BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Terentyev D, Györke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Györke S. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 2008;103:1466-72. [PMID: 19008475 DOI: 10.1161/CIRCRESAHA.108.184457] [Cited by in Crossref: 251] [Cited by in F6Publishing: 160] [Article Influence: 17.9] [Reference Citation Analysis]
Number Citing Articles
1 Walker MA, Gurev V, Rice JJ, Greenstein JL, Winslow RL. Estimating the probabilities of rare arrhythmic events in multiscale computational models of cardiac cells and tissue. PLoS Comput Biol 2017;13:e1005783. [PMID: 29145393 DOI: 10.1371/journal.pcbi.1005783] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
2 Chen F, Hadfield JM, Berzingi C, Hollander JM, Miller DB, Nichols CE, Finkel MS. N-acetylcysteine reverses cardiac myocyte dysfunction in a rodent model of behavioral stress. J Appl Physiol (1985) 2013;115:514-24. [PMID: 23722706 DOI: 10.1152/japplphysiol.01471.2012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
3 Long VP 3rd, Bonilla IM, Vargas-Pinto P, Nishijima Y, Sridhar A, Li C, Mowrey K, Wright P, Velayutham M, Kumar S, Lee NY, Zweier JL, Mohler PJ, Györke S, Carnes CA. Heart failure duration progressively modulates the arrhythmia substrate through structural and electrical remodeling. Life Sci 2015;123:61-71. [PMID: 25596015 DOI: 10.1016/j.lfs.2014.12.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
4 Tuncay E, Okatan EN, Toy A, Turan B. Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev 2014;2014:290381. [PMID: 24693334 DOI: 10.1155/2014/290381] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
5 De Giusti VC, Caldiz CI, Ennis IL, Pérez NG, Cingolani HE, Aiello EA. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS). Front Physiol 2013;4:126. [PMID: 23755021 DOI: 10.3389/fphys.2013.00126] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
6 He L, Xiao J, Fu H, Du G, Xiao X, Zhang C, Gu Y, Ma Y. Effect of oxidative stress on ventricular arrhythmia in rabbits with adriamycin-induced cardiomyopathy. J Huazhong Univ Sci Technolog Med Sci 2012;32:334-9. [PMID: 22684554 DOI: 10.1007/s11596-012-0058-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
7 Tencerová B, Zahradníková A, Gaburjáková J, Gaburjáková M. Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP. J Gen Physiol 2012;140:93-108. [PMID: 22851674 DOI: 10.1085/jgp.201110708] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
8 Greensmith DJ, Galli GL, Trafford AW, Eisner DA. Direct measurements of SR free Ca reveal the mechanism underlying the transient effects of RyR potentiation under physiological conditions. Cardiovasc Res 2014;103:554-63. [PMID: 24947416 DOI: 10.1093/cvr/cvu158] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
9 Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM. S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 2009;54:188-95. [PMID: 19687749 DOI: 10.1097/FJC.0b013e3181b72c9f] [Cited by in Crossref: 96] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]
10 Walker MA, Kohl T, Lehnart SE, Greenstein JL, Lederer WJ, Winslow RL. On the Adjacency Matrix of RyR2 Cluster Structures. PLoS Comput Biol 2015;11:e1004521. [PMID: 26545234 DOI: 10.1371/journal.pcbi.1004521] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
11 Benitah JP, Perrier R, Mercadier JJ, Pereira L, Gómez AM. RyR2 and Calcium Release in Heart Failure. Front Physiol 2021;12:734210. [PMID: 34690808 DOI: 10.3389/fphys.2021.734210] [Reference Citation Analysis]
12 Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015;20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 9.7] [Reference Citation Analysis]
13 Urmaliya V, Franchelli G. A multidimensional sight on cardiac failure: uncovered from structural to molecular level. Heart Fail Rev 2017;22:357-70. [PMID: 28474325 DOI: 10.1007/s10741-017-9610-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
14 Aiba T, Tomaselli GF, Shimizu W. Electrophysiological Remodeling in Heart Failure Dyssynchrony vs. Resynchronization. Journal of Arrhythmia 2010;26:79-90. [DOI: 10.1016/s1880-4276(10)80011-0] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
15 Belevych AE, Radwański PB, Carnes CA, Györke S. 'Ryanopathy': causes and manifestations of RyR2 dysfunction in heart failure. Cardiovasc Res 2013;98:240-7. [PMID: 23408344 DOI: 10.1093/cvr/cvt024] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 4.9] [Reference Citation Analysis]
16 Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca2 + Uptake and Release: A First Step Toward Ca2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2019;10:1630. [PMID: 32038301 DOI: 10.3389/fphys.2019.01630] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CL. Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts. Mech Ageing Dev 2018;173:92-103. [PMID: 29763629 DOI: 10.1016/j.mad.2018.05.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
18 Ullrich ND, Fanchaouy M, Gusev K, Shirokova N, Niggli E. Hypersensitivity of excitation-contraction coupling in dystrophic cardiomyocytes. Am J Physiol Heart Circ Physiol 2009;297:H1992-2003. [PMID: 19783774 DOI: 10.1152/ajpheart.00602.2009] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 3.2] [Reference Citation Analysis]
