BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017;39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Nader JS, Abadie J, Deshayes S, Boissard A, Blandin S, Blanquart C, Boisgerault N, Coqueret O, Guette C, Grégoire M, Pouliquen DL. Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget 2018;9:16311-29. [PMID: 29662647 DOI: 10.18632/oncotarget.24632] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
2 Kumari S, Sikander M, Malik S, Tripathi MK, Hafeez BB, Yallapu MM, Chauhan SC, Khan S, Jaggi M. Steviol Represses Glucose Metabolism and Translation Initiation in Pancreatic Cancer Cells. Biomedicines 2021;9:1814. [PMID: 34944630 DOI: 10.3390/biomedicines9121814] [Reference Citation Analysis]
3 Zhang Z, Liu C, Liang T, Yu C, Qin Z, Zhou X, Xue J, Zeng H, Lu Z, Xu G, Wang Z, Chen J, Jiang J, Zhan X. Establishment of immune prognostic signature and analysis of prospective molecular mechanisms in childhood osteosarcoma patients. Medicine (Baltimore) 2020;99:e23251. [PMID: 33181717 DOI: 10.1097/MD.0000000000023251] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 2020;18:175. [PMID: 33148274 DOI: 10.1186/s12964-020-00607-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wang L, Guo C, Li X, Yu X, Li X, Xu K, Jiang B, Jia X, Li C, Shi D. Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. European Journal of Medicinal Chemistry 2019;177:153-70. [DOI: 10.1016/j.ejmech.2019.05.044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Carrillo-Najar C, Rembao-Bojórquez D, Tena-Suck ML, Zavala-Vega S, Gelista-Herrera N, Ramos-Peek MA, Gómez-Amador JL, Cazares-Raga F, Hernández-Hernández FC, Ortiz-Plata A. Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas. Diagnostics (Basel) 2021;11:330. [PMID: 33671384 DOI: 10.3390/diagnostics11020330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Duś-Szachniewicz K, Gdesz-Birula K, Zduniak K, Wiśniewski JR. Proteomic-Based Analysis of Hypoxia- and Physioxia-Responsive Proteins and Pathways in Diffuse Large B-Cell Lymphoma. Cells 2021;10:2025. [PMID: 34440794 DOI: 10.3390/cells10082025] [Reference Citation Analysis]
8 Li G, Shi M, Zhao S, Long Y, Zhu Y. Toxicity response of silkworm intestine to Bacillus cereus SW7-1 pathogen. Science of The Total Environment 2019;692:1282-90. [DOI: 10.1016/j.scitotenv.2019.07.349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA 2021;7:16. [PMID: 33672592 DOI: 10.3390/ncrna7010016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
10 Li Y, Shi J, Yang J, Ge S, Zhang J, Jia R, Fan X. Uveal melanoma: progress in molecular biology and therapeutics. Ther Adv Med Oncol. 2020;12:1758835920965852. [PMID: 33149769 DOI: 10.1177/1758835920965852] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
11 Bi C, Ma Y, Jiang SC, Mei C, Wang XF, Zhang DP. Arabidopsis translation initiation factors eIFiso4G1/2 link repression of mRNA cap-binding complex eIFiso4F assembly with RNA-binding protein SOAR1-mediated ABA signaling. New Phytol 2019;223:1388-406. [PMID: 31050354 DOI: 10.1111/nph.15880] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
12 Gomig THB, Gontarski AM, Cavalli IJ, Souza RLR, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, Urban CA, Marchi RD, Cavalli LR, Ribeiro EMSF. Integrated analysis of label-free quantitative proteomics and bioinformatics reveal insights into signaling pathways in male breast cancer. Genet Mol Biol 2021;44:e20190410. [PMID: 33656060 DOI: 10.1590/1678-4685-GMB-2019-0410] [Reference Citation Analysis]
13 Chen J, Lin Z, Barrett L, Dai L, Qin Z. Identification of new therapeutic targets and natural compounds against diffuse intrinsic pontine glioma (DIPG). Bioorg Chem 2020;99:103847. [PMID: 32311581 DOI: 10.1016/j.bioorg.2020.103847] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
