BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Carbajal GV, Malmierca MS. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear 2018;22:2331216518784822. [PMID: 30022729 DOI: 10.1177/2331216518784822] [Cited by in Crossref: 50] [Cited by in F6Publishing: 62] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Willmore BDB, King AJ. Adaptation in auditory processing. Physiol Rev 2023;103:1025-58. [PMID: 36049112 DOI: 10.1152/physrev.00011.2022] [Reference Citation Analysis]
2 Basiński K, Quiroga-Martinez DR, Vuust P. Temporal hierarchies in the predictive processing of melody - From pure tones to songs. Neurosci Biobehav Rev 2023;145:105007. [PMID: 36535375 DOI: 10.1016/j.neubiorev.2022.105007] [Reference Citation Analysis]
3 Saberi K, Hickok G. Forward entrainment: Psychophysics, neural correlates, and function. Psychon Bull Rev 2022. [DOI: 10.3758/s13423-022-02220-y] [Reference Citation Analysis]
4 Stein J, von Kriegstein K, Tabas A. Predictive encoding of pure tones and FM-sweeps in the human auditory cortex. Cereb Cortex Commun 2022;3:tgac047. [PMID: 36545253 DOI: 10.1093/texcom/tgac047] [Reference Citation Analysis]
5 Tardiff N, Suriya-Arunroj L, Cohen YE, Gold JI. Rule-based and stimulus-based cues bias auditory decisions via different computational and physiological mechanisms. PLoS Comput Biol 2022;18:e1010601. [PMID: 36206302 DOI: 10.1371/journal.pcbi.1010601] [Reference Citation Analysis]
6 de Hoz L, Barniv D, Nelken I. Prior unsupervised experience leads to long lasting effects in sensory gating during discrimination learning.. [DOI: 10.1101/2022.09.30.510296] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Poublan-couzardot A, Lecaignard F, Fucci E, Davidson RJ, Mattout J, Lutz A, Abdoun O. Time-resolved dynamic computational modeling of human EEG recordings reveals gradients of generative mechanisms for the MMN response.. [DOI: 10.1101/2022.09.12.507526] [Reference Citation Analysis]
8 Pérez-González D, Schreiner TG, Llano DA, Malmierca MS. Alzheimer's Disease, Hearing Loss, and Deviance Detection. Front Neurosci 2022;16:879480. [PMID: 35720686 DOI: 10.3389/fnins.2022.879480] [Reference Citation Analysis]
9 Chen C, Xu S, Wang Y, Wang X. Location-Specific Facilitation in Primate Auditory Cortex.. [DOI: 10.1101/2022.06.19.496736] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022;16:899370. [DOI: 10.3389/fncir.2022.899370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 O’reilly JA. Recurrent neural network model of human event-related potentials in response to intensity oddball stimulation.. [DOI: 10.1101/2022.04.29.489982] [Reference Citation Analysis]
12 Todd J, Háden GP, Winkler I. Relevance to the higher order structure may govern auditory statistical learning in neonates. Sci Rep 2022;12:5905. [PMID: 35393525 DOI: 10.1038/s41598-022-09994-0] [Reference Citation Analysis]
13 Sitek KR, Calabrese E, Johnson GA, Ghosh SS, Chandrasekaran B. Structural Connectivity of Human Inferior Colliculus Subdivisions Using in vivo and post mortem Diffusion MRI Tractography. Front Neurosci 2022;16:751595. [DOI: 10.3389/fnins.2022.751595] [Reference Citation Analysis]
14 Gong Y, Zhai Y, Du X, Song P, Xu H, Zhang Q, Yu X. Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats. Neurosci Bull 2022. [PMID: 35212974 DOI: 10.1007/s12264-022-00827-8] [Reference Citation Analysis]
15 Rhodes R, Avcu E, Han C, Hestvik A. Auditory predictions are phonological when phonetic information is variable. Language, Cognition and Neuroscience 2022. [DOI: 10.1080/23273798.2022.2043395] [Reference Citation Analysis]
16 Auksztulewicz R, Rajendran VG, Peng F, Schnupp JWH, Harper NS. Omission responses in field potentials but not spikes in rat auditory cortex.. [DOI: 10.1101/2022.02.11.479668] [Reference Citation Analysis]
