BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khodabandehlou K, Masehi-Lano JJ, Poon C, Wang J, Chung EJ. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med (Maywood) 2017;242:799-812. [PMID: 28195515 DOI: 10.1177/1535370217693116] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhao CR, Li J, Jiang ZT, Zhu JJ, Zhao JN, Yang QR, Yao W, Pang W, Li N, Yu M, Gan Y, Zhou J. Disturbed Flow-Facilitated Margination and Targeting of Nanodisks Protect against Atherosclerosis. Small 2023;19:e2204694. [PMID: 36403215 DOI: 10.1002/smll.202204694] [Reference Citation Analysis]
2 Liu H, Liu J, Long C, Chen L, Zhan W, Xiao W, Gong X, Liu M, Tian X, Chen S. Lack of NPR1 Increases Vascular Endothelial Adhesion through Induction of Integrin Beta 4. IJMS 2022;23:12627. [DOI: 10.3390/ijms232012627] [Reference Citation Analysis]
3 Zulkapli R, Yusof MYPM, Abd Muid S, Wang SM, Firus Khan AY, Nawawi H. A Systematic Review on Attenuation of PCSK9 in Relation to Atherogenesis Biomarkers Associated with Natural Products or Plant Bioactive Compounds in In Vitro Studies: A Critique on the Quality and Imprecision of Studies. Int J Environ Res Public Health 2022;19. [PMID: 36232177 DOI: 10.3390/ijerph191912878] [Reference Citation Analysis]
4 Qiu D, Hu J, Wang P, Huang D, Lin Y, Tian H, Yi X, Zou Q, Zhu H. Synthesis of NaYF4:20% Yb3+,2% Er3+,2% Ce3+@NaYF4 nanorods and their size dependent uptake efficiency under flow condition. Journal of Rare Earths 2022;40:1519-26. [DOI: 10.1016/j.jre.2021.08.004] [Reference Citation Analysis]
5 Kalinin RE, Korotkova NV, Suchkov IA, Mzhavanadze ND, Ryabkov AN. Selectins and their involvement in the pathogenesis of cardiovascular diseases. Kazan Med J 2022;103:617-627. [DOI: 10.17816/kmj2022-617] [Reference Citation Analysis]
6 Muñoz-ortiz T, Hu J, Sanz-rodríguez F, Ortgies DH, Jaque D, Méndez-gonzález D, Aguilar R, Alfonso F, Rivero F, Martín Rodríguez E, García Solé J. Optical detection of atherosclerosis at molecular level by optical coherence tomography: An in vitro study. Nanomedicine: Nanotechnology, Biology and Medicine 2022;43:102556. [DOI: 10.1016/j.nano.2022.102556] [Reference Citation Analysis]
7 Li Z, Jiang C, Chai L, Fan T, Li C, Chen Z, Huang W, Zhang B, Al-hartomy OA, Al-ghamdi A, Wageh AS, Al-sehemi G, Kang L, Liu Q, Liu X, Geng Q, Xie Z, Zhang H. New insights to atherosclerosis management: Role of nanomaterials. Applied Materials Today 2022;27:101466. [DOI: 10.1016/j.apmt.2022.101466] [Reference Citation Analysis]
8 Nong J, Glassman PM, Muzykantov VR. Targeting vascular inflammation through emerging methods and drug carriers. Adv Drug Deliv Rev 2022;184:114180. [PMID: 35271986 DOI: 10.1016/j.addr.2022.114180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Zinellu A, Mangoni AA. A systematic review and meta-analysis of the effect of statin treatment on sVCAM-1 and sICAM-1. Expert Rev Clin Pharmacol 2022. [PMID: 35485866 DOI: 10.1080/17512433.2022.2072294] [Reference Citation Analysis]
10 Praveen TK, Gangadharappa HV, Abu Lila AS, Moin A, Mehmood K, Krishna KL, Hussain T, Alafanan A, Shakil S, Rizvi SMD. Inflammation targeted nanomedicines: patents and applications in cancer therapy. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.04.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Forouzandehmehr M, Ghoytasi I, Shamloo A, Ghosi S. Particles in coronary circulation: A review on modelling for drug carrier design. Materials & Design 2022;216:110511. [DOI: 10.1016/j.matdes.2022.110511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Cheraga N, Ye Z, Xu M, Zou L, Sun N, Hang Y, Shan C, Yang Z, Chen L, Huang N. Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. Nanoscale. [DOI: 10.1039/d1nr06514a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Hossaini Nasr S, Huang X. Nanotechnology for Targeted Therapy of Atherosclerosis. Front Pharmacol 2021;12:755569. [PMID: 34867370 DOI: 10.3389/fphar.2021.755569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Bazban-shotorbani S, Gavins F, Kant K, Dufva M, Kamaly N. A Biomicrofluidic Screening Platform for Dysfunctional Endothelium‐Targeted Nanoparticles and Therapeutics. Advanced NanoBiomed Research 2022;2:2100092. [DOI: 10.1002/anbr.202100092] [Reference Citation Analysis]
