BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Robinson JI, Weir WH, Crowley JR, Hink T, Reske KA, Kwon JH, Burnham CD, Dubberke ER, Mucha PJ, Henderson JP. Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections. J Clin Invest 2019;129:3792-806. [PMID: 31403473 DOI: 10.1172/JCI126905] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR, Jin Y, Gu H, Guo GL. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J Fungi (Basel) 2021;7:1030. [PMID: 34947012 DOI: 10.3390/jof7121030] [Reference Citation Analysis]
2 Tomkovich S, Stough JMA, Bishop L, Schloss PD. The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice. mSphere 2020;5:e00869-20. [PMID: 33087520 DOI: 10.1128/mSphere.00869-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Diray-Arce J, Conti MG, Petrova B, Kanarek N, Angelidou A, Levy O. Integrative Metabolomics to Identify Molecular Signatures of Responses to Vaccines and Infections. Metabolites 2020;10:E492. [PMID: 33266347 DOI: 10.3390/metabo10120492] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
4 Zhang Y, Shaikh N, Ferey JL, Wankhade UD, Chintapalli SV, Higgins CB, Crowley JR, Heitmeier MR, Stothard AI, Mihi B, Good M, Higashiyama T, Swarts BM, Hruz PW, Shankar K, Tarr PI, DeBosch BJ. Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology 2020;158:1402-1416.e2. [PMID: 31838076 DOI: 10.1053/j.gastro.2019.11.295] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
5 Crobach MJT, Ducarmon QR, Terveer EM, Harmanus C, Sanders IMJG, Verduin KM, Kuijper EJ, Zwittink RD. The Bacterial Gut Microbiota of Adult Patients Infected, Colonized or Noncolonized by Clostridioides difficile. Microorganisms 2020;8:E677. [PMID: 32384826 DOI: 10.3390/microorganisms8050677] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
6 Damhorst GL, Adelman MW, Woodworth MH, Kraft CS. Current Capabilities of Gut Microbiome-Based Diagnostics and the Promise of Clinical Application. J Infect Dis 2021;223:S270-5. [PMID: 33330938 DOI: 10.1093/infdis/jiaa689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Dawkins JJ, Allegretti JR, Gibson TE, McClure E, Delaney M, Bry L, Gerber GK. Gut metabolites predict Clostridioides difficile recurrence. Microbiome 2022;10:87. [PMID: 35681218 DOI: 10.1186/s40168-022-01284-1] [Reference Citation Analysis]
8 Tam J, Icho S, Utama E, Orrell KE, Gómez-Biagi RF, Theriot CM, Kroh HK, Rutherford SA, Lacy DB, Melnyk RA. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc Natl Acad Sci U S A 2020;117:6792-800. [PMID: 32152097 DOI: 10.1073/pnas.1916965117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
9 Qian X, Yanagi K, Kane AV, Alden N, Lei M, Snydman DR, Vickers RJ, Lee K, Thorpe CM. Ridinilazole, a narrow spectrum antibiotic for treatment of Clostridioides difficile infection, enhances preservation of microbiota-dependent bile acids. Am J Physiol Gastrointest Liver Physiol 2020;319:G227-37. [PMID: 32597706 DOI: 10.1152/ajpgi.00046.2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
10 Pike CM, Theriot CM. Mechanisms of Colonization Resistance Against Clostridioides difficile. J Infect Dis 2021;223:S194-200. [PMID: 33326565 DOI: 10.1093/infdis/jiaa408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ponce-Alonso M, García-Fernández S, Del Campo R. Challenges of landscaping and modulation strategies in human intestinal microbiota. Enferm Infecc Microbiol Clin (Engl Ed) 2021;39:165-7. [PMID: 33627246 DOI: 10.1016/j.eimc.2021.02.001] [Reference Citation Analysis]
12 Lopez CA, Beavers WN, Weiss A, Knippel RJ, Zackular JP, Chazin W, Skaar EP. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation. mBio 2019;10:e02289-19. [PMID: 31744916 DOI: 10.1128/mBio.02289-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Ray K. Closing in on C. difficile infection. Nat Rev Gastroenterol Hepatol 2019;16:581. [PMID: 31467436 DOI: 10.1038/s41575-019-0206-y] [Reference Citation Analysis]
14 Jenior ML, Papin JA. Computational approaches to understanding Clostridioides difficile metabolism and virulence. Curr Opin Microbiol 2021;65:108-15. [PMID: 34839237 DOI: 10.1016/j.mib.2021.11.002] [Reference Citation Analysis]
