BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun X, Sui H, Fisher JT, Yan Z, Liu X, Cho HJ, Joo NS, Zhang Y, Zhou W, Yi Y, Kinyon JM, Lei-Butters DC, Griffin MA, Naumann P, Luo M, Ascher J, Wang K, Frana T, Wine JJ, Meyerholz DK, Engelhardt JF. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 2010;120:3149-60. [PMID: 20739752 DOI: 10.1172/JCI43052] [Cited by in Crossref: 253] [Cited by in F6Publishing: 177] [Article Influence: 21.1] [Reference Citation Analysis]
Number Citing Articles
1 Satin LS, Parekh VS. CFTR: Ferreting Out Its Role in Cystic Fibrosis-Related Diabetes. Endocrinology 2017;158:3319-21. [PMID: 28977616 DOI: 10.1210/en.2017-00746] [Reference Citation Analysis]
2 Joo NS, Cho HJ, Shinbashi M, Choi JY, Milla CE, Engelhardt JF, Wine JJ. Combined agonists act synergistically to increase mucociliary clearance in a cystic fibrosis airway model. Sci Rep 2021;11:18828. [PMID: 34552115 DOI: 10.1038/s41598-021-98122-5] [Reference Citation Analysis]
3 Chiarot E, Pizza M. Animal models in vaccinology: state of the art and future perspectives for an animal-free approach. Curr Opin Microbiol 2021;66:46-55. [PMID: 34953265 DOI: 10.1016/j.mib.2021.11.014] [Reference Citation Analysis]
4 Evans TI, Joo NS, Keiser NW, Yan Z, Tyler SR, Xie W, Zhang Y, Hsiao JJ, Cho HJ, Wright ME, Wine JJ, Engelhardt JF. Glandular Proteome Identifies Antiprotease Cystatin C as a Critical Modulator of Airway Hydration and Clearance. Am J Respir Cell Mol Biol 2016;54:469-81. [PMID: 26334941 DOI: 10.1165/rcmb.2015-0090OC] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
5 Averna M, Melotti P, Sorio C. Revisiting the Role of Leukocytes in Cystic Fibrosis. Cells 2021;10:3380. [DOI: 10.3390/cells10123380] [Reference Citation Analysis]
6 Pradenas GA, Ross BN, Torres AG. Burkholderia cepacia Complex Vaccines: Where Do We Go from here? Vaccines (Basel) 2016;4:E10. [PMID: 27092530 DOI: 10.3390/vaccines4020010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
7 Xu J, Zhang J, Yang D, Song J, Pallas B, Zhang C, Hu J, Peng X, Christensen ND, Han R, Chen YE. Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Front Genet 2021;12:642444. [PMID: 33584832 DOI: 10.3389/fgene.2021.642444] [Reference Citation Analysis]
8 O'Brien TJ, Hassan MM, Harrison F, Welch M. An in vitro model for the cultivation of polymicrobial biofilms under continuous-flow conditions. F1000Res 2021;10:801. [PMID: 34557293 DOI: 10.12688/f1000research.55140.1] [Reference Citation Analysis]
9 Breton S, Nair AV, Battistone MA. Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa. Andrology 2019;7:631-43. [PMID: 31044554 DOI: 10.1111/andr.12632] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
10 Tuggle KL, Birket SE, Cui X, Hong J, Warren J, Reid L, Chambers A, Ji D, Gamber K, Chu KK, Tearney G, Tang LP, Fortenberry JA, Du M, Cadillac JM, Bedwell DM, Rowe SM, Sorscher EJ, Fanucchi MV. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One 2014;9:e91253. [PMID: 24608905 DOI: 10.1371/journal.pone.0091253] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 12.1] [Reference Citation Analysis]
11 Rotti PG, Xie W, Poudel A, Yi Y, Sun X, Tyler SR, Uc A, Norris AW, Hara M, Engelhardt JF, Gibson-Corley KN. Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. Am J Pathol 2018;188:876-90. [PMID: 29366680 DOI: 10.1016/j.ajpath.2017.12.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
12 Rosa RB, Dantas WM, do Nascimento JCF, da Silva MV, de Oliveira RN, Pena LJ. In Vitro and In Vivo Models for Studying SARS-CoV-2, the Etiological Agent Responsible for COVID-19 Pandemic. Viruses 2021;13:379. [PMID: 33673614 DOI: 10.3390/v13030379] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
13 Navis A, Bagnat M. Loss of cftr function leads to pancreatic destruction in larval zebrafish. Dev Biol 2015;399:237-48. [PMID: 25592226 DOI: 10.1016/j.ydbio.2014.12.034] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
14 Navarro S. [Historical compilation of cystic fibrosis]. Gastroenterol Hepatol 2016;39:36-42. [PMID: 26070393 DOI: 10.1016/j.gastrohep.2015.04.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
15 De Lisle RC, Borowitz D. The cystic fibrosis intestine. Cold Spring Harb Perspect Med. 2013;3:a009753. [PMID: 23788646 DOI: 10.1101/cshperspect.a009753] [Cited by in Crossref: 95] [Cited by in F6Publishing: 90] [Article Influence: 10.6] [Reference Citation Analysis]
16 Wong AP, Rossant J. Generation of Lung Epithelium from Pluripotent Stem Cells. Curr Pathobiol Rep 2013;1:137-45. [PMID: 23662247 DOI: 10.1007/s40139-013-0016-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
17 Fiorotto R, Amenduni M, Mariotti V, Cadamuro M, Fabris L, Spirli C, Strazzabosco M. Animal models for cystic fibrosis liver disease (CFLD). Biochim Biophys Acta Mol Basis Dis 2019;1865:965-9. [PMID: 30071276 DOI: 10.1016/j.bbadis.2018.07.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
18 Cooney AL, McCray PB Jr, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018;9:E538. [PMID: 30405068 DOI: 10.3390/genes9110538] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 10.5] [Reference Citation Analysis]
19 Reznikov LR. Cystic Fibrosis and the Nervous System. Chest 2017;151:1147-55. [PMID: 27876591 DOI: 10.1016/j.chest.2016.11.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
20 Dupuis A, Keenan K, Ooi CY, Dorfman R, Sontag MK, Naehrlich L, Castellani C, Strug LJ, Rommens JM, Gonska T. Prevalence of meconium ileus marks the severity of mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Genet Med 2016;18:333-40. [PMID: 26087176 DOI: 10.1038/gim.2015.79] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
21 Billet A, Hanrahan JW. The secret life of CFTR as a calcium-activated chloride channel. J Physiol 2013;591:5273-8. [PMID: 23959675 DOI: 10.1113/jphysiol.2013.261909] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 6.7] [Reference Citation Analysis]
22 Grubb BR, Livraghi-butrico A. Animal models of cystic fibrosis in the era of highly effective modulator therapies. Current Opinion in Pharmacology 2022;64:102235. [DOI: 10.1016/j.coph.2022.102235] [Reference Citation Analysis]
23 Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16:45-56. [PMID: 25404111 DOI: 10.1038/nrg3849] [Cited by in Crossref: 475] [Cited by in F6Publishing: 406] [Article Influence: 59.4] [Reference Citation Analysis]
24 Fisher JT, Liu X, Yan Z, Luo M, Zhang Y, Zhou W, Lee BJ, Song Y, Guo C, Wang Y, Lukacs GL, Engelhardt JF. Comparative processing and function of human and ferret cystic fibrosis transmembrane conductance regulator. J Biol Chem 2012;287:21673-85. [PMID: 22570484 DOI: 10.1074/jbc.M111.336537] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
25 Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2018;9:1475. [PMID: 30662403 DOI: 10.3389/fphar.2018.01475] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 11.3] [Reference Citation Analysis]