19 Adameova A, Shah AK, Dhalla NS. Role of Oxidative Stress in the Genesis of Ventricular Arrhythmias. Int J Mol Sci 2020;21:E4200. [PMID: 32545595 DOI: 10.3390/ijms21124200] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
20 Nunes P, Demaurex N. Redox regulation of store-operated Ca2+ entry. Antioxid Redox Signal 2014;21:915-32. [PMID: 24053140 DOI: 10.1089/ars.2013.5615] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 4.7] [Reference Citation Analysis]
21 Ballan N, Shaheen N, Keller GM, Gepstein L. Single-Cell Mechanical Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Testing and Pathophysiological Studies. Stem Cell Reports 2020;15:587-96. [PMID: 32763158 DOI: 10.1016/j.stemcr.2020.07.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Mariángelo JIE, Valverde CA, Vittone L, Said M, Mundiña-Weilenmann C. Pharmacological inhibition of translocon is sufficient to alleviate endoplasmic reticulum stress and improve Ca2+ handling and contractile recovery of stunned myocardium. Eur J Pharmacol 2022;914:174665. [PMID: 34861208 DOI: 10.1016/j.ejphar.2021.174665] [Reference Citation Analysis]
23 Wang H, Viatchenko-Karpinski S, Sun J, Györke I, Benkusky NA, Kohr MJ, Valdivia HH, Murphy E, Györke S, Ziolo MT. Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. J Physiol 2010;588:2905-17. [PMID: 20530114 DOI: 10.1113/jphysiol.2010.192617] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 5.2] [Reference Citation Analysis]
24 D'Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxid Med Cell Longev 2020;2020:5732956. [PMID: 32509147 DOI: 10.1155/2020/5732956] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 20.0] [Reference Citation Analysis]
25 Nikolaienko R, Bovo E, Rebbeck RT, Kahn D, Thomas DD, Cornea RL, Zima AV. The functional significance of redox-mediated intersubunit cross-linking in regulation of human type 2 ryanodine receptor. Redox Biol 2020;37:101729. [PMID: 32980662 DOI: 10.1016/j.redox.2020.101729] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 O'Rourke B, Ashok D, Liu T. Mitochondrial Ca2+ in heart failure: Not enough or too much? J Mol Cell Cardiol 2021;151:126-34. [PMID: 33290770 DOI: 10.1016/j.yjmcc.2020.11.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015;116:531-49. [PMID: 25634975 DOI: 10.1161/CIRCRESAHA.116.303584] [Cited by in Crossref: 283] [Cited by in F6Publishing: 151] [Article Influence: 40.4] [Reference Citation Analysis]
28 Wasserstrom JA. Are we ready for a new mechanism of action underlying digitalis toxicity? J Physiol 2011;589:5015. [PMID: 22042543 DOI: 10.1113/jphysiol.2011.219774] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
29 Boyden PA, Smith GL. Ca2+ leak-What is it? Why should we care? Can it be managed? Heart Rhythm 2018;15:607-14. [PMID: 29157722 DOI: 10.1016/j.hrthm.2017.11.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Becerra R, Román B, Di Carlo MN, Mariangelo JI, Salas M, Sanchez G, Donoso P, Schinella GR, Vittone L, Wehrens XH, Mundiña-Weilenmann C, Said M. Reversible redox modifications of ryanodine receptor ameliorate ventricular arrhythmias in the ischemic-reperfused heart. Am J Physiol Heart Circ Physiol 2016;311:H713-24. [PMID: 27422983 DOI: 10.1152/ajpheart.00142.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
31 Choi S, Quan X, Bang S, Yoo H, Kim J, Park J, Park KS, Chung J. Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. J Biol Chem 2017;292:14473-85. [PMID: 28726639 DOI: 10.1074/jbc.M116.765578] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 4.4] [Reference Citation Analysis]
32 Zhang L, Lu X, Gui L, Wu Y, Sims SM, Wang G, Feng Q. Inhibition of Rac1 reduces store overload-induced calcium release and protects against ventricular arrhythmia. J Cell Mol Med 2016;20:1513-22. [PMID: 27222313 DOI: 10.1111/jcmm.12840] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
33 Cutler MJ, Jeyaraj D, Rosenbaum DS. Cardiac electrical remodeling in health and disease. Trends Pharmacol Sci 2011;32:174-80. [PMID: 21316769 DOI: 10.1016/j.tips.2010.12.001] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 5.2] [Reference Citation Analysis]
34 Yang J, Zhang R, Jiang X, Lv J, Li Y, Ye H, Liu W, Wang G, Zhang C, Zheng N, Dong M, Wang Y, Chen P, Santosh K, Jiang Y, Liu J. Toll-like receptor 4-induced ryanodine receptor 2 oxidation and sarcoplasmic reticulum Ca2+ leakage promote cardiac contractile dysfunction in sepsis. J Biol Chem 2018;293:794-807. [PMID: 29150444 DOI: 10.1074/jbc.M117.812289] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
35 Breitkreuz M, Hamdani N. A change of heart: oxidative stress in governing muscle function? Biophys Rev 2015;7:321-41. [PMID: 28510229 DOI: 10.1007/s12551-015-0175-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
36 Valli H, Ahmad S, Fraser JA, Jeevaratnam K, Huang CL. Pro-arrhythmic atrial phenotypes in incrementally paced murine Pgc1β-/- hearts: effects of age. Exp Physiol 2017;102:1619-34. [PMID: 28960529 DOI: 10.1113/EP086589] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