17 Lecaignard F, Bertrand R, Brunner P, Caclin A, Schalk G, Mattout J. Dynamics of Oddball Sound Processing: Trial-by-Trial Modeling of ECoG Signals. Front Hum Neurosci 2022;15:794654. [DOI: 10.3389/fnhum.2021.794654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Duque D, de la Rocha J. Isolating perceptual biases caused by trial history during auditory categorization.. [DOI: 10.1101/2022.01.17.476581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Villiger D. How Psychedelic-Assisted Treatment Works in the Bayesian Brain. Front Psychiatry 2022;13:812180. [PMID: 35360137 DOI: 10.3389/fpsyt.2022.812180] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Adibi M, Zoccolan D, Clifford CWG. Editorial: Sensory Adaptation. Front Syst Neurosci 2021;15:809000. [PMID: 34955772 DOI: 10.3389/fnsys.2021.809000] [Reference Citation Analysis]
21 May PJC. The Adaptation Model Offers a Challenge for the Predictive Coding Account of Mismatch Negativity. Front Hum Neurosci 2021;15:721574. [PMID: 34867238 DOI: 10.3389/fnhum.2021.721574] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
22 Kraus N. Descending Control in the Auditory System: A Perspective. Front Neurosci 2021;15:769192. [PMID: 34733138 DOI: 10.3389/fnins.2021.769192] [Reference Citation Analysis]
23 Bellet ME, Gay M, Bellet J, Jarraya B, Dehaene S, van Kerkoerle T, Panagiotaropoulos TI. Spontaneously emerging internal models of visual sequences combine abstract and event-specific information in the prefrontal cortex.. [DOI: 10.1101/2021.10.04.463064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Tivadar RI, Knight RT, Tzovara A. Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing. Front Hum Neurosci 2021;15:702520. [PMID: 34489663 DOI: 10.3389/fnhum.2021.702520] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021;15:721186. [PMID: 34489648 DOI: 10.3389/fncir.2021.721186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
26 Skoe E, Krizman J, Spitzer ER, Kraus N. Auditory Cortical Changes Precede Brainstem Changes During Rapid Implicit Learning: Evidence From Human EEG. Front Neurosci 2021;15:718230. [PMID: 34483831 DOI: 10.3389/fnins.2021.718230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Kangas ES, Vuoriainen E, Li X, Lyyra P, Astikainen P. Somatosensory Deviance Detection ERPs and Their Relationship to Analogous Auditory ERPs and Interoceptive Accuracy. Journal of Psychophysiology. [DOI: 10.1027/0269-8803/a000288] [Reference Citation Analysis]
28 Ficco L, Mancuso L, Manuello J, Teneggi A, Liloia D, Duca S, Costa T, Kovacs GZ, Cauda F. Disentangling predictive processing in the brain: a meta-analytic study in favour of a predictive network. Sci Rep 2021;11:16258. [PMID: 34376727 DOI: 10.1038/s41598-021-95603-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
29 Cappotto D, Auksztulewicz R, Kang H, Poeppel D, Melloni L, Schnupp J. Decoding the Content of Auditory Sensory Memory Across Species. Cereb Cortex 2021;31:3226-36. [PMID: 33625488 DOI: 10.1093/cercor/bhab002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Kraus N. Memory for sound: The BEAMS Hypothesis [Perspective]. Hear Res 2021;407:108291. [PMID: 34146833 DOI: 10.1016/j.heares.2021.108291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
31 Xu Q, Ye C, Hämäläinen JA, Ruohonen EM, Li X, Astikainen P. Magnetoencephalography Responses to Unpredictable and Predictable Rare Somatosensory Stimuli in Healthy Adult Humans. Front Hum Neurosci 2021;15:641273. [PMID: 33935671 DOI: 10.3389/fnhum.2021.641273] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Price CN, Bidelman GM. Attention reinforces human corticofugal system to aid speech perception in noise. Neuroimage 2021;235:118014. [PMID: 33794356 DOI: 10.1016/j.neuroimage.2021.118014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
33 Schäfer E, Vedoveli AE, Righetti G, Gamerdinger P, Knipper M, Tropitzsch A, Karnath HO, Braun C, Li Hegner Y. Activities of the Right Temporo-Parieto-Occipital Junction Reflect Spatial Hearing Ability in Cochlear Implant Users. Front Neurosci 2021;15:613101. [PMID: 33776632 DOI: 10.3389/fnins.2021.613101] [Reference Citation Analysis]
