BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patterson KK, Gage WH, Brooks D, Black SE, Mcilroy WE. Changes in Gait Symmetry and Velocity After Stroke: A Cross-Sectional Study From Weeks to Years After Stroke. Neurorehabil Neural Repair 2010;24:783-90. [DOI: 10.1177/1545968310372091] [Cited by in Crossref: 100] [Cited by in F6Publishing: 85] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Lee S, Lee K, Song C. Gait Training with Bilateral Rhythmic Auditory Stimulation in Stroke Patients: A Randomized Controlled Trial. Brain Sci 2018;8:E164. [PMID: 30200282 DOI: 10.3390/brainsci8090164] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
2 Bae J, Awad LN, Long A, O'Donnell K, Hendron K, Holt KG, Ellis TD, Walsh CJ. Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke. J Exp Biol 2018;221:jeb168815. [PMID: 29361587 DOI: 10.1242/jeb.168815] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
3 Tenenbaum S, Coleman SC, Brodsky JW. Improvement in Gait Following Combined Ankle and Subtalar Arthrodesis. The Journal of Bone and Joint Surgery 2014;96:1863-9. [DOI: 10.2106/jbjs.m.01448] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
4 Imura T, Mitsutake T, Iwamoto Y, Tanaka R. A systematic review of the usefulness of magnetic resonance imaging in predicting the gait ability of stroke patients. Sci Rep 2021;11:14338. [PMID: 34253774 DOI: 10.1038/s41598-021-93717-4] [Reference Citation Analysis]
5 Buesing C, Fisch G, O'Donnell M, Shahidi I, Thomas L, Mummidisetty CK, Williams KJ, Takahashi H, Rymer WZ, Jayaraman A. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil 2015;12:69. [PMID: 26289955 DOI: 10.1186/s12984-015-0062-0] [Cited by in Crossref: 83] [Cited by in F6Publishing: 47] [Article Influence: 11.9] [Reference Citation Analysis]
6 Hsu CJ, Kim J, Wu M. Combined Visual Feedback with Pelvic Assistance Force Improves Step Length during treadmill walking in Individuals with Post-Stroke Hemiparesis. Annu Int Conf IEEE Eng Med Biol Soc 2018;2018:2333-6. [PMID: 30440874 DOI: 10.1109/EMBC.2018.8512811] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Dobkin BH, Xu X, Batalin M, Thomas S, Kaiser W. Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke. Stroke 2011;42:2246-50. [PMID: 21636815 DOI: 10.1161/STROKEAHA.110.611095] [Cited by in Crossref: 80] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
8 Pak NW, Lee JH. Effects of visual feedback training and visual targets on muscle activation, balancing, and walking ability in adults after hemiplegic stroke: a preliminary, randomized, controlled study. Int J Rehabil Res 2020;43:76-81. [PMID: 31633580 DOI: 10.1097/MRR.0000000000000376] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Patterson KK, Wong JS, Nguyen T, Brooks D. A dance program to improve gait and balance in individuals with chronic stroke: a feasibility study. Topics in Stroke Rehabilitation 2018. [DOI: 10.1080/10749357.2018.1469714] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
10 Gama GL, de Lucena LC, Brasileiro ACAL, Silva EMGS, Galvão ÉRVP, Maciel ÁC, Lindquist ARR. Post-stroke hemiparesis: Does chronicity, etiology, and lesion side are associated with gait pattern? Top Stroke Rehabil 2017;24:388-93. [PMID: 28399777 DOI: 10.1080/10749357.2017.1304865] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
11 Crosby LD, Chen JL, Grahn JA, Patterson KK. Perceptions of an over-ground induced temporal gait asymmetry by healthy young adults. Hum Mov Sci 2021;78:102806. [PMID: 34020406 DOI: 10.1016/j.humov.2021.102806] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Swank C, Almutairi S, Wang-Price S, Gao F. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke. Top Stroke Rehabil 2020;27:503-15. [PMID: 32077382 DOI: 10.1080/10749357.2020.1728954] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Gennaro M, Mattiello A, Mazziotti R, Antonelli C, Gherardini L, Guzzetta A, Berardi N, Cioni G, Pizzorusso T. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System. Front Neural Circuits 2017;11:47. [PMID: 28706475 DOI: 10.3389/fncir.2017.00047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