26 Char JE, Wolfe MH, Cho HJ, Park IH, Jeong JH, Frisbee E, Dunn C, Davies Z, Milla C, Moss RB, Thomas EA, Wine JJ. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor. PLoS One. 2014;9:e88564. [PMID: 24520399 DOI: 10.1371/journal.pone.0088564] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
27 Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences. Biomed Res Int 2016;2016:5258727. [PMID: 27340661 DOI: 10.1155/2016/5258727] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 11.2] [Reference Citation Analysis]
28 Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, Boucher RC, Randell SH, O'Neal WK. Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol 2012;5:397-408. [PMID: 22419116 DOI: 10.1038/mi.2012.17] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 5.2] [Reference Citation Analysis]
29 Wisely SM, Ryder OA, Santymire RM, Engelhardt JF, Novak BJ. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret. J Hered 2015;106:581-92. [PMID: 26304983 DOI: 10.1093/jhered/esv041] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
30 Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018;19:149. [PMID: 30081920 DOI: 10.1186/s12931-018-0846-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
31 Pai AC, Lynch TJ, Ahlers BA, Ievlev V, Engelhardt JF, Parekh KR. A Novel Bioreactor for Reconstitution of the Epithelium and Submucosal Glands in Decellularized Ferret Tracheas. Cells 2022;11:1027. [DOI: 10.3390/cells11061027] [Reference Citation Analysis]
32 Lane MC, Gordon JL, Jiang C, Leitner WW, Pickett TE, Stemmy E, Bozick BA, Deckhut-Augustine A, Embry AC, Post DJ. Workshop report: Optimization of animal models to better predict influenza vaccine efficacy. Vaccine 2020;38:2751-7. [PMID: 32145879 DOI: 10.1016/j.vaccine.2020.01.101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Berkebile AR, McCray PB Jr. Effects of airway surface liquid pH on host defense in cystic fibrosis. Int J Biochem Cell Biol 2014;52:124-9. [PMID: 24560894 DOI: 10.1016/j.biocel.2014.02.009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
34 Cleary SJ, Pitchford SC, Amison RT, Carrington R, Robaina Cabrera CL, Magnen M, Looney MR, Gray E, Page CP. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br J Pharmacol 2020;177:4851-65. [PMID: 32462701 DOI: 10.1111/bph.15143] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 29.0] [Reference Citation Analysis]
35 Ramsey BW, Welsh MJ. AJRCCM: 100-Year Anniversary. Progress along the Pathway of Discovery Leading to Treatment and Cure of Cystic Fibrosis. Am J Respir Crit Care Med 2017;195:1092-9. [PMID: 28459323 DOI: 10.1164/rccm.201702-0266ED] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 3.2] [Reference Citation Analysis]
36 Raju SV, Kim H, Byzek SA, Tang LP, Trombley JE, Jackson P, Rasmussen L, Wells JM, Libby EF, Dohm E, Winter L, Samuel SL, Zinn KR, Blalock JE, Schoeb TR, Dransfield MT, Rowe SM. A ferret model of COPD-related chronic bronchitis. JCI Insight 2016;1:e87536. [PMID: 27699245 DOI: 10.1172/jci.insight.87536] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
37 Hoffman LR, Ramsey BW. Cystic fibrosis therapeutics: the road ahead. Chest. 2013;143:207-213. [PMID: 23276843 DOI: 10.1378/chest.12-1639] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Yang D, Liang X, Pallas B, Hoenerhoff M, Ren Z, Han R, Zhang J, Chen YE, Jin JP, Sun F, Xu J. Production of CFTR-ΔF508 Rabbits. Front Genet 2020;11:627666. [PMID: 33552140 DOI: 10.3389/fgene.2020.627666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2020;11:593988. [PMID: 33505366 DOI: 10.3389/fmicb.2020.593988] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Walker NM, Liu J, Stein SR, Stefanski CD, Strubberg AM, Clarke LL. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 2016;310:G70-80. [PMID: 26542396 DOI: 10.1152/ajpgi.00236.2015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
41 Castellani S, Di Gioia S, di Toma L, Conese M. Human Cellular Models for the Investigation of Lung Inflammation and Mucus Production in Cystic Fibrosis. Anal Cell Pathol (Amst) 2018;2018:3839803. [PMID: 30581723 DOI: 10.1155/2018/3839803] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
42 Carolan LA, Butler J, Rockman S, Guarnaccia T, Hurt AC, Reading P, Kelso A, Barr I, Laurie KL. TaqMan real time RT-PCR assays for detecting ferret innate and adaptive immune responses. J Virol Methods 2014;205:38-52. [PMID: 24797460 DOI: 10.1016/j.jviromet.2014.04.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
43 Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016;8:330-49. [PMID: 26987072 DOI: 10.1159/000444256] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
44 Maiuri L, Raia V, Kroemer G. Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ 2017;24:1825-44. [PMID: 28937684 DOI: 10.1038/cdd.2017.126] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
45 Peng X, Alföldi J, Gori K, Eisfeld AJ, Tyler SR, Tisoncik-Go J, Brawand D, Law GL, Skunca N, Hatta M, Gasper DJ, Kelly SM, Chang J, Thomas MJ, Johnson J, Berlin AM, Lara M, Russell P, Swofford R, Turner-Maier J, Young S, Hourlier T, Aken B, Searle S, Sun X, Yi Y, Suresh M, Tumpey TM, Siepel A, Wisely SM, Dessimoz C, Kawaoka Y, Birren BW, Lindblad-Toh K, Di Palma F, Engelhardt JF, Palermo RE, Katze MG. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease. Nat Biotechnol 2014;32:1250-5. [PMID: 25402615 DOI: 10.1038/nbt.3079] [Cited by in Crossref: 84] [Cited by in F6Publishing: 73] [Article Influence: 10.5] [Reference Citation Analysis]
46 Wilschanski M, Novak I. The cystic fibrosis of exocrine pancreas. Cold Spring Harb Perspect Med. 2013;3:a009746. [PMID: 23637307 DOI: 10.1101/cshperspect.a009746] [Cited by in Crossref: 79] [Cited by in F6Publishing: 67] [Article Influence: 8.8] [Reference Citation Analysis]
47 Gibson-Corley KN, Meyerholz DK, Engelhardt JF. Pancreatic pathophysiology in cystic fibrosis. J Pathol 2016;238:311-20. [PMID: 26365583 DOI: 10.1002/path.4634] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 8.0] [Reference Citation Analysis]
48 Sun X, Olivier AK, Liang B, Yi Y, Sui H, Evans TI, Zhang Y, Zhou W, Tyler SR, Fisher JT, Keiser NW, Liu X, Yan Z, Song Y, Goeken JA, Kinyon JM, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Stewart ZA, Pope RM, Frana T, Meyerholz DK, Parekh K, Engelhardt JF. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 2014;50:502-12. [PMID: 24074402 DOI: 10.1165/rcmb.2013-0261OC] [Cited by in Crossref: 72] [Cited by in F6Publishing: 52] [Article Influence: 9.0] [Reference Citation Analysis]
49 Iwanaga N, Kolls JK. Updates on T helper type 17 immunity in respiratory disease. Immunology 2019;156:3-8. [PMID: 30260473 DOI: 10.1111/imm.13006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
