BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brazg G, Fahey M, Holleran CL, Connolly M, Woodward J, Hennessy PW, Schmit BD, Hornby TG. Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair 2017;31:944-54. [PMID: 29081250 DOI: 10.1177/1545968317731538] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Evans NH, Field-Fote EC. A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. J Neurol Phys Ther 2022. [PMID: 35544283 DOI: 10.1097/NPT.0000000000000403] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Boerger TF, Hyngstrom AS, Furlan JC, Kalsi-Ryan S, Curt A, Kwon BK, Kurpad SN, Fehlings MG, Harrop JS, Aarabi B, Rahimi-Movaghar V, Guest JD, Wilson JR, Davies BM, Kotter MRN, Koljonen PA. Developing Peri-Operative Rehabilitation in Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 6]: An Unexplored Opportunity? Global Spine J 2022;12:97S-108S. [PMID: 35174735 DOI: 10.1177/21925682211050925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Shibata T, Tashiro S, Shinozaki M, Hashimoto S, Matsumoto M, Nakamura M, Okano H, Nagoshi N. Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury. Exp Neurol 2021;345:113834. [PMID: 34370998 DOI: 10.1016/j.expneurol.2021.113834] [Reference Citation Analysis]
4 Kazim SF, Bowers CA, Cole CD, Varela S, Karimov Z, Martinez E, Ogulnick JV, Schmidt MH. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Reference Citation Analysis]
5 Martins Â, Gouveia D, Cardoso A, Viegas I, Gamboa Ó, Ferreira A. A Comparison Between Body Weight-Supported Treadmill Training and Conventional Over-Ground Training in Dogs With Incomplete Spinal Cord Injury. Front Vet Sci 2021;8:597949. [PMID: 34277746 DOI: 10.3389/fvets.2021.597949] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Musselman KE, Walden K, Noonan VK, Jervis-Rademeyer H, Thorogood N, Bouyer L, Chan B, Donkers S, Ho C, Jeji T, Kaiser A, Klassen TD, Zariffa J, Grant C, Masani K, Zbogar D, Athanasopoulous P; and the Canadian ABT Summit Attendees. Development of priorities for a Canadian strategy to advance activity-based therapies after spinal cord injury. Spinal Cord 2021;59:874-84. [PMID: 34099881 DOI: 10.1038/s41393-021-00644-2] [Reference Citation Analysis]
7 Jacobson PB, Goody R, Lawrence M, Mueller BK, Zhang X, Hooker BA, Pfleeger K, Ziemann A, Locke C, Barraud Q, Droescher M, Bernhard J, Popp A, Boeser P, Huang L, Mollon J, Mordashova Y, Cui YF, Savaryn JP, Grinnell C, Dreher I, Gold M, Courtine G, Mothe A, Tator CH, Guest JD. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol Dis 2021;155:105385. [PMID: 33991647 DOI: 10.1016/j.nbd.2021.105385] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Fahey M, Brazg G, Henderson CE, Plawecki A, Lucas E, Reisman DS, Schmit BD, Hornby TG. The Value of High Intensity Locomotor Training Applied to Patients With Acute-Onset Neurologic Injury. Arch Phys Med Rehabil 2020:S0003-9993(20)31339-3. [PMID: 33383032 DOI: 10.1016/j.apmr.2020.09.399] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Scheets PL, Hornby TG, Perry SB, Sparto P, Riley N, Romney W, Fell D, Kugler K, Nordahl T. Moving Forward. J Neurol Phys Ther 2021;45:46-9. [PMID: 33315836 DOI: 10.1097/NPT.0000000000000337] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhao B, Zhou X, Liu C, Wu S, An L. The effects of walking training onset on motor evoked potentials after acute spinal cord injury. Neurosci Lett 2020;739:135338. [PMID: 32947005 DOI: 10.1016/j.neulet.2020.135338] [Reference Citation Analysis]
11 Liu C, Zhao B, Li W, Zhou X, Jin Z, An L. Effects of body weight-supported treadmill training at different speeds on the motor function and depressive behaviors after spinal cord injury in rats. NeuroReport 2020;31:1265-73. [DOI: 10.1097/wnr.0000000000001543] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Tan AQ, Barth S, Trumbower RD. Acute intermittent hypoxia as a potential adjuvant to improve walking following spinal cord injury: evidence, challenges, and future directions. Curr Phys Med Rehabil Rep 2020;8:188-98. [PMID: 33738145 DOI: 10.1007/s40141-020-00270-8] [Reference Citation Analysis]
13 Lotter JK, Henderson CE, Plawecki A, Holthus ME, Lucas EH, Ardestani MM, Schmit BD, Hornby TG. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair 2020;34:627-39. [PMID: 32476619 DOI: 10.1177/1545968320927384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Lotter JK, Henderson CE, Plawecki A, Holthus ME, Lucas EH, Ardestani MM, Schmit BD, Hornby TG. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabil Neural Repair 2020;34:627-39. [PMID: 32476619 DOI: 10.1177/1545968320927384] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Gallegos C, Carey M, Zheng Y, He X, Cao QL. Reaching and Grasping Training Improves Functional Recovery After Chronic Cervical Spinal Cord Injury. Front Cell Neurosci 2020;14:110. [PMID: 32536855 DOI: 10.3389/fncel.2020.00110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
16 Awad LN, Kudzia P, Revi DA, Ellis TD, Walsh CJ. Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation. IEEE Open J Eng Med Biol 2020;1:108-15. [PMID: 33748765 DOI: 10.1109/ojemb.2020.2984429] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
17 Onushko T, Mahtani GB, Brazg G, Hornby TG, Schmit BD. Exercise-Induced Alterations in Sympathetic-Somatomotor Coupling in Incomplete Spinal Cord Injury. J Neurotrauma 2019;36:2688-97. [PMID: 30696387 DOI: 10.1089/neu.2018.5719] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Aravind N, Harvey LA, Glinsky JV. Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord 2019;57:449-60. [DOI: 10.1038/s41393-019-0242-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
19 Ardestani MM, Henderson CE, Salehi SH, Mahtani GB, Schmit BD, Hornby TG. Kinematic and Neuromuscular Adaptations in Incomplete Spinal Cord Injury after High- versus Low-Intensity Locomotor Training. J Neurotrauma 2019;36:2036-44. [PMID: 30362878 DOI: 10.1089/neu.2018.5900] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Loy K, Bareyre FM. Rehabilitation following spinal cord injury: how animal models can help our understanding of exercise-induced neuroplasticity. Neural Regen Res 2019;14:405-12. [PMID: 30539806 DOI: 10.4103/1673-5374.245951] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
21 Marques M, Nicola F, Sanches E, Arcego D, Durán-carabali L, Aristimunha D, Dalmaz C, Netto C. Locomotor Training Promotes Time-dependent Functional Recovery after Experimental Spinal Cord Contusion. Neuroscience 2018;392:258-69. [DOI: 10.1016/j.neuroscience.2018.08.033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
22 Martinez SA, Nguyen ND, Bailey E, Doyle-Green D, Hauser HA, Handrakis JP, Knezevic S, Marett C, Weinman J, Romero AF, Santiago TM, Yang AH, Yung L, Asselin PK, Weir JP, Kornfeld SD, Bauman WA, Spungen AM, Harel NY. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS One 2018;13:e0202130. [PMID: 30092092 DOI: 10.1371/journal.pone.0202130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Leech KA, Kim HE, Hornby TG. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury. J Neurophysiol 2018;119:894-903. [PMID: 29093168 DOI: 10.1152/jn.00051.2017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]