15 Datta A, Hernandez-Franco JF, Park S, Olson MR, HogenEsch H, Thangamani S. Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. J Fungi (Basel) 2022;8:610. [PMID: 35736093 DOI: 10.3390/jof8060610] [Reference Citation Analysis]
16 Zhang Y, DeBosch BJ. Microbial and metabolic impacts of trehalose and trehalose analogues. Gut Microbes 2020;11:1475-82. [PMID: 32329657 DOI: 10.1080/19490976.2020.1750273] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
17 Buckley AM, Moura IB, Arai N, Spittal W, Clark E, Nishida Y, Harris HC, Bentley K, Davis G, Wang D, Mitra S, Higashiyama T, Wilcox MH. Trehalose-Induced Remodelling of the Human Microbiota Affects Clostridioides difficile Infection Outcome in an In Vitro Colonic Model: A Pilot Study. Front Cell Infect Microbiol 2021;11:670935. [PMID: 34277467 DOI: 10.3389/fcimb.2021.670935] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2021;19:77-94. [PMID: 32968241 DOI: 10.1038/s41579-020-0438-4] [Cited by in Crossref: 45] [Cited by in F6Publishing: 55] [Article Influence: 22.5] [Reference Citation Analysis]
20 Frankfater C, Bozeman SL, Hsu FF, Andley UP. Alpha-crystallin mutations alter lens metabolites in mouse models of human cataracts. PLoS One 2020;15:e0238081. [PMID: 32833997 DOI: 10.1371/journal.pone.0238081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Schwenk HT, Pollock NR, Vaughan-Malloy AM. Pediatric Clostridioides difficile Infection: Diagnosis and Diagnostic Stewardship. J Pediatric Infect Dis Soc 2021;10:S16-21. [PMID: 34791395 DOI: 10.1093/jpids/piab054] [Reference Citation Analysis]
22 Hazleton KZ, Martin CG, Orlicky DJ, Arnolds KL, Nusbacher NM, Moreno-Huizar N, Armstrong M, Reisdorph N, Lozupone CA. Dietary fat promotes antibiotic-induced Clostridioides difficile mortality in mice. NPJ Biofilms Microbiomes 2022;8:15. [PMID: 35365681 DOI: 10.1038/s41522-022-00276-1] [Reference Citation Analysis]
23 Theriot CM, Fletcher JR. Human fecal metabolomic profiling could inform Clostridioides difficile infection diagnosis and treatment. J Clin Invest 2019;129:3539-41. [PMID: 31403467 DOI: 10.1172/JCI130008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Raja G, Gupta H, Gebru YA, Youn GS, Choi YR, Kim HS, Yoon SJ, Kim DJ, Kim TJ, Suk KT. Recent Advances of Microbiome-Associated Metabolomics Profiling in Liver Disease: Principles, Mechanisms, and Applications. Int J Mol Sci 2021;22:1160. [PMID: 33503844 DOI: 10.3390/ijms22031160] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Papaiakovou M, Littlewood DTJ, Doyle SR, Gasser RB, Cantacessi C. Worms and bugs of the gut: the search for diagnostic signatures using barcoding, and metagenomics-metabolomics. Parasit Vectors 2022;15:118. [PMID: 35365192 DOI: 10.1186/s13071-022-05225-7] [Reference Citation Analysis]
26 Fishbein SR, Robinson JI, Hink T, Reske KA, Newcomer EP, Burnham CD, Henderson JP, Dubberke ER, Dantas G. Multi-omics investigation of Clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis. Elife 2022;11:e72801. [PMID: 35083969 DOI: 10.7554/eLife.72801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Ghosh S. Metabolomic Studies for Metabolic Alterations Induced by Non-Steroidal Anti-Inflammatory Drugs: Mini Review. Biomolecules 2021;11:1456. [PMID: 34680089 DOI: 10.3390/biom11101456] [Reference Citation Analysis]
28 Reed AD, Nethery MA, Stewart A, Barrangou R, Theriot CM. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Clostridia Carrying the Bile Acid-Inducible (bai) Operon. J Bacteriol 2020;202:e00039-20. [PMID: 32179626 DOI: 10.1128/JB.00039-20] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
29 Leopold SR, Abdelraouf K, Nicolau DP, Agresta H, Johnson J, Teter K, Dunne WM, Broadwell D, van Belkum A, Schechter LM, Sodergren EJ, Weinstock GM. Murine Model for Measuring Effects of Humanized-Dosing of Antibiotics on the Gut Microbiome. Front Microbiol 2022;13:813849. [DOI: 10.3389/fmicb.2022.813849] [Reference Citation Analysis]