1 |
Rago V, Perri A. SARS-CoV-2 Infection and the Male Reproductive System: A Brief Review. Life (Basel) 2023;13. [PMID: 36836943 DOI: 10.3390/life13020586] [Reference Citation Analysis]
|
2 |
Amruta N, Ismael S, Leist SR, Gressett TE, Srivastava A, Dinnon KH 3rd, Engler-Chiurazzi EB, Maness NJ, Qin X, Kolls JK, Baric RS, Bix G. Mouse Adapted SARS-CoV-2 (MA10) Viral Infection Induces Neuroinflammation in Standard Laboratory Mice. Viruses 2022;15. [PMID: 36680154 DOI: 10.3390/v15010114] [Reference Citation Analysis]
|
3 |
Tailor N, Warner BM, Griffin BD, Tierney K, Moffat E, Frost K, Vendramelli R, Leung A, Willman M, Thomas SP, Pei Y, Booth SA, Embury-Hyatt C, Wootton SK, Kobasa D. Generation and Characterization of a SARS-CoV-2-Susceptible Mouse Model Using Adeno-Associated Virus (AAV6.2FF)-Mediated Respiratory Delivery of the Human ACE2 Gene. Viruses 2022;15. [PMID: 36680125 DOI: 10.3390/v15010085] [Reference Citation Analysis]
|
4 |
Chen Y, Wu Y, Chen S, Zhan Q, Wu D, Yang C, He X, Qiu M, Zhang N, Li Z, Guo Y, Wen M, Lu L, Ma C, Guo J, Xu W, Li X, Li L, Jiang S, Pan X, Liu S, Tan S. Sertraline Is an Effective SARS-CoV-2 Entry Inhibitor Targeting the Spike Protein. J Virol 2022;96:e0124522. [PMID: 36468859 DOI: 10.1128/jvi.01245-22] [Reference Citation Analysis]
|
5 |
Daniel G, Paola A, Nancy G, Fernando S, Beatriz A, Zulema R, Julieth A, Claudia C, Adriana R. Epigenetic mechanisms and host factors impact ACE2 gene expression: Implications in COVID-19 susceptibility. Infection, Genetics and Evolution 2022;104:105357. [DOI: 10.1016/j.meegid.2022.105357] [Reference Citation Analysis]
|
6 |
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022;45:1430-49. [PMID: 35320469 DOI: 10.1007/s10753-022-01656-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
7 |
Lin Q, Lu C, Hong Y, Li R, Chen J, Chen W, Chen J. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. Antiviral Res 2022;203:105345. [PMID: 35605699 DOI: 10.1016/j.antiviral.2022.105345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Chen C, Li Y, Lv F, Xu L, Huang Y. Surface Display of Peptides Corresponding to the Heptad Repeat 2 Domain of the Feline Enteric Coronavirus Spike Protein on Bacillus subtilis Spores Elicits Protective Immune Responses Against Homologous Infection in a Feline Aminopeptidase-N-Transduced Mouse Model. Front Immunol 2022;13:925922. [DOI: 10.3389/fimmu.2022.925922] [Reference Citation Analysis]
|
9 |
Li W, Kitsios GD, Bain W, Wang C, Li T, Fanning KV, Deshpande R, Qin X, Morris A, Lee JS, Zou C. Stability of SARS-CoV-2-Encoded Proteins and Their Antibody Levels Correlate with Interleukin 6 in COVID-19 Patients. mSystems 2022;7:e0005822. [PMID: 35582921 DOI: 10.1128/msystems.00058-22] [Reference Citation Analysis]
|
10 |
Yip AJW, Low ZY, Chow VTK, Lal SK. Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity. Viruses 2022;14:1345. [PMID: 35746815 DOI: 10.3390/v14061345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Kojima Y, Mii S, Hayashi S, Hirose H, Ishikawa M, Akiyama M, Enomoto A, Shimamura T. Single-cell colocalization analysis using a deep generative model.. [DOI: 10.1101/2022.04.10.487815] [Reference Citation Analysis]
|
12 |