37 Hamilton S, Terentyeva R, Martin B, Perger F, Li J, Stepanov A, Bonilla IM, Knollmann BC, Radwański PB, Györke S, Belevych AE, Terentyev D. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Res Cardiol 2020;115:38. [PMID: 32444920 DOI: 10.1007/s00395-020-0797-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
38 Bonilla IM, Long VP 3rd, Vargas-Pinto P, Wright P, Belevych A, Lou Q, Mowrey K, Yoo J, Binkley PF, Fedorov VV, Györke S, Janssen PM, Kilic A, Mohler PJ, Carnes CA. Calcium-activated potassium current modulates ventricular repolarization in chronic heart failure. PLoS One 2014;9:e108824. [PMID: 25271970 DOI: 10.1371/journal.pone.0108824] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
39 Jiang F, Yin K, Wu K, Zhang M, Wang S, Cheng H, Zhou Z, Xiao B. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nat Commun 2021;12:869. [PMID: 33558521 DOI: 10.1038/s41467-021-21178-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
40 Cherry EM, Fenton FH, Gilmour RF Jr. Mechanisms of ventricular arrhythmias: a dynamical systems-based perspective. Am J Physiol Heart Circ Physiol 2012;302:H2451-63. [PMID: 22467299 DOI: 10.1152/ajpheart.00770.2011] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
41 Dulhunty AF, Beard NA, Hanna AD. Regulation and dysregulation of cardiac ryanodine receptor (RyR2) open probability during diastole in health and disease. J Gen Physiol 2012;140:87-92. [PMID: 22851673 DOI: 10.1085/jgp.201210862] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
42 Walker MA, Williams GSB, Kohl T, Lehnart SE, Jafri MS, Greenstein JL, Lederer WJ, Winslow RL. Superresolution modeling of calcium release in the heart. Biophys J 2014;107:3018-29. [PMID: 25517166 DOI: 10.1016/j.bpj.2014.11.003] [Cited by in Crossref: 65] [Cited by in F6Publishing: 50] [Article Influence: 10.8] [Reference Citation Analysis]
43 Sag CM, Köhler AC, Anderson ME, Backs J, Maier LS. CaMKII-dependent SR Ca leak contributes to doxorubicin-induced impaired Ca handling in isolated cardiac myocytes. J Mol Cell Cardiol 2011;51:749-59. [PMID: 21819992 DOI: 10.1016/j.yjmcc.2011.07.016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 6.2] [Reference Citation Analysis]
44 Hadipour-Lakmehsari S, Driouchi A, Lee SH, Kuzmanov U, Callaghan NI, Heximer SP, Simmons CA, Yip CM, Gramolini AO. Nanoscale reorganization of sarcoplasmic reticulum in pressure-overload cardiac hypertrophy visualized by dSTORM. Sci Rep 2019;9:7867. [PMID: 31133706 DOI: 10.1038/s41598-019-44331-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
45 Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 2015;6:260-71. [PMID: 26296072 DOI: 10.1016/j.redox.2015.08.010] [Cited by in Crossref: 560] [Cited by in F6Publishing: 528] [Article Influence: 80.0] [Reference Citation Analysis]
46 Crocini C, Ferrantini C, Coppini R, Sacconi L. Electrical defects of the transverse-axial tubular system in cardiac diseases. J Physiol 2017;595:3815-22. [PMID: 27981580 DOI: 10.1113/JP273042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
47 Ahmad S, Valli H, Salvage SC, Grace AA, Jeevaratnam K, Huang CL. Age-dependent electrocardiographic changes in Pgc-1β deficient murine hearts. Clin Exp Pharmacol Physiol 2018;45:174-86. [PMID: 28949414 DOI: 10.1111/1440-1681.12863] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
48 Liao B, Zheng YM, Yadav VR, Korde AS, Wang YX. Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes. Antioxid Redox Signal 2011;14:37-47. [PMID: 20518593 DOI: 10.1089/ars.2009.3047] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 3.1] [Reference Citation Analysis]
49 Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019;20:E2386. [PMID: 31091723 DOI: 10.3390/ijms20102386] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
50 Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, Korchev YE, Harding SE, Gorelik J. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci USA. 2009;106:6854-6859. [PMID: 19342485 DOI: 10.1073/pnas.0809777106] [Cited by in Crossref: 264] [Cited by in F6Publishing: 244] [Article Influence: 20.3] [Reference Citation Analysis]
51 Martin B, Vanderpool RR, Henry BL, Palma JB, Gabris B, Lai YC, Hu J, Tofovic SP, Reddy RP, Mora AL, Gladwin MT, Romero G, Salama G. Relaxin Inhibits Ventricular Arrhythmia and Asystole in Rats With Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021;8:668222. [PMID: 34295927 DOI: 10.3389/fcvm.2021.668222] [Reference Citation Analysis]
52 van Oort RJ, Respress JL, Li N, Reynolds C, De Almeida AC, Skapura DG, De Windt LJ, Wehrens XH. Accelerated development of pressure overload-induced cardiac hypertrophy and dysfunction in an RyR2-R176Q knockin mouse model. Hypertension 2010;55:932-8. [PMID: 20157052 DOI: 10.1161/HYPERTENSIONAHA.109.146449] [Cited by in Crossref: 47] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