34 Tabas A, von Kriegstein K. Adjudicating Between Local and Global Architectures of Predictive Processing in the Subcortical Auditory Pathway. Front Neural Circuits 2021;15:644743. [PMID: 33776657 DOI: 10.3389/fncir.2021.644743] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 López-jury L, García-rosales F, González-palomares E, Kössl M, Hechavarria JC. Acoustic context modulates natural sound discrimination in auditory cortex through frequency specific adaptation.. [DOI: 10.1101/2021.02.08.430293] [Reference Citation Analysis]
36 An H, Ho Kei S, Auksztulewicz R, Schnupp JWH. Do Auditory Mismatch Responses Differ Between Acoustic Features? Front Hum Neurosci 2021;15:613903. [PMID: 33597853 DOI: 10.3389/fnhum.2021.613903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
37 Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2020;14:615259. [PMID: 33551756 DOI: 10.3389/fncir.2020.615259] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
38 Casado-Román L, Carbajal GV, Pérez-González D, Malmierca MS. Prediction error signaling explains neuronal mismatch responses in the medial prefrontal cortex. PLoS Biol 2020;18:e3001019. [PMID: 33347436 DOI: 10.1371/journal.pbio.3001019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
39 Tabas A, Mihai G, Kiebel S, Trampel R, von Kriegstein K. Abstract rules drive adaptation in the subcortical sensory pathway. Elife 2020;9:e64501. [PMID: 33289479 DOI: 10.7554/eLife.64501] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
40 Lecaignard F, Bertrand O, Caclin A, Mattout J. Empirical Bayes evaluation of fused EEG-MEG source reconstruction: Application to auditory mismatch evoked responses. Neuroimage 2021;226:117468. [PMID: 33075561 DOI: 10.1016/j.neuroimage.2020.117468] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
41 An H, Kei SH, Auksztulewicz R, Schnupp JW. Do auditory mismatch responses differ between acoustic features?. [DOI: 10.1101/2020.10.13.337006] [Reference Citation Analysis]
42 Pralus A, Gomot M, Graves J, Cholvy F, Fornoni L, Tillmann B, Caclin A. Pre-attentive processing of neutral and emotional sounds in congenital amusia.. [DOI: 10.1101/2020.08.05.238204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Xiong C, Liu X, Kong L, Yan J. Thalamic gating contributes to forward suppression in the auditory cortex. PLoS One 2020;15:e0236760. [PMID: 32726372 DOI: 10.1371/journal.pone.0236760] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
44 Parras GG, Valdés-Baizabal C, Harms L, Michie PT, Malmierca MS. The effect of NMDA-R antagonist, MK-801, on neuronal mismatch along the rat auditory thalamocortical pathway. Sci Rep 2020;10:12391. [PMID: 32709861 DOI: 10.1038/s41598-020-68837-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
45 Koshiyama D, Kirihara K, Tada M, Nagai T, Fujioka M, Usui K, Araki T, Kasai K. Reduced Auditory Mismatch Negativity Reflects Impaired Deviance Detection in Schizophrenia. Schizophr Bull 2020;46:937-46. [PMID: 32072183 DOI: 10.1093/schbul/sbaa006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
46 Valdés-Baizabal C, Carbajal GV, Pérez-González D, Malmierca MS. Dopamine modulates subcortical responses to surprising sounds. PLoS Biol 2020;18:e3000744. [PMID: 32559190 DOI: 10.1371/journal.pbio.3000744] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
47 Nager W, Franke T, Wagner-altendorf T, Altenmüller E, Münte TF. Musical Experience Shapes Neural Processing. Zeitschrift für Neuropsychologie 2020;31:81-86. [DOI: 10.1024/1016-264x/a000295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020;14:13. [PMID: 32296311 DOI: 10.3389/fncir.2020.00013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
49 García-Rosales F, López-Jury L, González-Palomares E, Cabral-Calderín Y, Hechavarría JC. Fronto-Temporal Coupling Dynamics During Spontaneous Activity and Auditory Processing in the Bat Carollia perspicillata. Front Syst Neurosci 2020;14:14. [PMID: 32265670 DOI: 10.3389/fnsys.2020.00014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