14 Duclos NC, Duclos C, Nadeau S. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait. Gait Posture 2019;68:483-7. [PMID: 30616177 DOI: 10.1016/j.gaitpost.2018.12.037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wakida M, Ohata K, Hashiguchi Y, Mori K, Hase K, Yamada S. Immediate Effect on Ground Reaction Forces Induced by Step Training Based on Discrete Skill during Gait in Poststroke Individuals: A Pilot Study. Rehabil Res Pract 2020;2020:2397374. [PMID: 32509351 DOI: 10.1155/2020/2397374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Anwer S, Li H, Antwi-afari MF, Umer W, Mehmood I, Wong AYL. Effects of load carrying techniques on gait parameters, dynamic balance, and physiological parameters during a manual material handling task. ECAM 2021. [DOI: 10.1108/ecam-03-2021-0245] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Chandler EA, Stone T, Pomeroy VM, Clark AB, Kerr A, Rowe P, Ugbolue UC, Smith J, Hancock NJ. Investigating the Relationships Between Three Important Functional Tasks Early After Stroke: Movement Characteristics of Sit-To-Stand, Sit-To-Walk, and Walking. Front Neurol 2021;12:660383. [PMID: 34054703 DOI: 10.3389/fneur.2021.660383] [Reference Citation Analysis]
18 Tanaka N, Matsushita S, Sonoda Y, Maruta Y, Fujitaka Y, Sato M, Simomori M, Onaka R, Harada K, Hirata T, Kinoshita S, Okamoto T, Okamura H. Effect of Stride Management Assist Gait Training for Poststroke Hemiplegia: A Single Center, Open-Label, Randomized Controlled Trial. J Stroke Cerebrovasc Dis 2019;28:477-86. [PMID: 30420315 DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
19 Adegoke BO, Olaniyi O, Akosile CO. Weight bearing asymmetry and functional ambulation performance in stroke survivors. Glob J Health Sci 2012;4:87-94. [PMID: 22980155 DOI: 10.5539/gjhs.v4n2p87] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
20 Ma CC, Rao N, Muthukrishnan S, Aruin AS. A textured insole improves gait symmetry in individuals with stroke. Disabil Rehabil 2018;40:2798-802. [PMID: 28783984 DOI: 10.1080/09638288.2017.1362477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
21 Middleton A, Braun CH, Lewek MD, Fritz SL. Balance impairment limits ability to increase walking speed in individuals with chronic stroke. Disabil Rehabil 2017;39:497-502. [PMID: 26972087 DOI: 10.3109/09638288.2016.1152603] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
22 Curuk E, Goyal N, Aruin AS. The Effect of Motor and Cognitive Tasks on Gait in People with Stroke. Journal of Stroke and Cerebrovascular Diseases 2019;28:104330. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104330] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
23 Olawale OA, Usman JS, Oke KI, Osundiya OC. Evaluation of Predictive Factors Influencing Community Reintegration in Adult Patients with Stroke. J Neurosci Rural Pract 2018;9:6-10. [PMID: 29456337 DOI: 10.4103/jnrp.jnrp_386_17] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
24 Daly JJ, Zimbelman J, Roenigk KL, McCabe JP, Rogers JM, Butler K, Burdsall R, Holcomb JP, Marsolais EB, Ruff RL. Recovery of coordinated gait: randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. Neurorehabil Neural Repair 2011;25:588-96. [PMID: 21515871 DOI: 10.1177/1545968311400092] [Cited by in Crossref: 81] [Cited by in F6Publishing: 57] [Article Influence: 7.4] [Reference Citation Analysis]
25 Winstein C, Lewthwaite R, Blanton SR, Wolf LB, Wishart L. Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. J Neurol Phys Ther 2014;38:190-200. [PMID: 24828523 DOI: 10.1097/NPT.0000000000000046] [Cited by in Crossref: 76] [Cited by in F6Publishing: 28] [Article Influence: 10.9] [Reference Citation Analysis]
26 Hendrickson J, Patterson KK, Inness EL, Mcilroy WE, Mansfield A. Relationship between asymmetry of quiet standing balance control and walking post-stroke. Gait & Posture 2014;39:177-81. [DOI: 10.1016/j.gaitpost.2013.06.022] [Cited by in Crossref: 107] [Cited by in F6Publishing: 76] [Article Influence: 13.4] [Reference Citation Analysis]