53 Aiello EA, De Giusti VC. Regulation of the cardiac sodium/bicarbonate cotransporter by angiotensin II: potential Contribution to structural, ionic and electrophysiological myocardial remodelling. Curr Cardiol Rev. 2013;9:24-32. [PMID: 23116057 DOI: 10.2174/157340313805076340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
54 Edling CE, Fazmin IT, Chadda KR, Ahmad S, Valli H, Huang CL, Jeevaratnam K. Atrial Transcriptional Profiles of Molecular Targets Mediating Electrophysiological Function in Aging and Pgc-1β Deficient Murine Hearts. Front Physiol 2019;10:497. [PMID: 31068841 DOI: 10.3389/fphys.2019.00497] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM. Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 2010;285:28938-45. [PMID: 20643651 DOI: 10.1074/jbc.M110.154948] [Cited by in Crossref: 103] [Cited by in F6Publishing: 71] [Article Influence: 8.6] [Reference Citation Analysis]
56 de Muinck ED. Gene and cell therapy for heart failure. Antioxid Redox Signal 2009;11:2025-42. [PMID: 19416058 DOI: 10.1089/ars.2009.2495] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
57 Hamilton S, Veress R, Belevych A, Terentyev D. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Arch 2021;473:377-87. [PMID: 33404893 DOI: 10.1007/s00424-020-02505-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 Dulce RA, Yiginer O, Gonzalez DR, Goss G, Feng N, Zheng M, Hare JM. Hydralazine and organic nitrates restore impaired excitation-contraction coupling by reducing calcium leak associated with nitroso-redox imbalance. J Biol Chem 2013;288:6522-33. [PMID: 23319593 DOI: 10.1074/jbc.M112.412130] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
59 Maxwell JT, Domeier TL, Blatter LA. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Am J Physiol Heart Circ Physiol 2012;302:H953-63. [PMID: 22180651 DOI: 10.1152/ajpheart.00936.2011] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 5.6] [Reference Citation Analysis]
60 Joseph LC, Reyes MV, Lakkadi KR, Gowen BH, Hasko G, Drosatos K, Morrow JP. PKCδ causes sepsis-induced cardiomyopathy by inducing mitochondrial dysfunction. Am J Physiol Heart Circ Physiol 2020;318:H778-86. [PMID: 32142354 DOI: 10.1152/ajpheart.00749.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
61 Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B, Nagaraju CK, Johnson DM, Holemans P, Roderick HL, Macquaide N, Claus P, Sipido KR. Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc Res 2018;114:1512-24. [PMID: 29668881 DOI: 10.1093/cvr/cvy088] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
62 Lakin R, Rohailla S. Reacting to too much excitement: ROS overproduction elicits arrhythmogenic Ca2+ waves in the heart. J Physiol 2013;591:607-8. [PMID: 23378424 DOI: 10.1113/jphysiol.2012.246645] [Reference Citation Analysis]
63 Fernandez-Sanz C, Ruiz-Meana M, Miro-Casas E, Nuñez E, Castellano J, Loureiro M, Barba I, Poncelas M, Rodriguez-Sinovas A, Vázquez J, Garcia-Dorado D. Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis 2014;5:e1573. [PMID: 25522267 DOI: 10.1038/cddis.2014.526] [Cited by in Crossref: 69] [Cited by in F6Publishing: 66] [Article Influence: 8.6] [Reference Citation Analysis]
64 Nikolaienko R, Bovo E, Zima AV. Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases. Front Physiol 2018;9:1775. [PMID: 30574097 DOI: 10.3389/fphys.2018.01775] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
65 Vakrou S, Abraham MR. Hypertrophic cardiomyopathy: a heart in need of an energy bar? Front Physiol 2014;5:309. [PMID: 25191275 DOI: 10.3389/fphys.2014.00309] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
66 Domeier TL, Blatter LA, Zima AV. Changes in intra-luminal calcium during spontaneous calcium waves following sensitization of ryanodine receptor channels. Channels (Austin) 2010;4:87-92. [PMID: 20139707 DOI: 10.4161/chan.4.2.11019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
67 Kuster GM, Lancel S, Zhang J, Communal C, Trucillo MP, Lim CC, Pfister O, Weinberg EO, Cohen RA, Liao R, Siwik DA, Colucci WS. Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med 2010;48:1182-7. [PMID: 20132882 DOI: 10.1016/j.freeradbiomed.2010.01.038] [Cited by in Crossref: 96] [Cited by in F6Publishing: 91] [Article Influence: 8.0] [Reference Citation Analysis]
68 Wall SB, Oh JY, Diers AR, Landar A. Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol 2012;3:369. [PMID: 23049513 DOI: 10.3389/fphys.2012.00369] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 5.6] [Reference Citation Analysis]
69 Souvannakitti D, Nanduri J, Yuan G, Kumar GK, Fox AP, Prabhakar NR. NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci 2010;30:10763-72. [PMID: 20705601 DOI: 10.1523/JNEUROSCI.2307-10.2010] [Cited by in Crossref: 56] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
70 Waddell HMM, Zhang JZ, Hoeksema KJ, McLachlan JJ, McLay JC, Jones PP. Oxidation of RyR2 Has a Biphasic Effect on the Threshold for Store Overload-Induced Calcium Release. Biophys J 2016;110:2386-96. [PMID: 27276257 DOI: 10.1016/j.bpj.2016.04.036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
71 Pitts MW, Hoffmann PR. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2018;70:76-86. [PMID: 28506443 DOI: 10.1016/j.ceca.2017.05.001] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