50 Cohen TS, Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med. 2012;18:509-519. [PMID: 22481418 DOI: 10.1038/nm.2715] [Cited by in Crossref: 311] [Cited by in F6Publishing: 298] [Article Influence: 31.1] [Reference Citation Analysis]
51 Henderson LB, Doshi VK, Blackman SM, Naughton KM, Pace RG, Moskovitz J, Knowles MR, Durie PR, Drumm ML, Cutting GR. Variation in MSRA modifies risk of neonatal intestinal obstruction in cystic fibrosis. PLoS Genet 2012;8:e1002580. [PMID: 22438829 DOI: 10.1371/journal.pgen.1002580] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
52 Yan Z, Sun X, Evans IA, Tyler SR, Song Y, Liu X, Sui H, Engelhardt JF. Postentry processing of recombinant adeno-associated virus type 1 and transduction of the ferret lung are altered by a factor in airway secretions. Hum Gene Ther 2013;24:786-96. [PMID: 23948055 DOI: 10.1089/hum.2013.137] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
53 Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KKY, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019;48:759-79. [PMID: 31206467 DOI: 10.1097/MPA.0000000000001335] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
54 Hoffman LR, Hajjar AM. Ferreting Out the Role of Infection in Cystic Fibrosis Lung Disease. Am J Respir Crit Care Med 2018;197:1243-4. [DOI: 10.1164/rccm.201801-0053ed] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
55 Scholte BJ. Thyroid glands from pigs with cystic fibrosis, old issues new ways. Exp Physiol 2010;95:1131. [PMID: 21097980 DOI: 10.1113/expphysiol.2010.055079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
56 Rymut SM, Corey DA, Valerio DM, Erokwu BO, Flask CA, Kelley TJ, Hodges CA. Improved Growth Patterns in Cystic Fibrosis Mice after Loss of Histone Deacetylase 6. Sci Rep 2017;7:3676. [PMID: 28623308 DOI: 10.1038/s41598-017-03931-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
57 Pierucci-Alves F, Akoyev V, Stewart JC 3rd, Wang LH, Janardhan KS, Schultz BD. Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 2011;85:442-51. [PMID: 21593481 DOI: 10.1095/biolreprod.111.090860] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
58 Joo NS, Jeong JH, Cho HJ, Wine JJ. Marked increases in mucociliary clearance produced by synergistic secretory agonists or inhibition of the epithelial sodium channel. Sci Rep 2016;6:36806. [PMID: 27830759 DOI: 10.1038/srep36806] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
59 Huang Q, Luo Y, Cheng F, Best SM, Bloom ME, Qiu J. Molecular characterization of the small nonstructural proteins of parvovirus Aleutian mink disease virus (AMDV) during infection. Virology 2014;452-453:23-31. [PMID: 24606679 DOI: 10.1016/j.virol.2014.01.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
60 Olivier AK, Yi Y, Sun X, Sui H, Liang B, Hu S, Xie W, Fisher JT, Keiser NW, Lei D, Zhou W, Yan Z, Li G, Evans TI, Meyerholz DK, Wang K, Stewart ZA, Norris AW, Engelhardt JF. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest 2012;122:3755-68. [PMID: 22996690 DOI: 10.1172/JCI60610] [Cited by in Crossref: 93] [Cited by in F6Publishing: 61] [Article Influence: 9.3] [Reference Citation Analysis]
61 Kaza N, Raju SV, Cadillac JM, Trombley JA, Rasmussen L, Tang L, Dohm E, Harrod KS, Rowe SM. Use of ferrets for electrophysiologic monitoring of ion transport. PLoS One 2017;12:e0186984. [PMID: 29077751 DOI: 10.1371/journal.pone.0186984] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
62 Meyerholz DK. Lessons learned from the cystic fibrosis pig. Theriogenology 2016;86:427-32. [PMID: 27142487 DOI: 10.1016/j.theriogenology.2016.04.057] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
63 Tsui LC, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med 2013;3:a009472. [PMID: 23378595 DOI: 10.1101/cshperspect.a009472] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
64 He L, Skirkanich J, Moronetti L, Lewis R, Lamitina T. The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3. Dis Model Mech 2012;5:930-9. [PMID: 22569626 DOI: 10.1242/dmm.008987] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
65 Kim K, Lane EA, Saftien A, Wang H, Xu Y, Wirtz-Peitz F, Perrimon N. Drosophila as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system. Proc Natl Acad Sci U S A 2020;117:10357-67. [PMID: 32345720 DOI: 10.1073/pnas.1913127117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
66 Okiyoneda T, Lukacs GL. Fixing cystic fibrosis by correcting CFTR domain assembly. J Cell Biol 2012;199:199-204. [PMID: 23071149 DOI: 10.1083/jcb.201208083] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
67 Donnelley M, Parsons DW. Gene Therapy for Cystic Fibrosis Lung Disease: Overcoming the Barriers to Translation to the Clinic. Front Pharmacol 2018;9:1381. [PMID: 30538635 DOI: 10.3389/fphar.2018.01381] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
68 Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. 2012;10:385-397. [PMID: 22482504 DOI: 10.1016/j.stem.2012.01.018] [Cited by in Crossref: 218] [Cited by in F6Publishing: 181] [Article Influence: 21.8] [Reference Citation Analysis]
69 Cooney AL, Singh BK, Sinn PL. Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery. Mol Ther 2015;23:667-74. [PMID: 25557623 DOI: 10.1038/mt.2014.254] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
70 Simsek S, Zhou T, Robinson CL, Tsai SY, Crespo M, Amin S, Lin X, Hon J, Evans T, Chen S. Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells. Stem Cells Transl Med 2016;5:572-9. [PMID: 27034411 DOI: 10.5966/sctm.2015-0276] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
71 Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, Gray MA, Rakonczay Z, Maléth J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev Physiol Biochem Pharmacol. 2016;170:37-66. [PMID: 26856995 DOI: 10.1007/112_2015_5002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
72 Huang EN, Quach H, Lee JA, Dierolf J, Moraes TJ, Wong AP. A Developmental Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Cystic Fibrosis Lung Disease Pathogenesis. Front Cell Dev Biol 2021;9:742891. [PMID: 34708042 DOI: 10.3389/fcell.2021.742891] [Reference Citation Analysis]
73 Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014;306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Cited by in Crossref: 99] [Cited by in F6Publishing: 97] [Article Influence: 12.4] [Reference Citation Analysis]
74 Aizawa K, Liu C, Veeramachaneni S, Hu KQ, Smith DE, Wang XD. Development of ferret as a human lung cancer model by injecting 4-(Nmethyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Lung Cancer 2013;82:390-6. [PMID: 24396883 DOI: 10.1016/j.lungcan.2013.09.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
