilatory inefficiency: a key physiopathological mechanism increasing dyspnea and reducing exercise capacity in chronic obstructive pulmonary disease. J Thorac Dis 2021;13:4614-7. [PMID: 34422386 DOI: 10.21037/jtd-21-834] [Reference Citation Analysis]
24 Neder JA, de-Torres JP, Milne KM, O'Donnell DE. Lung Function Testing in Chronic Obstructive Pulmonary Disease. Clin Chest Med 2020;41:347-66. [PMID: 32800190 DOI: 10.1016/j.ccm.2020.06.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Laveneziana P, Palange P. Ventilatory efficiency and its clinical and prognostic value in adults with cystic fibrosis. Eur Respir Rev 2021;30:200395. [PMID: 34853094 DOI: 10.1183/16000617.0395-2020] [Reference Citation Analysis]
26 Tracey L, Lewthwaite H, Abdallah SJ, Murray S, Wilkinson-Maitland CA, Donovan A, Maltais F, O'Donnell DE, Bourbeau J, Smith BM, Jensen D; Canadian Respiratory Research Network (CRRN). Physiological and perceptual responses to exercise according to locus of symptom limitation in COPD. Respir Physiol Neurobiol 2020;273:103322. [PMID: 31629879 DOI: 10.1016/j.resp.2019.103322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Srinathan S. Is ventilatory efficiency the next new thing in prehabilitation? The Journal of Thoracic and Cardiovascular Surgery 2020;159:e323-4. [DOI: 10.1016/j.jtcvs.2019.04.054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Broadman J, Jensen D. Effect of induced acute metabolic alkalosis on the V̇E/V̇CO2 response to exercise in healthy adults. Respir Physiol Neurobiol 2021;294:103740. [PMID: 34256173 DOI: 10.1016/j.resp.2021.103740] [Reference Citation Analysis]
29 Neder JA, Berton DC, Müller PDT, Elbehairy AF, Rocha A, Palange P, O’donnell DE. Ventilatory Inefficiency and Exertional Dyspnea in Early Chronic Obstructive Pulmonary Disease. Annals ATS 2017;14:S22-9. [DOI: 10.1513/annalsats.201612-1033fr] [Cited by in Crossref: 32] [Cited by in F6Publishing: 8] [Article Influence: 6.4] [Reference Citation Analysis]
30 Neder JA, Berton DC, Rocha A, Arbex FF, Alencar MCN, Helena Degani-costa L, Ferreira EM, Ramos R, O'donnell DE. Abnormal patterns of response to incremental CPET. In: Palange P, Laveneziana P, Neder JA, Ward SA, editors. Clinical Exercise Testing. Sheffield: European Respiratory Society; 2018. pp. 34-58. [DOI: 10.1183/2312508x.10011017] [Cited by in Crossref: 4] [Reference Citation Analysis]
31 Nahmias O, Ritter O, Sagawa Y, Roux P, Degano B, Soumagne T. Ventilatory adaptation during eccentric cycling in patients with severe COPD: Potential implications for exercise training. Respir Physiol Neurobiol 2021;292:103706. [PMID: 34062283 DOI: 10.1016/j.resp.2021.103706] [Reference Citation Analysis]
32 Miki K, Tsujino K, Maekuara R, Matsuki T, Miki M, Hashimoto H, Kagawa H, Kawasaki T, Kuge T, Kida H. Oxygen Extraction Based on Inspiratory and Expiratory Gas Analysis Identifies Ventilatory Inefficiency in Chronic Obstructive Pulmonary Disease. Front Physiol 2021;12:703977. [PMID: 34393822 DOI: 10.3389/fphys.2021.703977] [Reference Citation Analysis]
33 Gonzalez-Montesinos JL, Fernandez-Santos JR, Vaz-Pardal C, Ponce-Gonzalez JG, Marin-Galindo A, Arnedillo A. Effects of a Rehabilitation Programme Using a Nasal Inspiratory Restriction Device in COPD. Int J Environ Res Public Health 2021;18:4207. [PMID: 33921105 DOI: 10.3390/ijerph18084207] [Reference Citation Analysis]
34 Miki K. Motor Pathophysiology Related to Dyspnea in COPD Evaluated by Cardiopulmonary Exercise Testing. Diagnostics (Basel) 2021;11:364. [PMID: 33670051 DOI: 10.3390/diagnostics11020364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Caviedes I, Soto R, Herth F. The determination of ventilatory inefficiency at rest in COPD: the expected parameter. Eur Respir J 2020;56:2002947. [PMID: 33004441 DOI: 10.1183/13993003.02947-2020] [Reference Citation Analysis]