15 Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021;240:123-36. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Zhang G, Ma L, Bai L, Li M, Guo T, Tian B, He Z, Fu Q. Inflammatory microenvironment-targeted nanotherapies. J Control Release 2021;334:114-26. [PMID: 33887284 DOI: 10.1016/j.jconrel.2021.04.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
17 Bazban-shotorbani S, Kamaly N. Investigating VCAM-1 Targeted Nanoparticles and Annexin A1 Therapy using Dysfunctional-endothelium-on-a-chip.. [DOI: 10.1101/2021.05.09.443301] [Reference Citation Analysis]
18 Mogylnytska L. The level of adhesion molecules in polycystic ovary syndrome. RHW 2021. [DOI: 10.30841/2708-8731.2.2021.232555] [Reference Citation Analysis]
19 Wei G, Hao L, Li X, Xu W, Liu F, Peng Q, Lv S. VCAM-1-targeted and PPARδ-agonist-loaded nanomicelles enhanced suppressing effects on apoptosis and migration of oxidized low-density lipoprotein-induced vascular smooth muscle cells. Biosci Rep 2020;40:BSR20200559. [PMID: 32314783 DOI: 10.1042/BSR20200559] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Nakkala JR, Li Z, Ahmad W, Wang K, Gao C. Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater 2021;123:1-30. [PMID: 33484912 DOI: 10.1016/j.actbio.2021.01.025] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
21 Petreski T, Piko N, Ekart R, Hojs R, Bevc S. Review on Inflammation Markers in Chronic Kidney Disease. Biomedicines 2021;9:182. [PMID: 33670423 DOI: 10.3390/biomedicines9020182] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
22 Fleischmann D, Maslanka Figueroa S, Goepferich A. Steric Shielding of cRGD-Functionalized Nanoparticles from Premature Exposition to Off-Target Endothelial Cells under a Physiological Flow. ACS Appl Bio Mater 2021;4:640-50. [DOI: 10.1021/acsabm.0c01193] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
23 Zhang M, Du Y, Wang S, Chen B. A Review of Biomimetic Nanoparticle Drug Delivery Systems Based on Cell Membranes. Drug Des Devel Ther 2020;14:5495-503. [PMID: 33363358 DOI: 10.2147/DDDT.S282368] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
24 Utsunomiya A, Oyama N, Hasegawa M. Potential Biomarkers in Systemic Sclerosis: A Literature Review and Update. J Clin Med 2020;9:E3388. [PMID: 33105647 DOI: 10.3390/jcm9113388] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
25 Zhong M, Zhang X, Shi X, Zheng C. Halofuginone inhibits LPS-induced attachment of monocytes to HUVECs. International Immunopharmacology 2020;87:106753. [DOI: 10.1016/j.intimp.2020.106753] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Li J, Tan T, Zhao L, Liu M, You Y, Zeng Y, Chen D, Xie T, Zhang L, Fu C, Zeng Z. Recent Advancements in Liposome-Targeting Strategies for the Treatment of Gliomas: A Systematic Review. ACS Appl Bio Mater 2020;3:5500-28. [PMID: 35021787 DOI: 10.1021/acsabm.0c00705] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
27 Fereydouni Z, Amirinezhad Fard E, Mansouri K, Mohammadi Motlagh HR, Mostafaie A. Saponins from Tribulus terrestris L. Extract Down-regulate the Expression of ICAM-1, VCAM-1 and E-selectin in Human Endothelial Cell Lines. Int J Mol Cell Med 2020;9:73-83. [PMID: 32832486 DOI: 10.22088/IJMCM.BUMS.9.1.73] [Reference Citation Analysis]
28 Li W, Li Y, Zhao Y, Ren L. The protective effects of aloperine against ox-LDL-induced endothelial dysfunction and inflammation in HUVECs. Artif Cells Nanomed Biotechnol 2020;48:107-15. [PMID: 31852304 DOI: 10.1080/21691401.2019.1699816] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
29 Zukerman H, Khoury M, Shammay Y, Sznitman J, Lotan N, Korin N. Targeting functionalized nanoparticles to activated endothelial cells under high wall shear stress. Bioeng Transl Med 2020;5:e10151. [PMID: 32440559 DOI: 10.1002/btm2.10151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
30 Kheradmandi M, Ackers I, Burdick MM, Malgor R, Farnoud AM. Targeting Dysfunctional Vascular Endothelial Cells Using Immunoliposomes Under Flow Conditions. Cell Mol Bioeng 2020;13:189-99. [PMID: 32426057 DOI: 10.1007/s12195-020-00616-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
31 Wang S, Wang F, Yang L, Li Q, Huang Y, Cheng Z, Chu H, Song Y, Shang L, Hao W, Wei X. Effects of coal-fired PM2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE-/- mice. BMC Pharmacol Toxicol 2020;21:34. [PMID: 32384920 DOI: 10.1186/s40360-020-00411-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