75 Bernhard W, Lange R, Graepler-Mainka U, Engel C, Machann J, Hund V, Shunova A, Hector A, Riethmüller J. Choline Supplementation in Cystic Fibrosis-The Metabolic and Clinical Impact. Nutrients 2019;11:E656. [PMID: 30889905 DOI: 10.3390/nu11030656] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Tipirneni KE, Cho DY, Skinner DF, Zhang S, Mackey C, Lim DJ, Woodworth BA. Characterization of primary rat nasal epithelial cultures in CFTR knockout rats as a model for CF sinus disease. Laryngoscope 2017;127:E384-91. [PMID: 28771736 DOI: 10.1002/lary.26720] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
77 Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018;9:1585. [PMID: 30618777 DOI: 10.3389/fphys.2018.01585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
78 Birket SE, Davis JM, Fernandez-Petty CM, Henderson AG, Oden AM, Tang L, Wen H, Hong J, Fu L, Chambers A, Fields A, Zhao G, Tearney GJ, Sorscher EJ, Rowe SM. Ivacaftor Reverses Airway Mucus Abnormalities in a Rat Model Harboring a Humanized G551D-CFTR. Am J Respir Crit Care Med 2020;202:1271-82. [PMID: 32584141 DOI: 10.1164/rccm.202002-0369OC] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
79 Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020;11:595. [PMID: 32318073 DOI: 10.3389/fimmu.2020.00595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
80 Darrah R, Bederman I, Vitko M, Valerio DM, Drumm ML, Hodges CA. Growth deficits in cystic fibrosis mice begin in utero prior to IGF-1 reduction. PLoS One 2017;12:e0175467. [PMID: 28384265 DOI: 10.1371/journal.pone.0175467] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
81 Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020;31:524-37. [PMID: 32138545 DOI: 10.1089/hum.2020.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
82 Rosen BH, Evans TIA, Moll SR, Gray JS, Liang B, Sun X, Zhang Y, Jensen-Cody CW, Swatek AM, Zhou W, He N, Rotti PG, Tyler SR, Keiser NW, Anderson PJ, Brooks L, Li Y, Pope RM, Rajput M, Hoffman EA, Wang K, Harris JK, Parekh KR, Gibson-Corley KN, Engelhardt JF. Infection Is Not Required for Mucoinflammatory Lung Disease in CFTR-Knockout Ferrets. Am J Respir Crit Care Med 2018;197:1308-18. [PMID: 29327941 DOI: 10.1164/rccm.201708-1616OC] [Cited by in Crossref: 68] [Cited by in F6Publishing: 43] [Article Influence: 22.7] [Reference Citation Analysis]
83 Hegyi E, Sahin-Tóth M. Trypsinogen isoforms in the ferret pancreas. Sci Rep 2018;8:15094. [PMID: 30305676 DOI: 10.1038/s41598-018-33423-w] [Reference Citation Analysis]
84 Sun X, Olivier AK, Yi Y, Pope CE, Hayden HS, Liang B, Sui H, Zhou W, Hager KR, Zhang Y, Liu X, Yan Z, Fisher JT, Keiser NW, Song Y, Tyler SR, Goeken JA, Kinyon JM, Radey MC, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Brittnacher MJ, Miller SI, Parekh K, Meyerholz DK, Hoffman LR, Frana T, Stewart ZA, Engelhardt JF. Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. Am J Pathol. 2014;184:1309-1322. [PMID: 24637292 DOI: 10.1016/j.ajpath.2014.01.035] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 5.9] [Reference Citation Analysis]
85 Keiser NW, Engelhardt JF. New animal models of cystic fibrosis: what are they teaching us? Curr Opin Pulm Med 2011;17:478-83. [PMID: 21857224 DOI: 10.1097/MCP.0b013e32834b14c9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 59] [Article Influence: 3.0] [Reference Citation Analysis]
86 Kim J, Farahmand M, Dunn C, Milla CE, Horii RI, Thomas EAC, Moss RB, Wine JJ. Sweat rate analysis of ivacaftor potentiation of CFTR in non-CF adults. Sci Rep 2018;8:16233. [PMID: 30389955 DOI: 10.1038/s41598-018-34308-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
87 Xie W, Fisher JT, Lynch TJ, Luo M, Evans TI, Neff TL, Zhou W, Zhang Y, Ou Y, Bunnett NW, Russo AF, Goodheart MJ, Parekh KR, Liu X, Engelhardt JF. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice. J Clin Invest 2011;121:3144-58. [PMID: 21765217 DOI: 10.1172/JCI41857] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
88 Karp CL. Unstressing intemperate models: how cold stress undermines mouse modeling. J Exp Med 2012;209:1069-74. [PMID: 22665703 DOI: 10.1084/jem.20120988] [Cited by in Crossref: 109] [Cited by in F6Publishing: 109] [Article Influence: 10.9] [Reference Citation Analysis]
89 Fernandez-Petty CM, Hughes GW, Bowers HL, Watson JD, Rosen BH, Townsend SM, Santos C, Ridley CE, Chu KK, Birket SE, Li Y, Leung HM, Mazur M, Garcia BA, Evans TIA, Libby EF, Hathorne H, Hanes J, Tearney GJ, Clancy JP, Engelhardt JF, Swords WE, Thornton DJ, Wiesmann WP, Baker SM, Rowe SM. A glycopolymer improves vascoelasticity and mucociliary transport of abnormal cystic fibrosis mucus. JCI Insight 2019;4:125954. [PMID: 30996141 DOI: 10.1172/jci.insight.125954] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
90 Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL, Polejaeva IA. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 2018;3:123529. [PMID: 30282831 DOI: 10.1172/jci.insight.123529] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 12.5] [Reference Citation Analysis]
91 Birket SE, Davis JM, Fernandez CM, Tuggle KL, Oden AM, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight 2018;3:97199. [PMID: 29321377 DOI: 10.1172/jci.insight.97199] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 13.3] [Reference Citation Analysis]
92 Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021;9:661759. [PMID: 33996819 DOI: 10.3389/fcell.2021.661759] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
93 Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kröner C, Richter A, Kessler B, Kurome M, Eddicks M, Nagashima H, Heinritzi K, Gruber AD, Wolf E. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med (Berl) 2012;90:597-608. [PMID: 22170306 DOI: 10.1007/s00109-011-0839-y] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 5.8] [Reference Citation Analysis]
94 Char JE, Dunn C, Davies Z, Milla C, Moss RB, Wine JJ. The magnitude of ivacaftor effects on fluid secretion via R117H-CFTR channels: Human in vivo measurements. PLoS One 2017;12:e0175486. [PMID: 28419121 DOI: 10.1371/journal.pone.0175486] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
95 Joo NS, Evans IA, Cho HJ, Park IH, Engelhardt JF, Wine JJ. Proteomic analysis of pure human airway gland mucus reveals a large component of protective proteins. PLoS One 2015;10:e0116756. [PMID: 25706550 DOI: 10.1371/journal.pone.0116756] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
96 Sinn PL, Cooney AL, Oakland M, Dylla DE, Wallen TJ, Pezzulo AA, Chang EH, McCray PB Jr. Lentiviral vector gene transfer to porcine airways. Mol Ther Nucleic Acids 2012;1:e56. [PMID: 23187455 DOI: 10.1038/mtna.2012.47] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
97 Cafora M, Deflorian G, Forti F, Ferrari L, Binelli G, Briani F, Ghisotti D, Pistocchi A. Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci Rep 2019;9:1527. [PMID: 30728389 DOI: 10.1038/s41598-018-37636-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
98 Oakland M, Maury W, McCray PB Jr, Sinn PL. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors. Mol Ther Nucleic Acids 2013;2:e69. [PMID: 23360952 DOI: 10.1038/mtna.2012.60] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