72 Radwański PB, Belevych AE, Brunello L, Carnes CA, Györke S. Store-dependent deactivation: cooling the chain-reaction of myocardial calcium signaling. J Mol Cell Cardiol 2013;58:77-83. [PMID: 23108187 DOI: 10.1016/j.yjmcc.2012.10.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
73 Bode D, Semmler L, Oeing CU, Alogna A, Schiattarella GG, M Pieske B, Heinzel FR, Hohendanner F. Implications of SGLT Inhibition on Redox Signalling in Atrial Fibrillation. Int J Mol Sci 2021;22:5937. [PMID: 34073033 DOI: 10.3390/ijms22115937] [Reference Citation Analysis]
74 Sag CM, Wolff HA, Neumann K, Opiela MK, Zhang J, Steuer F, Sowa T, Gupta S, Schirmer M, Hünlich M, Rave-Fränk M, Hess CF, Anderson ME, Shah AM, Christiansen H, Maier LS. Ionizing radiation regulates cardiac Ca handling via increased ROS and activated CaMKII. Basic Res Cardiol 2013;108:385. [PMID: 24068185 DOI: 10.1007/s00395-013-0385-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
75 Dhalla NS, Elimban V, Bartekova M, Adameova A. Involvement of Oxidative Stress in the Development of Subcellular Defects and Heart Disease. Biomedicines 2022;10:393. [DOI: 10.3390/biomedicines10020393] [Reference Citation Analysis]
76 Ahmad S, Valli H, Edling CE, Grace AA, Jeevaratnam K, Huang CL. Effects of ageing on pro-arrhythmic ventricular phenotypes in incrementally paced murine Pgc-1β -/- hearts. Pflugers Arch 2017;469:1579-90. [PMID: 28821956 DOI: 10.1007/s00424-017-2054-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
77 Murphy KR, Baggett B, Cooper LL, Lu Y, O-Uchi J, Sedivy JM, Terentyev D, Koren G. Enhancing Autophagy Diminishes Aberrant Ca2+ Homeostasis and Arrhythmogenesis in Aging Rabbit Hearts. Front Physiol 2019;10:1277. [PMID: 31636573 DOI: 10.3389/fphys.2019.01277] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
78 Shirokova N, Kang C, Fernandez-Tenorio M, Wang W, Wang Q, Wehrens XHT, Niggli E. Oxidative stress and ca(2+) release events in mouse cardiomyocytes. Biophys J 2014;107:2815-27. [PMID: 25517148 DOI: 10.1016/j.bpj.2014.10.054] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
79 Bovo E, Mazurek SR, Blatter LA, Zima AV. Regulation of sarcoplasmic reticulum Ca²⁺ leak by cytosolic Ca²⁺ in rabbit ventricular myocytes. J Physiol 2011;589:6039-50. [PMID: 21986204 DOI: 10.1113/jphysiol.2011.214171] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
80 Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022;474:33-61. [PMID: 34978597 DOI: 10.1007/s00424-021-02650-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Hamilton S, Terentyeva R, Kim TY, Bronk P, Clements RT, O-Uchi J, Csordás G, Choi BR, Terentyev D. Pharmacological Modulation of Mitochondrial Ca2+ Content Regulates Sarcoplasmic Reticulum Ca2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Front Physiol 2018;9:1831. [PMID: 30622478 DOI: 10.3389/fphys.2018.01831] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
82 Dixon RE. Nanoscale Organization, Regulation, and Dynamic Reorganization of Cardiac Calcium Channels. Front Physiol 2021;12:810408. [PMID: 35069264 DOI: 10.3389/fphys.2021.810408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Sommese L, Valverde CA, Blanco P, Castro MC, Rueda OV, Kaetzel M, Dedman J, Anderson ME, Mattiazzi A, Palomeque J. Ryanodine receptor phosphorylation by CaMKII promotes spontaneous Ca(2+) release events in a rodent model of early stage diabetes: The arrhythmogenic substrate. Int J Cardiol 2016;202:394-406. [PMID: 26432489 DOI: 10.1016/j.ijcard.2015.09.022] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
84 Bovo E, Martin JL, Tyryfter J, de Tombe PP, Zima AV. R-CEPIA1er as a new tool to directly measure sarcoplasmic reticulum [Ca] in ventricular myocytes. Am J Physiol Heart Circ Physiol 2016;311:H268-75. [PMID: 27233762 DOI: 10.1152/ajpheart.00175.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
85 Pessah IN, Cherednichenko G, Lein PJ. Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 2010;125:260-85. [PMID: 19931307 DOI: 10.1016/j.pharmthera.2009.10.009] [Cited by in Crossref: 152] [Cited by in F6Publishing: 148] [Article Influence: 11.7] [Reference Citation Analysis]
86 Ziolo MT, Houser SR. Abnormal Ca(2+) cycling in failing ventricular myocytes: role of NOS1-mediated nitroso-redox balance. Antioxid Redox Signal 2014;21:2044-59. [PMID: 24801117 DOI: 10.1089/ars.2014.5873] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
87 Val-Blasco A, Gil-Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández-Velasco M. Ca2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021;232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Burgoyne JR, Mongue-Din H, Eaton P, Shah AM. Redox signaling in cardiac physiology and pathology. Circ Res. 2012;111:1091-1106. [PMID: 23023511 DOI: 10.1161/circresaha.111.255216] [Cited by in Crossref: 296] [Cited by in F6Publishing: 181] [Article Influence: 29.6] [Reference Citation Analysis]