27 Yoshikawa K, Mizukami M, Kawamoto H, Sano A, Koseki K, Sano K, Asakawa Y, Kohno Y, Nakai K, Gosho M, Tsurushima H. Gait training with Hybrid Assistive Limb enhances the gait functions in subacute stroke patients: A pilot study. NeuroRehabilitation 2017;40:87-97. [PMID: 27814305 DOI: 10.3233/NRE-161393] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
28 Mohan DM, Khandoker AH, Wasti SA, Ismail Ibrahim Ismail Alali S, Jelinek HF, Khalaf K. Assessment Methods of Post-stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis. Front Neurol 2021;12:650024. [PMID: 34168608 DOI: 10.3389/fneur.2021.650024] [Reference Citation Analysis]
29 Wright RL, Masood A, Maccormac ES, Pratt D, Sackley CM, Wing AM. Metronome-Cued Stepping in Place after Hemiparetic Stroke: Comparison of a One- and Two-Tone Beat. ISRN Rehabilitation 2013;2013:1-5. [DOI: 10.1155/2013/157410] [Cited by in Crossref: 14] [Article Influence: 1.6] [Reference Citation Analysis]
30 Derungs A, Schuster-Amft C, Amft O. Longitudinal Walking Analysis in Hemiparetic Patients Using Wearable Motion Sensors: Is There Convergence Between Body Sides? Front Bioeng Biotechnol 2018;6:57. [PMID: 29904628 DOI: 10.3389/fbioe.2018.00057] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J Neuroeng Rehabil 2015;12:23. [PMID: 25889283 DOI: 10.1186/s12984-015-0015-7] [Cited by in Crossref: 65] [Cited by in F6Publishing: 41] [Article Influence: 9.3] [Reference Citation Analysis]
32 Combs-Miller SA, Kalpathi Parameswaran A, Colburn D, Ertel T, Harmeyer A, Tucker L, Schmid AA. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial. Clin Rehabil 2014;28:873-84. [PMID: 24519922 DOI: 10.1177/0269215514520773] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
33 Kim W. Subtasks affecting step-length asymmetry in post-stroke hemiparetic walking. Human Movement Science 2016;49:87-94. [DOI: 10.1016/j.humov.2016.06.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
34 Hsu CJ, Kim J, Roth EJ, Rymer WZ, Wu M. Use of Pelvic Corrective Force With Visual Feedback Improves Paretic Leg Muscle Activities and Gait Performance After Stroke. IEEE Trans Neural Syst Rehabil Eng 2019;27:2353-60. [PMID: 31675335 DOI: 10.1109/TNSRE.2019.2950226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Faria CD, Teixeira-Salmela LF, Neto MG, Rodrigues-de-Paula F. Performance-based tests in subjects with stroke: outcome scores, reliability and measurement errors. Clin Rehabil 2012;26:460-9. [PMID: 22008883 DOI: 10.1177/0269215511423849] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
36 Yan R, Zhang Y, Lim J, Yang F, Zhou L, Lyu D, Wang Y, Zou Y, Li Z. The effect and biomechanical mechanisms of intradermal needle for post-stroke hemiplegia recovery: Study protocol for a randomized controlled pilot trial. Medicine (Baltimore) 2018;97:e0448. [PMID: 29668611 DOI: 10.1097/MD.0000000000010448] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Mansfield A, Inness EL, Mcilroy WE. Stroke. Handb Clin Neurol 2018;159:205-28. [PMID: 30482315 DOI: 10.1016/B978-0-444-63916-5.00013-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
38 Guzik A, Drużbicki M, Perenc L, Podgórska-Bednarz J. Can an Observational Gait Scale Produce a Result Consistent with Symmetry Indexes Obtained from 3-Dimensional Gait Analysis?: A Concurrent Validity Study. J Clin Med 2020;9:E926. [PMID: 32231065 DOI: 10.3390/jcm9040926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Rozanski GM, Wong JS, Inness EL, Patterson KK, Mansfield A. Longitudinal change in spatiotemporal gait symmetry after discharge from inpatient stroke rehabilitation. Disability and Rehabilitation 2020;42:705-11. [DOI: 10.1080/09638288.2018.1508508] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