Xie Y, Yang L, Cao P, Li S, Zhang W, Dang W, Xin S, Jiang M, Xin Y, Li J, Long S, Wang Y, Zhang S, Yang Y, Lu J. Plasma Exosomal Proteomic Pattern of Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis. Front Microbiol 2022;13:821311. [DOI: 10.3389/fmicb.2022.821311] [Reference Citation Analysis]
|
13 |
Du Y, Miah KM, Habib O, Meyer-berg H, Conway CC, Viegas MA, Dean R, Satyapertiwi D, Zhao J, Wang Y, Temperton NJ, Gamlen TPE, Gill DR, Hyde SC. Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection. Thorax. [DOI: 10.1136/thoraxjnl-2021-217650] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Caldera-Crespo LA, Paidas MJ, Roy S, Schulman CI, Kenyon NS, Daunert S, Jayakumar AR. Experimental Models of COVID-19. Front Cell Infect Microbiol 2021;11:792584. [PMID: 35096645 DOI: 10.3389/fcimb.2021.792584] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
15 |
Yilmaz IC, Ipekoglu EM, Bulbul A, Turay N, Yildirim M, Evcili I, Yilmaz NS, Guvencli N, Aydin Y, Gungor B, Saraydar B, Bartan AG, Ibibik B, Bildik T, Baydemir İ, Sanli HA, Kayaoglu B, Ceylan Y, Yildirim T, Abras I, Ayanoglu IC, Cam SB, Ciftci Dede E, Gizer M, Erganis O, Sarac F, Uzar S, Enul H, Adiay C, Aykut G, Polat H, Yildirim IS, Tekin S, Korukluoglu G, Zeytin HE, Korkusuz P, Gursel I, Gursel M. Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection. Allergy 2022;77:258-70. [PMID: 34519053 DOI: 10.1111/all.15091] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
|
16 |
Katzman C, Israely T, Melamed S, Politi B, Sittner A, Yahalom-ronen Y, Weiss S, Abu Rass R, Zamostiano R, Bacharach E, Ehrlich M, Paran N, Nissim L. Modeling SARS-CoV-2 Infection in Mice Using Lentiviral hACE2 Vectors Infers Two Modes of Immune Responses to SARS-CoV-2 Infection. Viruses 2021;14:11. [DOI: 10.3390/v14010011] [Reference Citation Analysis]
|
17 |
Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (2020) 2021. [PMID: 34909757 DOI: 10.1002/mco2.98] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
18 |
Schardt JS, Pornnoppadol G, Desai AA, Park KS, Zupancic JM, Makowski EK, Smith MD, Chen H, Garcia de Mattos Barbosa M, Cascalho M, Lanigan TM, Moon JJ, Tessier PM. Discovery and characterization of high-affinity, potent SARS-CoV-2 neutralizing antibodies via single B cell screening. Sci Rep 2021;11:20738. [PMID: 34671080 DOI: 10.1038/s41598-021-99401-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
19 |
Kang YW, Lee SC, Jeon SM, Jo E. Roles of Interleukin-17 and Th17 Responses in COVID-19. jbv 2021;51:89-102. [DOI: 10.4167/jbv.2021.51.3.089] [Reference Citation Analysis]
|
20 |
Liu F, Han K, Blair R, Kenst K, Qin Z, Upcin B, Wörsdörfer P, Midkiff CC, Mudd J, Belyaeva E, Milligan NS, Rorison TD, Wagner N, Bodem J, Dölken L, Aktas BH, Vander Heide RS, Yin XM, Kolls JK, Roy CJ, Rappaport J, Ergün S, Qin X. SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro. Front Cell Infect Microbiol 2021;11:701278. [PMID: 34307198 DOI: 10.3389/fcimb.2021.701278] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 20.5] [Reference Citation Analysis]
|
21 |
Qin Z, Liu F, Blair R, Wang C, Yang H, Mudd J, Currey JM, Iwanaga N, He J, Mi R, Han K, Midkiff CC, Alam MA, Aktas BH, Heide RSV, Veazey R, Piedimonte G, Maness NJ, Ergün S, Mauvais-Jarvis F, Rappaport J, Kolls JK, Qin X. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics 2021;11:8076-91. [PMID: 34335981 DOI: 10.7150/thno.61810] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