89 Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, Pagliaro P, Gao WD, van Eyk J, Kass DA, Wink DA, Paolocci N. Playing with cardiac "redox switches": the "HNO way" to modulate cardiac function. Antioxid Redox Signal 2011;14:1687-98. [PMID: 21235349 DOI: 10.1089/ars.2010.3859] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 7.8] [Reference Citation Analysis]
90 Goodman JB, Qin F, Morgan RJ, Chambers JM, Croteau D, Siwik DA, Hobai I, Panagia M, Luptak I, Bachschmid M, Tong X, Pimentel DR, Cohen RA, Colucci WS. Redox-Resistant SERCA [Sarco(endo)plasmic Reticulum Calcium ATPase] Attenuates Oxidant-Stimulated Mitochondrial Calcium and Apoptosis in Cardiac Myocytes and Pressure Overload-Induced Myocardial Failure in Mice. Circulation 2020;142:2459-69. [PMID: 33076678 DOI: 10.1161/CIRCULATIONAHA.120.048183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Sibbles ET, Waddell HMM, Mereacre V, Jones PP, Munro ML. The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias. Biophys Rev. [DOI: 10.1007/s12551-021-00914-6] [Reference Citation Analysis]
92 Györke S, Belevych AE, Liu B, Kubasov IV, Carnes CA, Radwański PB. The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. J Gen Physiol 2017;149:877-88. [PMID: 28798279 DOI: 10.1085/jgp.201711808] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
93 Hopton C, Tijsen AJ, Maizels L, Arbel G, Gepstein A, Bates N, Brown B, Huber I, Kimber SJ, Newman WG, Venetucci L, Gepstein L. Characterization of the mechanism by which a nonsense variant in RYR2 leads to disordered calcium handling. Physiol Rep 2022;10:e15265. [PMID: 35439358 DOI: 10.14814/phy2.15265] [Reference Citation Analysis]
94 Salazar-Ramírez F, Ramos-Mondragón R, García-Rivas G. Mitochondrial and Sarcoplasmic Reticulum Interconnection in Cardiac Arrhythmia. Front Cell Dev Biol 2020;8:623381. [PMID: 33585462 DOI: 10.3389/fcell.2020.623381] [Reference Citation Analysis]
95 Gusev K, Domenighetti AA, Delbridge LM, Pedrazzini T, Niggli E, Egger M. Angiotensin II–Mediated Adaptive and Maladaptive Remodeling of Cardiomyocyte Excitation–Contraction Coupling. Circulation Research 2009;105:42-50. [DOI: 10.1161/circresaha.108.189779] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
96 Bovo E, Mazurek SR, Zima AV. The role of RyR2 oxidation in the blunted frequency-dependent facilitation of Ca2+ transient amplitude in rabbit failing myocytes. Pflugers Arch 2018;470:959-68. [PMID: 29500669 DOI: 10.1007/s00424-018-2122-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
97 Gonzalez DR, Treuer AV, Lamirault G, Mayo V, Cao Y, Dulce RA, Hare JM. NADPH oxidase-2 inhibition restores contractility and intracellular calcium handling and reduces arrhythmogenicity in dystrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2014;307:H710-21. [PMID: 25015966 DOI: 10.1152/ajpheart.00890.2013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
98 Zima AV, Mazurek SR. Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart. Rev Physiol Biochem Pharmacol 2016;171:39-62. [PMID: 27251471 DOI: 10.1007/112_2016_2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
99 Sankaranarayanan R, Kistamás K, Greensmith DJ, Venetucci LA, Eisner DA. Systolic [Ca2+ ]i regulates diastolic levels in rat ventricular myocytes. J Physiol 2017;595:5545-55. [PMID: 28617952 DOI: 10.1113/JP274366] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
100 Kushnir A, Marks AR. The ryanodine receptor in cardiac physiology and disease. Adv Pharmacol. 2010;59:1-30. [PMID: 20933197 DOI: 10.1016/s1054-3589(10)59001-x] [Cited by in Crossref: 69] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
101 Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and Excitation-Contraction Coupling in the Heart. Circ Res 2017;121:181-95. [PMID: 28684623 DOI: 10.1161/CIRCRESAHA.117.310230] [Cited by in Crossref: 243] [Cited by in F6Publishing: 154] [Article Influence: 48.6] [Reference Citation Analysis]
102 Rodenbeck SD, Zarse CA, McKenney-Drake ML, Bruning RS, Sturek M, Chen NX, Moe SM. Intracellular calcium increases in vascular smooth muscle cells with progression of chronic kidney disease in a rat model. Nephrol Dial Transplant 2017;32:450-8. [PMID: 27510531 DOI: 10.1093/ndt/gfw274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
103 Cooper LL, Li W, Lu Y, Centracchio J, Terentyeva R, Koren G, Terentyev D. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts. J Physiol 2013;591:5895-911. [PMID: 24042501 DOI: 10.1113/jphysiol.2013.260521] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 7.7] [Reference Citation Analysis]
104 Ho HT, Belevych AE, Liu B, Bonilla IM, Radwański PB, Kubasov IV, Valdivia HH, Schober K, Carnes CA, Györke S. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension 2016;68:1171-8. [PMID: 27647848 DOI: 10.1161/HYPERTENSIONAHA.116.07666] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
105 Domeier TL, Maxwell JT, Blatter LA. β-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2+ threshold for Ca2+ wave generation. J Physiol 2012;590:6093-108. [PMID: 22988136 DOI: 10.1113/jphysiol.2012.236117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