14 Schatz C, Sprung S, Schartinger V, Codina-Martínez H, Lechner M, Hermsen M, Haybaeck J. Dysregulation of Translation Factors EIF2S1, EIF5A and EIF6 in Intestinal-Type Adenocarcinoma (ITAC). Cancers (Basel) 2021;13:5649. [PMID: 34830804 DOI: 10.3390/cancers13225649] [Reference Citation Analysis]
15 Raabe K, Honys D, Michailidis C. The role of eukaryotic initiation factor 3 in plant translation regulation. Plant Physiol Biochem 2019;145:75-83. [PMID: 31665669 DOI: 10.1016/j.plaphy.2019.10.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
16 Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2019;11:215-45. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
17 Hernández G, Ramírez JL, Pedroza-Torres A, Herrera LA, Jiménez-Ríos MA. The Secret Life of Translation Initiation in Prostate Cancer. Front Genet 2019;10:14. [PMID: 30761182 DOI: 10.3389/fgene.2019.00014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
18 Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, Berking C, Heppt MV. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int J Mol Sci 2020;21:E879. [PMID: 32013269 DOI: 10.3390/ijms21030879] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
19 García A, Maldonado G, González JL, Svitkin Y, Cantú D, García-Carrancá A, Sonenberg N, Hernández G. High-risk human papillomavirus-18 uses an mRNA sequence to synthesize oncoprotein E6 in tumors. Proc Natl Acad Sci U S A 2021;118:e2108359118. [PMID: 34615711 DOI: 10.1073/pnas.2108359118] [Reference Citation Analysis]
20 Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020;12:E1298. [PMID: 32455578 DOI: 10.3390/cancers12051298] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
21 Vivet-Noguer R, Tarin M, Roman-Roman S, Alsafadi S. Emerging Therapeutic Opportunities Based on Current Knowledge of Uveal Melanoma Biology. Cancers (Basel) 2019;11:E1019. [PMID: 31330784 DOI: 10.3390/cancers11071019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
22 Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022:S1044-579X(22)00100-6. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Reference Citation Analysis]
23 Penzo M, Clima R, Trerè D, Montanaro L. Separated Siamese Twins: Intronic Small Nucleolar RNAs and Matched Host Genes May be Altered in Conjunction or Separately in Multiple Cancer Types. Cells 2020;9:E387. [PMID: 32046192 DOI: 10.3390/cells9020387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Akin-Bali DF. Bioinformatics analysis of GNAQ, GNA11, BAP1, SF3B1,SRSF2, EIF1AX, PLCB4, and CYSLTR2 genes and their role in the pathogenesis of Uveal Melanoma. Ophthalmic Genet 2021;:1-12. [PMID: 34353217 DOI: 10.1080/13816810.2021.1961280] [Reference Citation Analysis]
25 Acevo-Rodríguez PS, Maldonado G, Castro-Obregón S, Hernández G. Autophagy Regulation by the Translation Machinery and Its Implications in Cancer. Front Oncol 2020;10:322. [PMID: 32232004 DOI: 10.3389/fonc.2020.00322] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Andreev DE, Dmitriev SE, Loughran G, Terenin IM, Baranov PV, Shatsky IN. Translation control of mRNAs encoding mammalian translation initiation factors. Gene 2018;651:174-82. [PMID: 29414693 DOI: 10.1016/j.gene.2018.02.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
27 Bracic Tomazic S, Schatz C, Haybaeck J. Translational Regulation in Hepatocellular Carcinogenesis. Drug Des Devel Ther 2021;15:4359-69. [PMID: 34703211 DOI: 10.2147/DDDT.S255582] [Reference Citation Analysis]
28 Salaheldin YA, Mahmoud SSM, Ngowi EE, Gbordzor VA, Li T, Wu DD, Ji XY. Role of RONS and eIFs in Cancer Progression. Oxid Med Cell Longev 2021;2021:5522054. [PMID: 34285764 DOI: 10.1155/2021/5522054] [Reference Citation Analysis]