36 Di Paolo M, Teopompi E, Savi D, Crisafulli E, Longo C, Tzani P, Longo F, Ielpo A, Pisi G, Cimino G, Simmonds NJ, Neder JA, Chetta A, Palange P. Reduced exercise ventilatory efficiency in adults with cystic fibrosis and normal to moderately impaired lung function. J Appl Physiol (1985) 2019;127:501-12. [PMID: 31219769 DOI: 10.1152/japplphysiol.00030.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Neder JA, Berton DC, Marillier M, Bernard A, O’donnell DE; on behalf of the Canadian Respiratory Research Network. Inspiratory Constraints and Ventilatory Inefficiency Are Superior to Breathing Reserve in the Assessment of Exertional Dyspnea in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease 2019;16:174-81. [DOI: 10.1080/15412555.2019.1631776] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
38 Crisafulli E, Teopompi E, Luceri S, Longo F, Tzani P, Pagano P, Ielpo A, Longo C, Di Paolo M, Sverzellati N, Palange P, Chetta A, Pisi G. The value of high-resolution computed tomography (HRCT) to determine exercise ventilatory inefficiency and dynamic hyperinflation in adult patients with cystic fibrosis. Respir Res 2019;20:78. [PMID: 31014329 DOI: 10.1186/s12931-019-1044-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
39 Neder JA, Berton DC, Marillier M, Bernard A, O.donnell DE. The role of evaluating inspiratory constraints and ventilatory inefficiency in the investigation of dyspnea of unclear etiology. Respiratory Medicine 2019;158:6-13. [DOI: 10.1016/j.rmed.2019.09.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
40 Dos Santos PB, Simões RP, Goulart CDL, Roscani MG, Marinho RS, Camargo PF, Arbex RF, Casale G, Oliveira CR, Mendes RG, Arena R, Borghi-Silva A. Eccentric Left Ventricular Hypertrophy and Left and Right Cardiac Function in Chronic Heart Failure with or without Coexisting COPD: Impact on Exercise Performance. Int J Chron Obstruct Pulmon Dis 2021;16:203-14. [PMID: 33568904 DOI: 10.2147/COPD.S285812] [Reference Citation Analysis]
41 Yamamoto Y, Miki K, Matsuki T, Fukushima K, Oshitani Y, Kagawa H, Tsujino K, Yoshimura K, Miki M, Kida H. Evaluation of Exertional Ventilatory Parameters Using Oscillometry in COPD. Int J Chron Obstruct Pulmon Dis 2020;15:1697-711. [PMID: 32764915 DOI: 10.2147/COPD.S260735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Manco A, Pisi R, Aiello M, Tzani P, Frizzelli A, Fantin A, Alfieri V, Bertorelli G, Chetta A. Small airway dysfunction predicts excess ventilation and dynamic hyperinflation during exercise in patients with COPD. Respiratory Medicine: X 2020;2:100020. [DOI: 10.1016/j.yrmex.2020.100020] [Reference Citation Analysis]
43 Elbehairy AF, Hockmann K, Ciavaglia CE, Faisal A, Hill E, Webb KA, Neder JA, O'Donnell DE. Unraveling the Cause of Severe Exertional Dyspnea in a Heavy Smoker. Ann Am Thorac Soc 2017;14:1849-55. [PMID: 29192822 DOI: 10.1513/AnnalsATS.201705-382CC] [Reference Citation Analysis]
44 Neder JA, Berton DC, O'Donnell DE. Why we should never ignore an "isolated" low lung diffusing capacity. J Bras Pneumol 2019;45:e20190241. [PMID: 31508675 DOI: 10.1590/1806-3713/e20190241] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
45 Berton DC, Mendes NBS, Olivo-Neto P, Benedetto IG, Gazzana MB. Pulmonology approach in the investigation of chronic unexplained dyspnea. J Bras Pneumol 2021;47:e20200406. [PMID: 33567064 DOI: 10.36416/1806-3756/e20200406] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Perrotta F, Cennamo A, Cerqua FS, Stefanelli F, Bianco A, Musella S, Rispoli M, Salvi R, Meoli I. Effects of a high-intensity pulmonary rehabilitation program on the minute ventilation/carbon dioxide output slope during exercise in a cohort of patients with COPD undergoing lung resection for non-small cell lung cancer. J Bras Pneumol 2019;45:e20180132. [PMID: 31618297 DOI: 10.1590/1806-3713/e20180132] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
47 Stickland MK, Neder JA, Guenette JA, O'Donnell DE, Jensen D. Using Cardiopulmonary Exercise Testing to Understand Dyspnea and Exercise Intolerance in Respiratory Disease. Chest 2022;161:1505-16. [PMID: 35065052 DOI: 10.1016/j.chest.2022.01.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Vitacca M, Paneroni M. Rehabilitation of Patients with Coexisting COPD and Heart Failure. COPD 2018;15:231-7. [PMID: 29799285 DOI: 10.1080/15412555.2018.1468427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]