40 Tan CK, Kadone H, Watanabe H, Marushima A, Yamazaki M, Sankai Y, Suzuki K. Lateral Symmetry of Synergies in Lower Limb Muscles of Acute Post-stroke Patients After Robotic Intervention. Front Neurosci 2018;12:276. [PMID: 29922121 DOI: 10.3389/fnins.2018.00276] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
41 Murley GS, Menz HB, Landorf KB. Electromyographic patterns of tibialis posterior and related muscles when walking at different speeds. Gait Posture 2014;39:1080-5. [PMID: 24618372 DOI: 10.1016/j.gaitpost.2014.01.018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
42 Valero-Cuevas FJ, Klamroth-Marganska V, Winstein CJ, Riener R. Robot-assisted and conventional therapies produce distinct rehabilitative trends in stroke survivors. J Neuroeng Rehabil 2016;13:92. [PMID: 27724916 DOI: 10.1186/s12984-016-0199-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
43 Gao, Cui, Ji, Wang, Hu, Liu. A Parametric Identification Method of Human Gait Differences and its Application in Rehabilitation. Applied Sciences 2019;9:4581. [DOI: 10.3390/app9214581] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
44 Abdollahi M, Kuber PM, Shiraishi M, Soangra R, Rashedi E. Kinematic Analysis of 360° Turning in Stroke Survivors Using Wearable Motion Sensors. Sensors (Basel) 2022;22:385. [PMID: 35009931 DOI: 10.3390/s22010385] [Reference Citation Analysis]
45 Chen IH, Yang YR, Lu CF, Wang RY. Novel gait training alters functional brain connectivity during walking in chronic stroke patients: a randomized controlled pilot trial. J Neuroeng Rehabil 2019;16:33. [PMID: 30819259 DOI: 10.1186/s12984-019-0503-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
46 Springer S, Vatine JJ, Lipson R, Wolf A, Laufer Y. Effects of dual-channel functional electrical stimulation on gait performance in patients with hemiparesis. ScientificWorldJournal 2012;2012:530906. [PMID: 23097635 DOI: 10.1100/2012/530906] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
47 Crosby LD, Chen JL, Grahn JA, Patterson KK. The Effect of Rhythm Abilities on Metronome-Cued Walking with an Induced Temporal Gait Asymmetry in Neurotypical Adults. J Mot Behav 2021;:1-14. [PMID: 34334109 DOI: 10.1080/00222895.2021.1953959] [Reference Citation Analysis]
48 Kyeong S, Kim DH. Lesion-based structural and functional networks in patients with step length asymmetry after stroke. NeuroRehabilitation 2021;48:133-8. [PMID: 33386823 DOI: 10.3233/NRE-201555] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Hsu CJ, Kim J, Tang R, Roth EJ, Rymer WZ, Wu M. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking. Clin Neurophysiol 2017;128:1915-22. [PMID: 28826022 DOI: 10.1016/j.clinph.2017.07.409] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
50 Powers J, Wallace A, Mansfield A, Mochizuki G, Patterson KK. The effect of frequency of feedback on overground temporal gait asymmetry post stroke. Top Stroke Rehabil 2021;:1-10. [PMID: 34289782 DOI: 10.1080/10749357.2021.1943796] [Reference Citation Analysis]
51 Rozanski GM, Huntley AH, Crosby LD, Schinkel-Ivy A, Mansfield A, Patterson KK. Lower limb muscle activity underlying temporal gait asymmetry post-stroke. Clin Neurophysiol 2020;131:1848-58. [PMID: 32570199 DOI: 10.1016/j.clinph.2020.04.171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
52 Wei TS, Liu PT, Chang LW, Liu SY. Gait asymmetry, ankle spasticity, and depression as independent predictors of falls in ambulatory stroke patients. PLoS One 2017;12:e0177136. [PMID: 28542281 DOI: 10.1371/journal.pone.0177136] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
53 Wang Y, Mukaino M, Ohtsuka K, Otaka Y, Tanikawa H, Matsuda F, Tsuchiyama K, Yamada J, Saitoh E. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int J Rehabil Res 2020;43:69-75. [PMID: 31855899 DOI: 10.1097/MRR.0000000000000391] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
54 Titus AW, Hillier S, Louw QA, Inglis-Jassiem G. An analysis of trunk kinematics and gait parameters in people with stroke. Afr J Disabil 2018;7:310. [PMID: 29707514 DOI: 10.4102/ajod.v7i0.310] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