32 Emami N, Pakchin PS, Ferdousi R. Computational predictive approaches for interaction and structure of aptamers. J Theor Biol 2020;497:110268. [PMID: 32311376 DOI: 10.1016/j.jtbi.2020.110268] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
33 Mohd Ariff A, Abu Bakar NA, Abd Muid S, Omar E, Ismail NH, Ali AM, Mohd Kasim NA, Mohd Nawawi H. Ficus deltoidea suppresses endothelial activation, inflammation, monocytes adhesion and oxidative stress via NF-κB and eNOS pathways in stimulated human coronary artery endothelial cells. BMC Complement Med Ther 2020;20:56. [PMID: 32066426 DOI: 10.1186/s12906-020-2844-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
34 Camacho OM, Hedge A, Lowe F, Newland N, Gale N, McEwan M, Proctor C. Statistical analysis plan for "A randomised, controlled study to evaluate the effects of switching from cigarette smoking to using a tobacco heating product on health effect indicators in healthy subjects". Contemp Clin Trials Commun 2020;17:100535. [PMID: 32072070 DOI: 10.1016/j.conctc.2020.100535] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
35 Wang P, Kim T, Harada M, Contag C, Huang X, Smith BR. Nano-immunoimaging. Nanoscale Horiz 2020;5:628-53. [DOI: 10.1039/c9nh00514e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
36 Nurhidayah D, Maruf A, Zhang X, Liao X, Wu W, Wang G. Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine (Lond) 2019;14:3105-22. [PMID: 31823682 DOI: 10.2217/nnm-2019-0172] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
37 Hintermann E, Christen U. The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells 2019;8:E1503. [PMID: 31771248 DOI: 10.3390/cells8121503] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
38 Rashad NM, El-Shal AS, Abomandour HG, Aboelfath AMK, Rafeek MES, Badr MS, Ali AE, Yousef MS, Fathy MA, Sharaf El Din MTA. Intercellular adhesion molecule-1 expression and serum levels as markers of pre-clinical atherosclerosis in polycystic ovary syndrome. J Ovarian Res 2019;12:97. [PMID: 31629408 DOI: 10.1186/s13048-019-0566-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
39 Meng LB, Shan MJ, Qiu Y, Qi R, Yu ZM, Guo P, Di CY, Gong T. TPM2 as a potential predictive biomarker for atherosclerosis. Aging (Albany NY) 2019;11:6960-82. [PMID: 31487691 DOI: 10.18632/aging.102231] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
40 Da Silva-candal A, Brown T, Krishnan V, Lopez-loureiro I, Ávila-gómez P, Pusuluri A, Pérez-díaz A, Correa-paz C, Hervella P, Castillo J, Mitragotri S, Campos F. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. Journal of Controlled Release 2019;309:94-105. [DOI: 10.1016/j.jconrel.2019.07.026] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 14.3] [Reference Citation Analysis]
41 Chan MM, Yang X, Wang H, Saaoud F, Sun Y, Fong D. The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis. Nutrients 2019;11:E1821. [PMID: 31394758 DOI: 10.3390/nu11081821] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
42 Fuior EV, Deleanu M, Constantinescu CA, Rebleanu D, Voicu G, Simionescu M, Calin M. Functional Role of VCAM-1 Targeted Flavonoid-Loaded Lipid Nanoemulsions in Reducing Endothelium Inflammation. Pharmaceutics 2019;11:E391. [PMID: 31382634 DOI: 10.3390/pharmaceutics11080391] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
43 Tan A, Lam YY, Pacot O, Hawley A, Boyd BJ. Probing cell-nanoparticle (cubosome) interactions at the endothelial interface: do tissue dimension and flow matter? Biomater Sci 2019;7:3460-70. [PMID: 31268062 DOI: 10.1039/c9bm00243j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
44 Xu W, Zhang S, Zhou Q, Chen W. VHPKQHR peptide modified magnetic mesoporous nanoparticles for MRI detection of atherosclerosis lesions. Artificial Cells, Nanomedicine, and Biotechnology 2019;47:2440-8. [DOI: 10.1080/21691401.2019.1626411] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
45 Chin DD, Chowdhuri S, Chung EJ. Calcium-Binding Nanoparticles for Vascular Disease. Regen Eng Transl Med 2019;5:74-85. [DOI: 10.1007/s40883-018-0083-x] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