99 Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 2012;20:699-708. [PMID: 22273577 DOI: 10.1038/mt.2011.287] [Cited by in Crossref: 292] [Cited by in F6Publishing: 269] [Article Influence: 29.2] [Reference Citation Analysis]
100 Kreda SM, Davis CW, Rose MC. CFTR, mucins, and mucus obstruction in cystic fibrosis. Cold Spring Harb Perspect Med 2012;2:a009589. [PMID: 22951447 DOI: 10.1101/cshperspect.a009589] [Cited by in Crossref: 128] [Cited by in F6Publishing: 114] [Article Influence: 12.8] [Reference Citation Analysis]
101 Cmielewski P, Farrow N, Donnelley M, McIntyre C, Penny-Dimri J, Kuchel T, Parsons D. Transduction of ferret airway epithelia using a pre-treatment and lentiviral gene vector. BMC Pulm Med 2014;14:183. [PMID: 25413892 DOI: 10.1186/1471-2466-14-183] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
102 Bose SJ, Krainer G, Ng DRS, Schenkel M, Shishido H, Yoon JS, Haggie PM, Schlierf M, Sheppard DN, Skach WR. Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR. J Cyst Fibros 2020;19 Suppl 1:S25-32. [PMID: 31902693 DOI: 10.1016/j.jcf.2019.12.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
103 Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES; ATS Assembly on Respiratory Cell and Molecular Biology. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017;56:667-79. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096ST] [Cited by in Crossref: 124] [Cited by in F6Publishing: 71] [Article Influence: 24.8] [Reference Citation Analysis]
104 Oakland M, Sinn PL, McCray PB Jr. Advances in cell and gene-based therapies for cystic fibrosis lung disease. Mol Ther 2012;20:1108-15. [PMID: 22371844 DOI: 10.1038/mt.2012.32] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
105 Coderre L, Debieche L, Plourde J, Rabasa-Lhoret R, Lesage S. The Potential Causes of Cystic Fibrosis-Related Diabetes. Front Endocrinol (Lausanne) 2021;12:702823. [PMID: 34394004 DOI: 10.3389/fendo.2021.702823] [Reference Citation Analysis]
106 Bréa D, Meurens F, Dubois AV, Gaillard J, Chevaleyre C, Jourdan ML, Winter N, Arbeille B, Si-Tahar M, Gauthier F, Attucci S. The pig as a model for investigating the role of neutrophil serine proteases in human inflammatory lung diseases. Biochem J 2012;447:363-70. [PMID: 22860995 DOI: 10.1042/BJ20120818] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
107 Pier GB. The challenges and promises of new therapies for cystic fibrosis. J Exp Med 2012;209:1235-9. [PMID: 22753926 DOI: 10.1084/jem.20121248] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
108 Plyler ZE, Birket SE, Schultz BD, Hong JS, Rowe SM, Petty CF, Crowley MR, Crossman DK, Schoeb TR, Sorscher EJ. Non-obstructive vas deferens and epididymis loss in cystic fibrosis rats. Mech Dev 2019;155:15-26. [PMID: 30391480 DOI: 10.1016/j.mod.2018.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
109 Hajighasemi-Ossareh M, Borthwell RM, Lachowicz-Scroggins M, Stevens JE, Finkbeiner WE, Widdicombe JH. Distribution and size of mucous glands in the ferret tracheobronchial tree. Anat Rec (Hoboken) 2013;296:1768-74. [PMID: 24106034 DOI: 10.1002/ar.22783] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
110 Sun X, Yi Y, Yan Z, Rosen BH, Liang B, Winter MC, Evans TIA, Rotti PG, Yang Y, Gray JS, Park SY, Zhou W, Zhang Y, Moll SR, Woody L, Tran DM, Jiang L, Vonk AM, Beekman JM, Negulescu P, Van Goor F, Fiorino DF, Gibson-Corley KN, Engelhardt JF. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med 2019;11:eaau7531. [PMID: 30918114 DOI: 10.1126/scitranslmed.aau7531] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 27.0] [Reference Citation Analysis]
111 Guggino WB, Cebotaru L. Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther 2017;17:1265-73. [PMID: 28657358 DOI: 10.1080/14712598.2017.1347630] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
112 Saravanan UB, Namachivayam M, Jeewon R, Huang JD, Durairajan SSK. Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World J Virol 2022; 11(1): 40-56 [DOI: 10.5501/wjv.v11.i1.40] [Reference Citation Analysis]
113 Sui H, Olivier AK, Klesney-Tait JA, Brooks L, Tyler SR, Sun X, Skopec A, Kline J, Sanchez PG, Meyerholz DK, Zavazava N, Iannettoni M, Engelhardt JF, Parekh KR. Ferret lung transplant: an orthotopic model of obliterative bronchiolitis. Am J Transplant 2013;13:467-73. [PMID: 23205765 DOI: 10.1111/j.1600-6143.2012.04337.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
114 Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med 2015;372:351-62. [PMID: 25607428 DOI: 10.1056/NEJMra1300109] [Cited by in Crossref: 336] [Cited by in F6Publishing: 167] [Article Influence: 48.0] [Reference Citation Analysis]
115 Giddings O, Esther CR Jr. Mapping targetable inflammation and outcomes with cystic fibrosis biomarkers. Pediatr Pulmonol 2017;52:S21-8. [PMID: 28714611 DOI: 10.1002/ppul.23768] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
116 Rosen BH, Chanson M, Gawenis LR, Liu J, Sofoluwe A, Zoso A, Engelhardt JF. Animal and model systems for studying cystic fibrosis. J Cyst Fibros 2018;17:S28-34. [PMID: 28939349 DOI: 10.1016/j.jcf.2017.09.001] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 8.6] [Reference Citation Analysis]
117 Ballard ST, Evans JW, Drag HS, Schuler M. PATHOPHYSIOLOGIC EVALUATION OF THE TRANSGENIC CFTR "GUT-CORRECTED" PORCINE MODEL OF CYSTIC FIBROSIS. Am J Physiol Lung Cell Mol Physiol 2016;311:L779-787. [PMID: 27542808 DOI: 10.1152/ajplung.00242.2016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
118 Parekh KR, Nawroth J, Pai A, Busch SM, Senger CN, Ryan AL. Stem cells and lung regeneration. Am J Physiol Cell Physiol 2020;319:C675-93. [PMID: 32783658 DOI: 10.1152/ajpcell.00036.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
119 Navis A, Marjoram L, Bagnat M. Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish. Development 2013;140:1703-12. [PMID: 23487313 DOI: 10.1242/dev.091819] [Cited by in Crossref: 74] [Cited by in F6Publishing: 65] [Article Influence: 8.2] [Reference Citation Analysis]
120 Dean N, Ranganath NK, Jones B, Zhang S, Skinner D, Rowe SM, Sorscher EJ, Woodworth BA. Porcine nasal epithelial cultures for studies of cystic fibrosis sinusitis. Int Forum Allergy Rhinol 2014;4:565-70. [PMID: 24733748 DOI: 10.1002/alr.21335] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
121 Keiser NW, Engelhardt JF. Gene delivery to the airway. Curr Protoc Hum Genet 2013;Chapter 13:Unit 13.9. [PMID: 23853081 DOI: 10.1002/0471142905.hg1309s78] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
122 Ruan YC, Shum WW, Belleannée C, Da Silva N, Breton S. ATP secretion in the male reproductive tract: essential role of CFTR. J Physiol 2012;590:4209-22. [PMID: 22711960 DOI: 10.1113/jphysiol.2012.230581] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 3.0] [Reference Citation Analysis]