55 Duclos NC, Aguiar LT, Aissaoui R, Faria CD, Nadeau S, Duclos C. Activity Monitor Placed at the Nonparetic Ankle Is Accurate in Measuring Step Counts During Community Walking in Poststroke Individuals: A Validation Study. PM&R 2019;11:963-71. [DOI: 10.1002/pmrj.12080] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
56 Crosby LD, Wong JS, Chen JL, Grahn J, Patterson KK. An Initial Investigation of the Responsiveness of Temporal Gait Asymmetry to Rhythmic Auditory Stimulation and the Relationship to Rhythm Ability Following Stroke. Front Neurol 2020;11:517028. [PMID: 33123067 DOI: 10.3389/fneur.2020.517028] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Sanchez N, Schweighofer N, Finley JM. Different Biomechanical Variables Explain Within-Subjects Versus Between-Subjects Variance in Step Length Asymmetry Post-Stroke. IEEE Trans Neural Syst Rehabil Eng 2021;29:1188-98. [PMID: 34138713 DOI: 10.1109/TNSRE.2021.3090324] [Reference Citation Analysis]
58 Kumari N, Taylor D, Olsen S, Rashid U, Signal N. Cerebellar Transcranial Direct Current Stimulation for Motor Learning in People with Chronic Stroke: A Pilot Randomized Controlled Trial. Brain Sci 2020;10:E982. [PMID: 33327476 DOI: 10.3390/brainsci10120982] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Lauzière S, Miéville C, Betschart M, Aissaoui R, Nadeau S. Plantarflexor weakness is a determinant of kinetic asymmetry during gait in post-stroke individuals walking with high levels of effort. Clin Biomech (Bristol, Avon) 2015;30:946-52. [PMID: 26209904 DOI: 10.1016/j.clinbiomech.2015.07.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
60 Shamsi F, Nami M, Aligholi H, Borhani-haghighi A, Zahediannasb R, Hekmatnia M, Karimi MT. The effects of action observation training as an add-on rehabilitation strategy on the walking ability of patients with chronic stroke. Journal of Bodywork and Movement Therapies 2022;29:33-9. [DOI: 10.1016/j.jbmt.2021.09.029] [Reference Citation Analysis]
61 Szopa A, Domagalska-Szopa M, Lasek-Bal A, Żak A. The link between weight shift asymmetry and gait disturbances in chronic hemiparetic stroke patients. Clin Interv Aging 2017;12:2055-62. [PMID: 29238181 DOI: 10.2147/CIA.S144795] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Patterson KK, Mansfield A, Biasin L, Brunton K, Inness EL, Mcilroy WE. Longitudinal Changes in Poststroke Spatiotemporal Gait Asymmetry Over Inpatient Rehabilitation. Neurorehabil Neural Repair 2015;29:153-62. [DOI: 10.1177/1545968314533614] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 7.3] [Reference Citation Analysis]
63 Cherry-Allen KM, Statton MA, Celnik PA, Bastian AJ. A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke. Neurorehabil Neural Repair 2018;32:810-20. [PMID: 30086670 DOI: 10.1177/1545968318792623] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
64 Cho KH, Park SJ. Effects of joint mobilization and stretching on the range of motion for ankle joint and spatiotemporal gait variables in stroke patients. J Stroke Cerebrovasc Dis 2020;29:104933. [PMID: 32689617 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104933] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Cleland B, Madhavan S. Changes in Walking Speed After High-Intensity Treadmill Training Are Independent of Changes in Spatiotemporal Symmetry After Stroke. Front Neurol 2021;12:647338. [PMID: 33868151 DOI: 10.3389/fneur.2021.647338] [Reference Citation Analysis]
66 Tan CK, Kadone H, Watanabe H, Marushima A, Hada Y, Yamazaki M, Sankai Y, Matsumura A, Suzuki K. Differences in Muscle Synergy Symmetry Between Subacute Post-stroke Patients With Bioelectrically-Controlled Exoskeleton Gait Training and Conventional Gait Training. Front Bioeng Biotechnol 2020;8:770. [PMID: 32850696 DOI: 10.3389/fbioe.2020.00770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
