BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Villafañe JH, Taveggia G, Galeri S, Bissolotti L, Mullè C, Imperio G, Valdes K, Borboni A, Negrini S. Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand (N Y) 2018;13:95-102. [PMID: 28719996 DOI: 10.1177/1558944717692096] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Wolf K, Mayr A, Nagiller M, Saltuari L, Harders M, Kim Y. PoRi device: portable hand assessment and rehabilitation after stroke. at - Automatisierungstechnik 2022;70:1003-1017. [DOI: 10.1515/auto-2022-0037] [Reference Citation Analysis]
2 Hernández Echarren A, Sánchez Cabeza Á. Dispositivos robóticos de mano en neurorrehabilitación: revisión sistemática sobre viabilidad y efectividad en la rehabilitación del ictus. Rehabilitación 2022. [DOI: 10.1016/j.rh.2022.08.001] [Reference Citation Analysis]
3 Saragih ID, Everard G, Tzeng H, Saragih IS, Lee B. Efficacy of Robots-Assisted Therapy in Patients With Stroke. J Cardiovasc Nurs 2022;Publish Ahead of Print. [DOI: 10.1097/jcn.0000000000000945] [Reference Citation Analysis]
4 Zasadzka E, Tobis S, Trzmiel T, Marchewka R, Kozak D, Roksela A, Pieczyńska A, Hojan K. Application of an EMG-Rehabilitation Robot in Patients with Post-Coronavirus Fatigue Syndrome (COVID-19)-A Feasibility Study. Int J Environ Res Public Health 2022;19:10398. [PMID: 36012033 DOI: 10.3390/ijerph191610398] [Reference Citation Analysis]
5 Coskunsu DK, Akcay S, Ogul OE, Akyol DK, Ozturk N, Zileli F, Tuzun BB, Krespi Y. Effects of robotic rehabilitation on recovery of hand functions in acute stroke: A preliminary randomized controlled study. Acta Neurol Scand 2022. [PMID: 35855628 DOI: 10.1111/ane.13672] [Reference Citation Analysis]
6 Kabir R, Sunny MSH, Ahmed HU, Rahman MH. Hand Rehabilitation Devices: A Comprehensive Systematic Review. Micromachines 2022;13:1033. [DOI: 10.3390/mi13071033] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Rodríguez-pérez MP, Sánchez-herrera-baeza P, Cano-de-la-cuerda R, Camacho-montaño LR, Serrada-tejeda S, Pérez-de-heredia-torres M. Effects of Intensive Vibratory Treatment with a Robotic System on the Recovery of Sensation and Function in Patients with Subacute and Chronic Stroke: A Non-Randomized Clinical Trial. JCM 2022;11:3572. [DOI: 10.3390/jcm11133572] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang Z, Cao C, Chen L, Gu B, Liu S, Xu M, He F, Ming D. Multimodal Neural Response and Effect Assessment During a BCI-Based Neurofeedback Training After Stroke. Front Neurosci 2022;16:884420. [DOI: 10.3389/fnins.2022.884420] [Reference Citation Analysis]
9 Wang Y, Wang L, Wang Y, Lu M, Xu L, Liu R, Wei J, Wan J, Zhang H, Zou Y. Sensorimotor Responses in Post-Stroke Hemiplegic Patients Modulated by Acupuncture at Yanglingquan (GB34): A fMRI Study Using Intersubject Functional Correlation (ISFC) Analysis. Front Neurol 2022;13:900520. [DOI: 10.3389/fneur.2022.900520] [Reference Citation Analysis]
10 Bartík P, Vostrý M, Hudáková Z, Šagát P, Lesňáková A, Dukát A. The Effect of Early Applied Robot-Assisted Physiotherapy on Functional Independence Measure Score in Post-Myocardial Infarction Patients. Healthcare 2022;10:937. [DOI: 10.3390/healthcare10050937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Pignolo L, Tonin P, Nicotera P, Bagetta G, Scuteri D. ROBOCOP (ROBOtic Care of Poststroke Pain): Study Protocol for a Randomized Trial to Assess Robot-Assisted Functional and Motor Recovery and Impact on Poststroke Pain Development. Front Neurol 2022;13:813282. [DOI: 10.3389/fneur.2022.813282] [Reference Citation Analysis]
12 Vysoký R, Konečný P. Rehabilitace a preskripce pohybové aktivity u kardiovaskulárních a vybraných interních onemocnění. 2022. [DOI: 10.5507/fzv.22.24461250] [Reference Citation Analysis]
13 Baude M, Ghedira M, Pradines M, Gracies J. Clinical Assessment of the Syndrome of Spastic Paresis. Spasticity and Muscle Stiffness 2022. [DOI: 10.1007/978-3-030-96900-4_3] [Reference Citation Analysis]
14 Adamini R, Antonini N, Borboni A, Medici S, Nuzzi C, Pagani R, Pezzaioli A, Tonola C. User-friendly human-robot interaction based on voice commands and visual systems. 2021 24th International Conference on Mechatronics Technology (ICMT) 2021. [DOI: 10.1109/icmt53429.2021.9687192] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Borboni A, Marinoni P, Nuzzi C, Faglia R, Pagani R, Panada S. Towards safe collaborative interaction empowered by face recognition. 2021 24th International Conference on Mechatronics Technology (ICMT) 2021. [DOI: 10.1109/icmt53429.2021.9687215] [Reference Citation Analysis]
16 Moggio L, de Sire A, Marotta N, Demeco A, Ammendolia A. Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: systematic review and meta-analysis. Top Stroke Rehabil 2021;:1-12. [PMID: 34420498 DOI: 10.1080/10749357.2021.1967657] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 17.0] [Reference Citation Analysis]