|
22 |
. Erratum: Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection. Am J Respir Cell Mol Biol 2021;65:121. [PMID: 34241583 DOI: 10.1165/rcmb.v65erratum1] [Reference Citation Analysis]
|
23 |
Liu LP, Zhang XL, Li J. New perspectives on angiotensin-converting enzyme 2 and its related diseases. World J Diabetes 2021; 12(6): 839-854 [PMID: 34168732 DOI: 10.4239/wjd.v12.i6.839] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
24 |
Douedi S, Mararenko A, Alshami A, Al-Azzawi M, Ajam F, Patel S, Douedi H, Calderon D. COVID-19 induced bradyarrhythmia and relative bradycardia: An overview. J Arrhythm 2021;37:888-92. [PMID: 34386113 DOI: 10.1002/joa3.12578] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
25 |
Wu M, Zhang Y, Grosser M, Tipper S, Venter D, Lin H, Lu J. Profiling COVID-19 Genetic Research: A Data-Driven Study Utilizing Intelligent Bibliometrics. Front Res Metr Anal 2021;6:683212. [PMID: 34109284 DOI: 10.3389/frma.2021.683212] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
26 |
Amruta N, Engler-chiurazzi EB, Murray-brown IC, Gressett TE, Biose IJ, Chastain WH, Bix G. In-vivo Protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice.. [DOI: 10.1101/2021.05.08.443275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Tsai C, Chen C, Jan J, Chou Y, Chang M, Lu LA, Huang P, Chu MF, Hsu T, Hsueh Y. Sex-biased response to and brain cell infection by SARS-CoV-2 in a highly susceptible human ACE2 transgenic model.. [DOI: 10.1101/2021.05.04.441029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
28 |
Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D. Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms 2021;9:868. [PMID: 33920724 DOI: 10.3390/microorganisms9040868] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
|
29 |
Majumdar S, Murphy PM. Chemokine Regulation During Epidemic Coronavirus Infection. Front Pharmacol 2020;11:600369. [PMID: 33613280 DOI: 10.3389/fphar.2020.600369] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
30 |
De Gasparo R, Pedotti M, Simonelli L, Nickl P, Muecksch F, Cassaniti I, Percivalle E, Lorenzi JCC, Mazzola F, Magrì D, Michalcikova T, Haviernik J, Honig V, Mrazkova B, Polakova N, Fortova A, Tureckova J, Iatsiuk V, Girolamo SD, Palus M, Zudova D, Bednar P, Bukova I, Bianchini F, Mehn D, Nencka R, Strakova P, Pavlis O, Rozman J, Gioria S, Camilla Sammartino J, Giardina F, Gaiarsa S, Hammarström QP, Barnes CO, Bjorkman PJ, Calzolai L, Piralla A, Baldanti F, Nussenzweig MC, Bieniasz PD, Hatziioannou T, Prochazka J, Sedlacek R, Robbiani DF, Ruzek D, Varani L. Bispecific antibody neutralizes circulating SARS-CoV-2 variants, prevents escape and protects mice from disease.. [DOI: 10.1101/2021.01.22.427567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Harker JA, Johansson C. Rapidly Deployable Mouse Models of SARS-CoV-2 Infection Add Flexibility to the COVID-19 Toolbox. Am J Respir Cell Mol Biol 2021;64:7-9. [PMID: 33170734 DOI: 10.1165/rcmb.2020-0456ED] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|