67 Lawrence EL, Dayanidhi S, Fassola I, Requejo P, Leclercq C, Winstein CJ, Valero-Cuevas FJ. Outcome measures for hand function naturally reveal three latent domains in older adults: strength, coordinated upper extremity function, and sensorimotor processing. Front Aging Neurosci 2015;7:108. [PMID: 26097455 DOI: 10.3389/fnagi.2015.00108] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
68 Wu M, Hsu CJ, Kim J. Motor adaptation to lateral pelvis assistance force during treadmill walking in individuals post-stroke. IEEE Int Conf Rehabil Robot 2017;2017:300-3. [PMID: 28813835 DOI: 10.1109/ICORR.2017.8009263] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Wong PL, Yang YR, Tang SC, Huang SF, Wang RY. Comparing different montages of transcranial direct current stimulation on dual-task walking and cortical activity in chronic stroke: double-blinded randomized controlled trial. BMC Neurol 2022;22:119. [PMID: 35337288 DOI: 10.1186/s12883-022-02644-y] [Reference Citation Analysis]
70 Combs SA, Dugan EL, Ozimek EN, Curtis AB. Bilateral coordination and gait symmetry after body-weight supported treadmill training for persons with chronic stroke. Clinical Biomechanics 2013;28:448-53. [DOI: 10.1016/j.clinbiomech.2013.02.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
71 Wang RY, Wang FY, Huang SF, Yang YR. High-frequency repetitive transcranial magnetic stimulation enhanced treadmill training effects on gait performance in individuals with chronic stroke: A double-blinded randomized controlled pilot trial. Gait Posture 2019;68:382-7. [PMID: 30586670 DOI: 10.1016/j.gaitpost.2018.12.023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
72 Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol Clin 2015;45:335-55. [PMID: 26547547 DOI: 10.1016/j.neucli.2015.09.005] [Cited by in Crossref: 103] [Cited by in F6Publishing: 80] [Article Influence: 14.7] [Reference Citation Analysis]
73 Bishop L, Omofuma I, Stein J, Agrawal S, Quinn L. Treadmill-Based Locomotor Training With Robotic Pelvic Assist and Visual Feedback: A Feasibility Study. J Neurol Phys Ther 2020;44:205-13. [PMID: 32516301 DOI: 10.1097/NPT.0000000000000317] [Reference Citation Analysis]
74 Carse B, Bowers R, Meadows BC, Rowe P. The immediate effects of fitting and tuning solid ankle–foot orthoses in early stroke rehabilitation. Prosthetics & Orthotics International 2015;39:454-62. [DOI: 10.1177/0309364614538090] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
75 Gonzalez-Suarez CB, Ogerio CGV, Dela Cruz AR, Roxas EA, Fidel BC, Fernandez MRL, Cruz C. Motor Impairment and Its Influence in Gait Velocity and Asymmetry in Community Ambulating Hemiplegic Individuals. Arch Rehabil Res Clin Transl 2021;3:100093. [PMID: 33778469 DOI: 10.1016/j.arrct.2020.100093] [Reference Citation Analysis]
76 Sessa S, Zecca M, Bartolomeo L, Takashima T, Fujimoto H, Takanishi A. Reliability of the step phase detection using inertial measurement units: pilot study. Healthc Technol Lett 2015;2:58-63. [PMID: 26609406 DOI: 10.1049/htl.2014.0103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
77 Yan S, Liu Y, Li W, Zhang K. Gait phase detection by using a portable system and artificial neural network. Medicine in Novel Technology and Devices 2021;12:100092. [DOI: 10.1016/j.medntd.2021.100092] [Reference Citation Analysis]
78 Kim J, Jung S, Song C. The Effects of Auditory Feedback Gait Training Using Smart Insole on Stroke Patients. Brain Sci 2021;11:1377. [PMID: 34827376 DOI: 10.3390/brainsci11111377] [Reference Citation Analysis]
79 Patterson KK, Nadkarni NK, Black SE, McIlroy WE. Gait symmetry and velocity differ in their relationship to age. Gait Posture 2012;35:590-4. [PMID: 22300728 DOI: 10.1016/j.gaitpost.2011.11.030] [Cited by in Crossref: 46] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
80 Guzik A, Drużbicki M, Kwolek A, Przysada G, Brzozowska-Magoń A, Wolan-Nieroda A, Ćwirlej-Sozańska A, Wiśniowska-Szurlej A, Wyszyńska J. Analysis of the association between selected factors and outcomes of treadmill gait training with biofeedback in patients with chronic stroke. J Back Musculoskelet Rehabil 2020;33:159-68. [PMID: 31282393 DOI: 10.3233/BMR-170991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Caldas R, Mundt M, Potthast W, Buarque de Lima Neto F, Markert B. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait & Posture 2017;57:204-10. [DOI: 10.1016/j.gaitpost.2017.06.019] [Cited by in Crossref: 115] [Cited by in F6Publishing: 63] [Article Influence: 23.0] [Reference Citation Analysis]