123 Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020;11:1096. [PMID: 32848733 DOI: 10.3389/fphar.2020.01096] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
124 Cutting GR. Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann N Y Acad Sci. 2010;1214:57-69. [PMID: 21175684 DOI: 10.1111/j.1749-6632.2010.05879.x] [Cited by in Crossref: 177] [Cited by in F6Publishing: 161] [Article Influence: 16.1] [Reference Citation Analysis]
125 Hohwieler M, Perkhofer L, Liebau S, Seufferlein T, Müller M, Illing A, Kleger A. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol J 2017;5:609-24. [PMID: 28815024 DOI: 10.1177/2050640616670565] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
126 Enkirch T, von Messling V. Ferret models of viral pathogenesis. Virology 2015;479-480:259-70. [PMID: 25816764 DOI: 10.1016/j.virol.2015.03.017] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 12.0] [Reference Citation Analysis]
127 Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney-Tait J, Zabner J, Welsh MJ. Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance. Proc Natl Acad Sci U S A 2011;108:10260-5. [PMID: 21646513 DOI: 10.1073/pnas.1106695108] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 7.6] [Reference Citation Analysis]
128 Lee RJ, Foskett JK. Why mouse airway submucosal gland serous cells do not secrete fluid in response to cAMP stimulation. J Biol Chem 2012;287:38316-26. [PMID: 22989883 DOI: 10.1074/jbc.M112.412817] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
129 Gregory M, Cyr DG. The blood-epididymis barrier and inflammation. Spermatogenesis 2014;4:e979619. [PMID: 26413391 DOI: 10.4161/21565562.2014.979619] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
130 Campbell DR Jr, Senger CN, Ryan AL, Magin CM. Engineering Tissue-Informed Biomaterials to Advance Pulmonary Regenerative Medicine. Front Med (Lausanne) 2021;8:647834. [PMID: 33898484 DOI: 10.3389/fmed.2021.647834] [Reference Citation Analysis]
131 Munder A, Wölbeling F, Kerber-Momot T, Wedekind D, Baumann U, Gulbins E, Tümmler B. Acute intratracheal Pseudomonas aeruginosa infection in cystic fibrosis mice is age-independent. Respir Res 2011;12:148. [PMID: 22059807 DOI: 10.1186/1465-9921-12-148] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
132 McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 2018;19:54. [PMID: 29609604 DOI: 10.1186/s12931-018-0750-y] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 8.5] [Reference Citation Analysis]
133 Ramsey BW, Banks-Schlegel S, Accurso FJ, Boucher RC, Cutting GR, Engelhardt JF, Guggino WB, Karp CL, Knowles MR, Kolls JK, LiPuma JJ, Lynch S, McCray PB Jr, Rubenstein RC, Singh PK, Sorscher E, Welsh M. Future directions in early cystic fibrosis lung disease research: an NHLBI workshop report. Am J Respir Crit Care Med 2012;185:887-92. [PMID: 22312017 DOI: 10.1164/rccm.201111-2068WS] [Cited by in Crossref: 57] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
134 Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJ, Hanrahan JW, Lukacs GL. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell. 2012;23:4188-4202. [PMID: 22973054 DOI: 10.1091/mbc.e12-06-0424] [Cited by in Crossref: 79] [Cited by in F6Publishing: 62] [Article Influence: 7.9] [Reference Citation Analysis]
135 Ehre C, Ridley C, Thornton DJ. Cystic fibrosis: an inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol 2014;52:136-45. [PMID: 24685676 DOI: 10.1016/j.biocel.2014.03.011] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 7.0] [Reference Citation Analysis]
136 Dreano E, Bacchetta M, Simonin J, Galmiche L, Usal C, Slimani L, Sadoine J, Tesson L, Anegon I, Concordet JP, Hatton A, Vignaud L, Tondelier D, Sermet-Gaudelus I, Chanson M, Cottart CH. Characterization of two rat models of cystic fibrosis-KO and F508del CFTR-Generated by Crispr-Cas9. Animal Model Exp Med 2019;2:297-311. [PMID: 31942562 DOI: 10.1002/ame2.12091] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
137 Yan Z, Feng Z, Sun X, Zhang Y, Zou W, Wang Z, Jensen-Cody C, Liang B, Park SY, Qiu J, Engelhardt JF. Human Bocavirus Type-1 Capsid Facilitates the Transduction of Ferret Airways by Adeno-Associated Virus Genomes. Hum Gene Ther 2017;28:612-25. [PMID: 28490200 DOI: 10.1089/hum.2017.060] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
138 Hiemstra PS, McCray PB, Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J. 2015;45:1150-1162. [PMID: 25700381 DOI: 10.1183/09031936.00141514] [Cited by in Crossref: 175] [Cited by in F6Publishing: 181] [Article Influence: 25.0] [Reference Citation Analysis]
139 Cai Z, Palmai-Pallag T, Khuituan P, Mutolo MJ, Boinot C, Liu B, Scott-Ward TS, Callebaut I, Harris A, Sheppard DN. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating. J Physiol 2015;593:2427-46. [PMID: 25763566 DOI: 10.1113/JP270227] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
140 Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB Jr, Engelhardt JF. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev 2015;26:38-49. [PMID: 25675143 DOI: 10.1089/humc.2014.154] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
141 Beuschlein F, Galac S, Wilson DB. Animal models of adrenocortical tumorigenesis. Mol Cell Endocrinol 2012;351:78-86. [PMID: 22100615 DOI: 10.1016/j.mce.2011.09.045] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
142 Hoffman LR, Ramsey BW. Cystic fibrosis therapeutics: the road ahead. Chest. 2013;143:207-213. [PMID: 23276843 DOI: 10.1378/chest.12-1639] [Cited by in Crossref: 64] [Cited by in F6Publishing: 48] [Article Influence: 7.1] [Reference Citation Analysis]
143 Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, Gage FH, Khanna A, Verma IM. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2014;111:E1723-30. [PMID: 24706852 DOI: 10.1073/pnas.1403470111] [Cited by in Crossref: 160] [Cited by in F6Publishing: 130] [Article Influence: 20.0] [Reference Citation Analysis]
144 Widdicombe JH. Transgenic animals may help resolve a sticky situation in cystic fibrosis. J Clin Invest 2010;120:3093-6. [PMID: 20739746 DOI: 10.1172/JCI44235] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
145 Rowe SM, Verkman AS. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb Perspect Med. 2013;3. [PMID: 23818513 DOI: 10.1101/cshperspect.a009761] [Cited by in Crossref: 80] [Cited by in F6Publishing: 93] [Article Influence: 8.9] [Reference Citation Analysis]
146 Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015;12:1385-1390. [PMID: 26299960 DOI: 10.1016/j.celrep.2015.07.062] [Cited by in Crossref: 186] [Cited by in F6Publishing: 168] [Article Influence: 26.6] [Reference Citation Analysis]