46 Liu Y, Yang F, Zou S, Qu L. Rapamycin: A Bacteria-Derived Immunosuppressant That Has Anti-atherosclerotic Effects and Its Clinical Application. Front Pharmacol 2018;9:1520. [PMID: 30666207 DOI: 10.3389/fphar.2018.01520] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
47 Shamloo A, Forouzandehmehr M. Personalised deposition maps for micro- and nanoparticles targeting an atherosclerotic plaque: attributions to the receptor-mediated adsorption on the inflamed endothelial cells. Biomech Model Mechanobiol 2019;18:813-28. [DOI: 10.1007/s10237-018-01116-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
48 Langert KA, Brey EM. Strategies for Targeted Delivery to the Peripheral Nerve. Front Neurosci 2018;12:887. [PMID: 30542262 DOI: 10.3389/fnins.2018.00887] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
49 Taneja G, Sud A, Pendse N, Panigrahi B, Kumar A, Sharma AK. Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies. Cardiovasc Toxicol 2019;19:1-12. [DOI: 10.1007/s12012-018-9491-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
50 Poon C, Gallo J, Joo J, Chang T, Bañobre-López M, Chung EJ. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J Nanobiotechnology 2018;16:92. [PMID: 30442135 DOI: 10.1186/s12951-018-0420-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
51 Joo J, Poon C, Yoo SP, Chung EJ. Shape Effects of Peptide Amphiphile Micelles for Targeting Monocytes. Molecules 2018;23:E2786. [PMID: 30373234 DOI: 10.3390/molecules23112786] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
52 Lee J, Bontekoe J, Trac B, Bansal V, Biller J, Hoppensteadt D, Maia P, Walborn A, Fareed J. Biomarker Profiling of Neurovascular Diseases in Patients with Stage 5 Chronic Kidney Disease. Clin Appl Thromb Hemost 2018;24:248S-54S. [PMID: 30348002 DOI: 10.1177/1076029618807565] [Reference Citation Analysis]
53 Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials 2019;198:3-26. [PMID: 30343824 DOI: 10.1016/j.biomaterials.2018.09.036] [Cited by in Crossref: 96] [Cited by in F6Publishing: 98] [Article Influence: 19.2] [Reference Citation Analysis]
54 Chang W, Yu Y, Cheng A. Curcumin suppresses pro-inflammatory adhesion response in Human Umbilical Vein Endothelial Cells. J Food Biochem 2018;42:e12623. [DOI: 10.1111/jfbc.12623] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
55 Hijmans JG, Bammert TD, Stockelman KA, Reiakvam WR, Greiner JJ, DeSouza CA. High glucose-induced endothelial microparticles increase adhesion molecule expression on endothelial cells. Diabetol Int 2019;10:143-7. [PMID: 31139533 DOI: 10.1007/s13340-018-0375-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
56 Wang J, Poon C, Chin D, Milkowski S, Lu V, Hallows KR, Chung EJ. Design and in vivo characterization of kidney-targeting multimodal micelles for renal drug delivery. Nano Res 2018;11:5584-95. [DOI: 10.1007/s12274-018-2100-2] [Cited by in Crossref: 33] [Cited by in F6Publishing: 16] [Article Influence: 6.6] [Reference Citation Analysis]
57 Jin K, Luo Z, Zhang B, Pang Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 2018;8:23-33. [PMID: 29872620 DOI: 10.1016/j.apsb.2017.12.002] [Cited by in Crossref: 140] [Cited by in F6Publishing: 131] [Article Influence: 28.0] [Reference Citation Analysis]
58 Poon C, Sarkar M, Chung EJ. Synthesis of Monocyte-targeting Peptide Amphiphile Micelles for Imaging of Atherosclerosis. J Vis Exp 2017. [PMID: 29286384 DOI: 10.3791/56625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.2] [Reference Citation Analysis]
59 Zavaleta C, Ho D, Chung EJ. Theranostic Nanoparticles for Tracking and Monitoring Disease State. SLAS Technol 2018;23:281-93. [PMID: 29115174 DOI: 10.1177/2472630317738699] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 6.7] [Reference Citation Analysis]
60 Poon C, Chowdhuri S, Kuo CH, Fang Y, Alenghat FJ, Hyatt D, Kani K, Gross ME, Chung EJ. Protein Mimetic and Anticancer Properties of Monocyte-Targeting Peptide Amphiphile Micelles. ACS Biomater Sci Eng 2017;3:3273-82. [PMID: 29302619 DOI: 10.1021/acsbiomaterials.7b00600] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
61 Garnacho C, Muro S. ICAM-1 targeting, intracellular trafficking, and functional activity of polymer nanocarriers coated with a fibrinogen-derived peptide for lysosomal enzyme replacement. J Drug Target 2017;25:786-95. [PMID: 28665212 DOI: 10.1080/1061186X.2017.1349771] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]