82 Monjo H, Fukumoto Y, Asai T, Shuntoh H. Muscle Thickness and Echo Intensity of the Abdominal and Lower Extremity Muscles in Stroke Survivors. J Clin Neurol 2018;14:549-54. [PMID: 30198230 DOI: 10.3988/jcn.2018.14.4.549] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
83 van Nunen MP, Gerrits KH, Konijnenbelt M, Janssen TW, de Haan A. Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol 2015;10:141-8. [PMID: 24611590 DOI: 10.3109/17483107.2013.873489] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
84 Nakamura T, Miyoshi T, Sato S, Takagi M, Kamada Y, Kobayashi Y. Differences in soccer kicking type identified using principal component analysis. Sports Eng 2018;21:149-59. [DOI: 10.1007/s12283-017-0259-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
85 Patterson KK, Wong JS, Knorr S, Grahn JA. Rhythm Perception and Production Abilities and Their Relationship to Gait After Stroke. Archives of Physical Medicine and Rehabilitation 2018;99:945-51. [DOI: 10.1016/j.apmr.2018.01.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
86 Bishop L, Khan M, Martelli D, Quinn L, Stein J, Agrawal S. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports. Am J Phys Med Rehabil 2017;96:S135-40. [PMID: 28661914 DOI: 10.1097/PHM.0000000000000779] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
87 Ward SH, Wiedemann L, Stinear J, Stinear C, McDaid A. The effect of a novel gait retraining device on lower limb kinematics and muscle activation in healthy adults. J Biomech 2018;77:183-9. [PMID: 30037576 DOI: 10.1016/j.jbiomech.2018.07.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Kerr, Rowe, Clarke, Chandler, Smith, Ugbolue, Pomeroy. Biomechanical correlates for recovering walking speed following a stroke. The potential of tibia to vertical angle as a therapy target. Gait Posture 2020;76:162-7. [PMID: 31862664 DOI: 10.1016/j.gaitpost.2019.12.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
89 Karniel N, Raveh E, Schwartz I, Portnoy S. Functional electrical stimulation compared with ankle-foot orthosis in subacute post stroke patients with foot drop: A pilot study. Assist Technol 2021;33:9-16. [PMID: 30945999 DOI: 10.1080/10400435.2019.1579269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Middleton A, Fritz SL. Assessment of Gait, Balance, and Mobility in Older Adults: Considerations for Clinicians. Curr Transl Geriatr and Exp Gerontol Rep 2013;2:205-14. [DOI: 10.1007/s13670-013-0057-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
91 Yousuf S, Atif F, Sayeed I, Tang H, Wang J, Stein DG. Long-term behavioral deficits and recovery after transient ischemia in middle-aged rats: Effects of behavioral testing. RNN 2015;33:251-61. [DOI: 10.3233/rnn-140450] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
92 Lee IH. Does the speed of the treadmill influence the training effect in people learning to walk after stroke? A double-blind randomized controlled trial. Clin Rehabil 2015;29:269-76. [PMID: 25027443 DOI: 10.1177/0269215514542637] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
93 Sánchez N, Finley JM. Individual Differences in Locomotor Function Predict the Capacity to Reduce Asymmetry and Modify the Energetic Cost of Walking Poststroke. Neurorehabil Neural Repair 2018;32:701-13. [DOI: 10.1177/1545968318787913] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
94 McCain EM, Berno ME, Libera TL, Lewek MD, Sawicki GS, Saul KR. Reduced joint motion supersedes asymmetry in explaining increased metabolic demand during walking with mechanical restriction. J Biomech 2021;126:110621. [PMID: 34284306 DOI: 10.1016/j.jbiomech.2021.110621] [Reference Citation Analysis]