147 Wagner DE, Ikonomou L, Gilpin SE, Magin CM, Cruz F, Greaney A, Magnusson M, Chen YW, Davis B, Vanuytsel K, Rolandsson Enes S, Krasnodembskaya A, Lehmann M, Westergren-Thorsson G, Stegmayr J, Alsafadi HN, Hoffman ET, Weiss DJ, Ryan AL. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Res 2020;6:00123-2020. [PMID: 33123557 DOI: 10.1183/23120541.00123-2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
148 Yu M, Sun X, Tyler SR, Liang B, Swatek AM, Lynch TJ, He N, Yuan F, Feng Z, Rotti PG, Choi SH, Shahin W, Liu X, Yan Z, Engelhardt JF. Highly Efficient Transgenesis in Ferrets Using CRISPR/Cas9-Mediated Homology-Independent Insertion at the ROSA26 Locus. Sci Rep 2019;9:1971. [PMID: 30760763 DOI: 10.1038/s41598-018-37192-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
149 Yi Y, Sun X, Liang B, He N, Gibson-Corley KN, Norris AW, Engelhardt JF, Uc A. Acute pancreatitis-induced islet dysfunction in ferrets. Pancreatology 2021;21:839-47. [PMID: 33994067 DOI: 10.1016/j.pan.2021.04.008] [Reference Citation Analysis]
150 Cooper JL, Quinton PM, Ballard ST. Mucociliary transport in porcine trachea: differential effects of inhibiting chloride and bicarbonate secretion. Am J Physiol Lung Cell Mol Physiol 2013;304:L184-90. [PMID: 23204069 DOI: 10.1152/ajplung.00143.2012] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
151 Lewis BW, Patial S, Saini Y. Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019;2019:2180409. [PMID: 31396541 DOI: 10.1155/2019/2180409] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
152 Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, Bouzek DC, Abou Alaiwa MH, Hoegger MJ, Ludwig PS, Taft PJ, Wallen TJ, Wohlford-Lenane C, McMenimen JD, Chen JH, Bogan KL, Adam RJ, Hornick EE, Nelson GA 4th, Hoffman EA, Chang EH, Zabner J, McCray PB Jr, Prather RS, Meyerholz DK, Welsh MJ. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest 2013;123:2685-93. [PMID: 23676501 DOI: 10.1172/JCI68867] [Cited by in Crossref: 96] [Cited by in F6Publishing: 62] [Article Influence: 10.7] [Reference Citation Analysis]
153 Uc A, Olivier AK, Griffin MA, Meyerholz DK, Yao J, Abu-El-Haija M, Buchanan KM, Vanegas Calderón OG, Abu-El-Haija M, Pezzulo AA, Reznikov LR, Hoegger MJ, Rector MV, Ostedgaard LS, Taft PJ, Gansemer ND, Ludwig PS, Hornick EE, Stoltz DA, Ode KL, Welsh MJ, Engelhardt JF, Norris AW. Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond) 2015;128:131-42. [PMID: 25142104 DOI: 10.1042/CS20140059] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 5.6] [Reference Citation Analysis]
154 Sun X, Yi Y, Xie W, Liang B, Winter MC, He N, Liu X, Luo M, Yang Y, Ode KL, Uc A, Norris AW, Engelhardt JF. CFTR Influences Beta Cell Function and Insulin Secretion Through Non-Cell Autonomous Exocrine-Derived Factors. Endocrinology 2017;158:3325-38. [PMID: 28977592 DOI: 10.1210/en.2017-00187] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
155 Yan Z, Sun X, Feng Z, Li G, Fisher JT, Stewart ZA, Engelhardt JF. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers. Hum Gene Ther 2015;26:334-46. [PMID: 25763813 DOI: 10.1089/hum.2015.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
156 Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, Mccray, Jr. PB, Engelhardt JF. Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy. Human Gene Therapy Clinical Development 2015. [DOI: 10.1089/hum.2014.154] [Reference Citation Analysis]
157 Tucker TA, Fortenberry JA, Zsembery A, Schwiebert LM, Schwiebert EM. The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa. BMC Physiol 2012;12:12. [PMID: 22999299 DOI: 10.1186/1472-6793-12-12] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
158 Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021;12:662110. [PMID: 33986686 DOI: 10.3389/fphar.2021.662110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Sinn PL, Anthony RM, McCray PB Jr. Genetic therapies for cystic fibrosis lung disease. Hum Mol Genet 2011;20:R79-86. [PMID: 21422098 DOI: 10.1093/hmg/ddr104] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
160 Olivier AK, Gibson-Corley KN, Meyerholz DK. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2015;308:G459-71. [PMID: 25591863 DOI: 10.1152/ajpgi.00146.2014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
161 Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, Rogan MP, Davis GJ, Dohrn CL, Wohlford-Lenane C, Taft PJ, Rector MV, Hornick E, Nassar BS, Samuel M, Zhang Y, Richter SS, Uc A, Shilyansky J, Prather RS, McCray PB Jr, Zabner J, Welsh MJ, Stoltz DA. The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med 2011;3:74ra24. [PMID: 21411740 DOI: 10.1126/scitranslmed.3001868] [Cited by in Crossref: 144] [Cited by in F6Publishing: 141] [Article Influence: 13.1] [Reference Citation Analysis]
162 Hill AE, Plyler ZE, Tiwari H, Patki A, Tully JP, McAtee CW, Moseley LA, Sorscher EJ. Longevity and plasticity of CFTR provide an argument for noncanonical SNP organization in hominid DNA. PLoS One 2014;9:e109186. [PMID: 25350658 DOI: 10.1371/journal.pone.0109186] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
163 Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016;240:465-88. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 7.3] [Reference Citation Analysis]
164 Ogden HL, Kim H, Wikenheiser-Brokamp KA, Naren AP, Mun KS. Cystic Fibrosis Human Organs-on-a-Chip. Micromachines (Basel) 2021;12:747. [PMID: 34202364 DOI: 10.3390/mi12070747] [Reference Citation Analysis]
165 Sui H, Yi Y, Yao J, Liang B, Sun X, Hu S, Uc A, Nelson DJ, Ode KL, Philipson LH, Engelhardt JF, Norris AW. Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets. PLoS One 2014;9:e90519. [PMID: 24594704 DOI: 10.1371/journal.pone.0090519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
166 Viotti Perisse I, Fan Z, Van Wettere A, Liu Y, Leir SH, Keim J, Regouski M, Wilson MD, Cholewa KM, Mansbach SN, Kelley TJ, Wang Z, Harris A, White KL, Polejaeva IA. Sheep models of F508del and G542X cystic fibrosis mutations show cellular responses to human therapeutics. FASEB Bioadv 2021;3:841-54. [PMID: 34632318 DOI: 10.1096/fba.2021-00043] [Reference Citation Analysis]
167 Olivier AK, Naumann P, Goeken A, Hochstedler C, Sturm M, Rodgers JR, Gibson-Corley KN, Meyerholz DK. Genetically modified species in research: Opportunities and challenges for the histology core laboratory. J Histotechnol 2012;35:63-7. [PMID: 22904582 DOI: 10.1179/2046023612y.0000000003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
168 Fiorotto R, Strazzabosco M. Pathophysiology of Cystic Fibrosis Liver Disease: A Channelopathy Leading to Alterations in Innate Immunity and in Microbiota. Cell Mol Gastroenterol Hepatol 2019;8:197-207. [PMID: 31075352 DOI: 10.1016/j.jcmgh.2019.04.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
169 Gray RD, McCullagh BN, McCray PB. NETs and CF Lung Disease: Current Status and Future Prospects. Antibiotics (Basel) 2015;4:62-75. [PMID: 27025615 DOI: 10.3390/antibiotics4010062] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