17 Sánchez-Cuesta FJ, Arroyo-Ferrer A, González-Zamorano Y, Vourvopoulos A, Badia SBI, Figuereido P, Serrano JI, Romero JP. Clinical Effects of Immersive Multimodal BCI-VR Training after Bilateral Neuromodulation with rTMS on Upper Limb Motor Recovery after Stroke. A Study Protocol for a Randomized Controlled Trial. Medicina (Kaunas) 2021;57:736. [PMID: 34440942 DOI: 10.3390/medicina57080736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Budhota A, Chua KSG, Hussain A, Kager S, Cherpin A, Contu S, Vishwanath D, Kuah CWK, Ng CY, Yam LHL, Loh YJ, Rajeswaran DK, Xiang L, Burdet E, Campolo D. Robotic Assisted Upper Limb Training Post Stroke: A Randomized Control Trial Using Combinatory Approach Toward Reducing Workforce Demands. Front Neurol 2021;12:622014. [PMID: 34149587 DOI: 10.3389/fneur.2021.622014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
19 Barbosa IM, Alves PR, Silveira ZC. Upper limbs’ assistive devices for stroke rehabilitation: a systematic review on design engineering solutions. J Braz Soc Mech Sci Eng 2021;43. [DOI: 10.1007/s40430-021-02919-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Francisco GE, Li S. Spasticity. Braddom's Physical Medicine and Rehabilitation 2021. [DOI: 10.1016/b978-0-323-62539-5.00023-0] [Reference Citation Analysis]
21 Aprile I, Germanotta M, Cruciani A, Pecchioli C, Loreti S, Papadopoulou D, Montesano A, Galeri S, Diverio M, Falsini C, Speranza G, Langone E, Carrozza MC, Cecchi F. Poststroke shoulder pain in subacute patients and its correlation with upper limb recovery after robotic or conventional treatment: A secondary analysis of a multicenter randomized controlled trial. Int J Stroke 2021;16:396-405. [PMID: 32640881 DOI: 10.1177/1747493020937192] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Chien WT, Chong YY, Tse MK, Chien CW, Cheng HY. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav 2020;10:e01742. [PMID: 32592282 DOI: 10.1002/brb3.1742] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
23 Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020;11:337. [PMID: 32695058 DOI: 10.3389/fneur.2020.00337] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Parker J, Powell L, Mawson S. Effectiveness of Upper Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: Systematic Review. J Med Internet Res 2020;22:e15981. [PMID: 31913131 DOI: 10.2196/15981] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
25 Lee YM, Lee S, Uhm KE, Kurillo G, Han JJ, Lee J. Upper Limb Three-Dimensional Reachable Workspace Analysis Using the Kinect Sensor in Hemiplegic Stroke Patients: A Cross-Sectional Observational Study. Am J Phys Med Rehabil 2020;99:397-403. [PMID: 31725017 DOI: 10.1097/PHM.0000000000001350] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
26 Kim Y. Robotic assisted rehabilitation therapy for enhancing gait and motor function after stroke. Precis Future Med 2019;3:103-15. [DOI: 10.23838/pfm.2019.00065] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
27 Parker J, Powell L, Mawson S. Effectiveness of Upper Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: Systematic Review (Preprint).. [DOI: 10.2196/preprints.15981] [Reference Citation Analysis]
28 Nam HS, Hong N, Cho M, Lee C, Seo HG, Kim S. Vision-Assisted Interactive Human-in-the-Loop Distal Upper Limb Rehabilitation Robot and its Clinical Usability Test. Applied Sciences 2019;9:3106. [DOI: 10.3390/app9153106] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
29 Villafañe JH, Lopez-Royo MP, Herrero P, Valdes K, Cantero-Téllez R, Pedersini P, Negrini S. Prevalence of Myofascial Trigger Points in Poststroke Patients With Painful Shoulders: A Cross-Sectional Study. PM R 2019;11:1077-82. [PMID: 30734521 DOI: 10.1002/pmrj.12123] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
30 Cantero-téllez R, Naughton N, Algar L, Valdes K. Outcome measurement of hand function following mirror therapy for stroke rehabilitation: A systematic review. Journal of Hand Therapy 2019;32:277-291.e1. [DOI: 10.1016/j.jht.2018.01.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
31 Lee GS, Kim SH, Ji DM, Kong DH, Jung YJ, Joo MC, Yun NR, Soh S, Park JW, Kim M. Feasibility and Therapeutic Effects of a Novel Magnet-Based Device for Hand Rehabilitation: a Pilot Study. Brain Neurorehabil 2019;12. [DOI: 10.12786/bn.2019.12.e7] [Reference Citation Analysis]
32 Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2018;9:CD006876. [PMID: 30175845 DOI: 10.1002/14651858.CD006876.pub5] [Cited by in Crossref: 99] [Cited by in F6Publishing: 121] [Article Influence: 24.8] [Reference Citation Analysis]
33 Buraschi R, Pollet J, Alghisi B, Beltrami S, Pedersini P, Piovanelli B, Negrini S. P 159 - Gait in stroke patients is influenced by upper limb functioning: A quantitative analysis correlating QuickDASH with Instrumented TUG and 10MWT. Gait & Posture 2018;65:503-504. [DOI: 10.1016/j.gaitpost.2018.07.080] [Reference Citation Analysis]