106 Venetucci L, Sankaranarayanan R, Eisner D. A Tale of Two Leaks. Circulation 2013;128:941-3. [DOI: 10.1161/circulationaha.113.004713] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
107 Eisner D, Caldwell J, Trafford A. Sarcoplasmic reticulum Ca-ATPase and heart failure 20 years later. Circ Res 2013;113:958-61. [PMID: 24071456 DOI: 10.1161/CIRCRESAHA.113.302187] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
108 Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. Oxid Med Cell Longev 2021;2021:8876792. [PMID: 33791076 DOI: 10.1155/2021/8876792] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Arcaro A, Lembo G, Tocchetti CG. Nitroxyl (HNO) for treatment of acute heart failure. Curr Heart Fail Rep 2014;11:227-35. [PMID: 24980211 DOI: 10.1007/s11897-014-0210-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
110 Bonilla IM, Sridhar A, Nishijima Y, Györke S, Cardounel AJ, Carnes CA. Differential effects of the peroxynitrite donor, SIN-1, on atrial and ventricular myocyte electrophysiology. J Cardiovasc Pharmacol 2013;61:401-7. [PMID: 23364607 DOI: 10.1097/FJC.0b013e31828748ca] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
111 Zima AV, Bovo E, Bers DM, Blatter LA. Ca²+ spark-dependent and -independent sarcoplasmic reticulum Ca²+ leak in normal and failing rabbit ventricular myocytes. J Physiol 2010;588:4743-57. [PMID: 20962003 DOI: 10.1113/jphysiol.2010.197913] [Cited by in Crossref: 127] [Cited by in F6Publishing: 120] [Article Influence: 10.6] [Reference Citation Analysis]
112 Akar FG. Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention? J Interv Card Electrophysiol. 2013;37:249-258. [PMID: 23824789 DOI: 10.1007/s10840-013-9809-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
113 Niggli E, Ullrich ND, Gutierrez D, Kyrychenko S, Poláková E, Shirokova N. Posttranslational modifications of cardiac ryanodine receptors: Ca(2+) signaling and EC-coupling. Biochim Biophys Acta 2013;1833:866-75. [PMID: 22960642 DOI: 10.1016/j.bbamcr.2012.08.016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 5.5] [Reference Citation Analysis]
114 Jin Q, Greenstein JL, Winslow RL. Estimating ectopic beat probability with simplified statistical models that account for experimental uncertainty. PLoS Comput Biol 2021;17:e1009536. [PMID: 34665814 DOI: 10.1371/journal.pcbi.1009536] [Reference Citation Analysis]
115 Xu C, Luo J, He L, Montell C, Perrimon N. Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut. Elife 2017;6:e22441. [PMID: 28561738 DOI: 10.7554/eLife.22441] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 8.4] [Reference Citation Analysis]
116 Ho HT, Stevens SC, Terentyeva R, Carnes CA, Terentyev D, Györke S. Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors. J Physiol 2011;589:4697-708. [PMID: 21807619 DOI: 10.1113/jphysiol.2011.210005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
117 Macquaide N, Tuan HT, Hotta J, Sempels W, Lenaerts I, Holemans P, Hofkens J, Jafri MS, Willems R, Sipido KR. Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release. Cardiovasc Res 2015;108:387-98. [PMID: 26490742 DOI: 10.1093/cvr/cvv231] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 7.1] [Reference Citation Analysis]
118 Deng J, Cai X, Hao M, Liu X, Chen Z, Li H, Liu J, Liao Y, Fu H, Chen H, Qin G, Yan D. Calcium Dobesilate (CaD) Attenuates High Glucose and High Lipid-Induced Impairment of Sarcoplasmic Reticulum Calcium Handling in Cardiomyocytes. Front Cardiovasc Med 2021;8:637021. [PMID: 33604360 DOI: 10.3389/fcvm.2021.637021] [Reference Citation Analysis]
119 Belevych AE, Ho HT, Bonilla IM, Terentyeva R, Schober KE, Terentyev D, Carnes CA, Györke S. The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts. Basic Res Cardiol 2017;112:44. [PMID: 28612155 DOI: 10.1007/s00395-017-0633-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
120 Hegyi B, Pölönen RP, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM. Cardiomyocyte Na+ and Ca2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 2021;116:58. [PMID: 34648073 DOI: 10.1007/s00395-021-00900-9] [Reference Citation Analysis]
121 Wang Z, Wang L, Tapa S, Pinkerton KE, Chen CY, Ripplinger CM. Exposure to Secondhand Smoke and Arrhythmogenic Cardiac Alternans in a Mouse Model. Environ Health Perspect 2018;126:127001. [PMID: 30675795 DOI: 10.1289/EHP3664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
122 Connell P, Word TA, Wehrens XHT. Targeting pathological leak of ryanodine receptors: preclinical progress and the potential impact on treatments for cardiac arrhythmias and heart failure. Expert Opin Ther Targets 2020;24:25-36. [PMID: 31869254 DOI: 10.1080/14728222.2020.1708326] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
123 Zhao Z, Kudej RK, Wen H, Fefelova N, Yan L, Vatner DE, Vatner SF, Xie LH. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck). FASEB J 2018;32:4229-40. [PMID: 29490168 DOI: 10.1096/fj.201701516R] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
124 Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med 2011;50:777-93. [PMID: 21236334 DOI: 10.1016/j.freeradbiomed.2011.01.003] [Cited by in Crossref: 211] [Cited by in F6Publishing: 202] [Article Influence: 19.2] [Reference Citation Analysis]