170 Peters-Hall JR, Brown KJ, Pillai DK, Tomney A, Garvin LM, Wu X, Rose MC. Quantitative proteomics reveals an altered cystic fibrosis in vitro bronchial epithelial secretome. Am J Respir Cell Mol Biol 2015;53:22-32. [PMID: 25692303 DOI: 10.1165/rcmb.2014-0256RC] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 5.1] [Reference Citation Analysis]
171 Cho HJ, Joo NS, Wine JJ. Defective fluid secretion from submucosal glands of nasal turbinates from CFTR-/- and CFTR (ΔF508/ΔF508) pigs. PLoS One 2011;6:e24424. [PMID: 21935358 DOI: 10.1371/journal.pone.0024424] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
172 Duchesneau P, Waddell TK, Karoubi G. Cell-Based Therapeutic Approaches for Cystic Fibrosis. Int J Mol Sci 2020;21:E5219. [PMID: 32718005 DOI: 10.3390/ijms21155219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
173 Da Silva Sanchez A, Paunovska K, Cristian A, Dahlman JE. Treating Cystic Fibrosis with mRNA and CRISPR. Hum Gene Ther 2020;31:940-55. [PMID: 32799680 DOI: 10.1089/hum.2020.137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
174 Riquelme SA, Prince A. Pseudomonas aeruginosa Consumption of Airway Metabolites Promotes Lung Infection. Pathogens 2021;10:957. [PMID: 34451421 DOI: 10.3390/pathogens10080957] [Reference Citation Analysis]
175 Gao J, Petraki S, Sun X, Brooks LA, Lynch TJ, Hsieh CL, Elteriefi R, Lorenzana Z, Punj V, Engelhardt JF, Parekh KR, Ryan AL. Derivation of induced pluripotent stem cells from ferret somatic cells. Am J Physiol Lung Cell Mol Physiol 2020;318:L671-83. [PMID: 32073882 DOI: 10.1152/ajplung.00456.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
176 Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen S, Leung HM, Villoria J, Rogel N, Burgin G, Tsankov AM, Waghray A, Slyper M, Waldman J, Nguyen L, Dionne D, Rozenblatt-Rosen O, Tata PR, Mou H, Shivaraju M, Bihler H, Mense M, Tearney GJ, Rowe SM, Engelhardt JF, Regev A, Rajagopal J. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560:319-324. [PMID: 30069044 DOI: 10.1038/s41586-018-0393-7] [Cited by in Crossref: 446] [Cited by in F6Publishing: 373] [Article Influence: 111.5] [Reference Citation Analysis]
177 Luan X, Le Y, Jagadeeshan S, Murray B, Carmalt JL, Duke T, Beazley S, Fujiyama M, Swekla K, Gray B, Burmester M, Campanucci VA, Shipley A, Machen TE, Tam JS, Ianowski JP. cAMP triggers Na+ absorption by distal airway surface epithelium in cystic fibrosis swine. Cell Rep 2021;37:109795. [PMID: 34610318 DOI: 10.1016/j.celrep.2021.109795] [Reference Citation Analysis]
178 Xu J, Livraghi-Butrico A, Hou X, Rajagopalan C, Zhang J, Song J, Jiang H, Wei HG, Wang H, Bouhamdan M, Ruan J, Yang D, Qiu Y, Xie Y, Barrett R, McClellan S, Mou H, Wu Q, Chen X, Rogers TD, Wilkinson KJ, Gilmore RC, Esther CR Jr, Zaman K, Liang X, Sobolic M, Hazlett L, Zhang K, Frizzell RA, Gentzsch M, O'Neal WK, Grubb BR, Chen YE, Boucher RC, Sun F. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight 2021;6:139813. [PMID: 33232302 DOI: 10.1172/jci.insight.139813] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
179 Luan X, Campanucci VA, Nair M, Yilmaz O, Belev G, Machen TE, Chapman D, Ianowski JP. Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea. Proc Natl Acad Sci U S A 2014;111:12930-5. [PMID: 25136096 DOI: 10.1073/pnas.1406414111] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
180 Luan X, Belev G, Tam JS, Jagadeeshan S, Hassan N, Gioino P, Grishchenko N, Huang Y, Carmalt JL, Duke T, Jones T, Monson B, Burmester M, Simovich T, Yilmaz O, Campanucci VA, Machen TE, Chapman LD, Ianowski JP. Cystic fibrosis swine fail to secrete airway surface liquid in response to inhalation of pathogens. Nat Commun 2017;8:786. [PMID: 28983075 DOI: 10.1038/s41467-017-00835-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
181 Billet A, Luo Y, Balghi H, Hanrahan JW. Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2013;288:21815-23. [PMID: 23760269 DOI: 10.1074/jbc.M113.479360] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
182 Grayson J, Tipirneni KE, Skinner DF, Fort M, Cho DY, Zhang S, Prince AC, Lim DJ, Mackey C, Woodworth BA. Sinus hypoplasia in the cystic fibrosis rat resolves in the absence of chronic infection. Int Forum Allergy Rhinol 2017;7:904-9. [PMID: 28597597 DOI: 10.1002/alr.21973] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
183 Schnúr A, Hegyi P, Rousseau S, Lukacs GL, Veit G. Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016;2016:7596531. [PMID: 27382190 DOI: 10.1155/2016/7596531] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
184 Fisher JT, Tyler SR, Zhang Y, Lee BJ, Liu X, Sun X, Sui H, Liang B, Luo M, Xie W, Yi Y, Zhou W, Song Y, Keiser N, Wang K, de Jonge HR, Engelhardt JF. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets. Am J Respir Cell Mol Biol 2013;49:837-44. [PMID: 23782101 DOI: 10.1165/rcmb.2012-0433OC] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
185 Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J. Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell Stem Cell 2016;19:217-31. [PMID: 27320041 DOI: 10.1016/j.stem.2016.05.012] [Cited by in Crossref: 189] [Cited by in F6Publishing: 159] [Article Influence: 31.5] [Reference Citation Analysis]
186 Keiser NW, Birket SE, Evans IA, Tyler SR, Crooke AK, Sun X, Zhou W, Nellis JR, Stroebele EK, Chu KK, Tearney GJ, Stevens MJ, Harris JK, Rowe SM, Engelhardt JF. Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs. Am J Respir Cell Mol Biol 2015;52:683-94. [PMID: 25317669 DOI: 10.1165/rcmb.2014-0250OC] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 8.6] [Reference Citation Analysis]
187 Fisher JT, Zhang Y, Engelhardt JF. Comparative biology of cystic fibrosis animal models. Methods Mol Biol. 2011;742:311-334. [PMID: 21547741 DOI: 10.1007/978-1-61779-120-8_19] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 5.1] [Reference Citation Analysis]
188 Morla S, Sankaranarayanan NV, Afosah DK, Kumar M, Kummarapurugu AB, Voynow JA, Desai UR. On the Process of Discovering Leads That Target the Heparin-Binding Site of Neutrophil Elastase in the Sputum of Cystic Fibrosis Patients. J Med Chem 2019;62:5501-11. [PMID: 31074986 DOI: 10.1021/acs.jmedchem.9b00379] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
189 Tang Y, Yan Z, Lin S, Huntemann ED, Feng Z, Park SY, Sun X, Yuen E, Engelhardt JF. Repeat Dosing of AAV2.5T to Ferret Lungs Elicits an Antibody Response That Diminishes Transduction in an Age-Dependent Manner. Mol Ther Methods Clin Dev 2020;19:186-200. [PMID: 33209961 DOI: 10.1016/j.omtm.2020.09.008] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
190 Cigana C, Lorè NI, Bernardini ML, Bragonzi A. Dampening Host Sensing and Avoiding Recognition in Pseudomonas aeruginosa Pneumonia. J Biomed Biotechnol 2011;2011:852513. [PMID: 21785567 DOI: 10.1155/2011/852513] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]