50 Ruusuvirta T. The release from refractoriness hypothesis of N1 of event-related potentials needs reassessment. Hear Res 2021;399:107923. [PMID: 32089324 DOI: 10.1016/j.heares.2020.107923] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
51 Sur S, Golob EJ. Neural correlates of auditory sensory memory dynamics in the aging brain. Neurobiol Aging 2020;88:128-36. [PMID: 32035848 DOI: 10.1016/j.neurobiolaging.2019.12.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
52 Rogalla MM, Rauser I, Schulze K, Osterhagen L, Hildebrandt KJ. Mice tune out not in: violation of prediction drives auditory saliency. Proc Biol Sci 2020;287:20192001. [PMID: 31992168 DOI: 10.1098/rspb.2019.2001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Fitzgerald K, Todd J. Making Sense of Mismatch Negativity. Front Psychiatry 2020;11:468. [PMID: 32595529 DOI: 10.3389/fpsyt.2020.00468] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 20.3] [Reference Citation Analysis]
54 Knott V, Wright N, Shah D, Baddeley A, Bowers H, de la Salle S, Labelle A. Change in the Neural Response to Auditory Deviance Following Cognitive Therapy for Hallucinations in Patients With Schizophrenia. Front Psychiatry 2020;11:555. [PMID: 32595542 DOI: 10.3389/fpsyt.2020.00555] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
55 Fong CY, Law WHC, Uka T, Koike S. Auditory Mismatch Negativity Under Predictive Coding Framework and Its Role in Psychotic Disorders. Front Psychiatry 2020;11:557932. [PMID: 33132932 DOI: 10.3389/fpsyt.2020.557932] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
56 Krugliakova E, Gorin A, Fedele T, Shtyrov Y, Moiseeva V, Klucharev V, Shestakova A. The Monetary Incentive Delay (MID) Task Induces Changes in Sensory Processing: ERP Evidence. Front Hum Neurosci 2019;13:382. [PMID: 31736730 DOI: 10.3389/fnhum.2019.00382] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
57 Coffey EBJ, Nicol T, White-Schwoch T, Chandrasekaran B, Krizman J, Skoe E, Zatorre RJ, Kraus N. Evolving perspectives on the sources of the frequency-following response. Nat Commun 2019;10:5036. [PMID: 31695046 DOI: 10.1038/s41467-019-13003-w] [Cited by in Crossref: 72] [Cited by in F6Publishing: 77] [Article Influence: 18.0] [Reference Citation Analysis]
58 Valdés-baizabal C, Carbajal GV, Pérez-gonzález D, Malmierca MS. Dopamine modulates prediction error forwarding in the nonlemniscal inferior colliculus.. [DOI: 10.1101/824656] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Lopez Espejo M, Schwartz ZP, David SV. Spectral tuning of adaptation supports coding of sensory context in auditory cortex. PLoS Comput Biol 2019;15:e1007430. [PMID: 31626624 DOI: 10.1371/journal.pcbi.1007430] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
60 Casado-román L, Carbajal GV, Pérez-gonzález D, Malmierca MS. Prediction error signaling explains neuronal mismatch responses in the medial prefrontal cortex.. [DOI: 10.1101/778928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
61 Parras GG, Valdés-baizabal C, Harms L, Michie P, Malmierca MS. The effect of NMDA-R antagonist, MK-801, on neuronal mismatch along the auditory thalamocortical pathway.. [DOI: 10.1101/636068] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Hutchinson JB, Barrett LF. The power of predictions: An emerging paradigm for psychological research. Curr Dir Psychol Sci 2019;28:280-91. [PMID: 31749520 DOI: 10.1177/0963721419831992] [Cited by in Crossref: 67] [Cited by in F6Publishing: 96] [Article Influence: 16.8] [Reference Citation Analysis]
63 Malmierca MS, Niño-aguillón BE, Nieto-diego J, Porteros Á, Pérez-gonzález D, Escera C. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. NeuroImage 2019;184:889-900. [DOI: 10.1016/j.neuroimage.2018.10.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]