125 Jeong EM, Liu M, Sturdy M, Gao G, Varghese ST, Sovari AA, Dudley SC. Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol. 2012;52:454-463. [PMID: 21978629 DOI: 10.1016/j.yjmcc.2011.09.018] [Cited by in Crossref: 134] [Cited by in F6Publishing: 126] [Article Influence: 12.2] [Reference Citation Analysis]
126 Ather S, Respress JL, Li N, Wehrens XH. Alterations in ryanodine receptors and related proteins in heart failure. Biochim Biophys Acta 2013;1832:2425-31. [PMID: 23770282 DOI: 10.1016/j.bbadis.2013.06.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
127 Bovo E, Lipsius SL, Zima AV. Reactive oxygen species contribute to the development of arrhythmogenic Ca²⁺ waves during β-adrenergic receptor stimulation in rabbit cardiomyocytes. J Physiol 2012;590:3291-304. [PMID: 22586224 DOI: 10.1113/jphysiol.2012.230748] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 7.6] [Reference Citation Analysis]
128 Gong G, Liu X, Wang W. Regulation of metabolism in individual mitochondria during excitation-contraction coupling. J Mol Cell Cardiol 2014;76:235-46. [PMID: 25252178 DOI: 10.1016/j.yjmcc.2014.09.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
129 Hamilton S, Terentyeva R, Clements RT, Belevych AE, Terentyev D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J Mol Cell Cardiol 2021;156:105-13. [PMID: 33857485 DOI: 10.1016/j.yjmcc.2021.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
130 Denniss AL, Dashwood AM, Molenaar P, Beard NA. Sarcoplasmic reticulum calcium mishandling: central tenet in heart failure? Biophys Rev 2020;12:865-78. [PMID: 32696300 DOI: 10.1007/s12551-020-00736-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
131 Moreira Souza AC, Grabe-Guimarães A, Cruz JDS, Santos-Miranda A, Farah C, Teixeira Oliveira L, Lucas A, Aimond F, Sicard P, Mosqueira VCF, Richard S. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation. Br J Pharmacol 2020;177:4448-63. [PMID: 32608017 DOI: 10.1111/bph.15186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
132 Kim TY, Terentyeva R, Roder KH, Li W, Liu M, Greener I, Hamilton S, Polina I, Murphy KR, Clements RT, Dudley SC Jr, Koren G, Choi BR, Terentyev D. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res 2017;113:343-53. [PMID: 28096168 DOI: 10.1093/cvr/cvx005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
133 Luo M, Anderson ME. Mechanisms of altered Ca²⁺ handling in heart failure. Circ Res 2013;113:690-708. [PMID: 23989713 DOI: 10.1161/CIRCRESAHA.113.301651] [Cited by in Crossref: 195] [Cited by in F6Publishing: 125] [Article Influence: 21.7] [Reference Citation Analysis]
134 Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015;308:H1177-91. [PMID: 25747749 DOI: 10.1152/ajpheart.00007.2015] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 7.3] [Reference Citation Analysis]
135 Bovo E, Mazurek SR, Zima AV. Oxidation of ryanodine receptor after ischemia-reperfusion increases propensity of Ca2+ waves during β-adrenergic receptor stimulation. Am J Physiol Heart Circ Physiol 2018;315:H1032-40. [PMID: 30028204 DOI: 10.1152/ajpheart.00334.2018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
136 Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, O'Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, Harding SE. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol 2011;4:362-72. [PMID: 21406682 DOI: 10.1161/CIRCEP.110.961615] [Cited by in Crossref: 122] [Cited by in F6Publishing: 76] [Article Influence: 11.1] [Reference Citation Analysis]
137 Modesti L, Danese A, Angela Maria Vitto V, Ramaccini D, Aguiari G, Gafà R, Lanza G, Giorgi C, Pinton P. Mitochondrial Ca2+ Signaling in Health, Disease and Therapy. Cells 2021;10:1317. [PMID: 34070562 DOI: 10.3390/cells10061317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
138 Aiba T, Tomaselli GF. Electrical remodeling in the failing heart. Curr Opin Cardiol 2010;25:29-36. [PMID: 19907317 DOI: 10.1097/HCO.0b013e328333d3d6] [Cited by in Crossref: 118] [Cited by in F6Publishing: 59] [Article Influence: 9.8] [Reference Citation Analysis]
139 Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE, Gyorke S. Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 2009;84:387-95. [PMID: 19617226 DOI: 10.1093/cvr/cvp246] [Cited by in Crossref: 99] [Cited by in F6Publishing: 95] [Article Influence: 7.6] [Reference Citation Analysis]
140 Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX, Marks AR. Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J Clin Invest 2010;120:4375-87. [PMID: 21099115 DOI: 10.1172/JCI37649] [Cited by in Crossref: 160] [Cited by in F6Publishing: 101] [Article Influence: 13.3] [Reference Citation Analysis]
141 Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Poggesi C, Cerbai E, Pavone FS, Sacconi L. T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure. Int J Mol Sci 2016;17:E1471. [PMID: 27598150 DOI: 10.3390/ijms17091471] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
142 Øyehaug L, Loose KØ, Jølle GF, Røe ÅT, Sjaastad I, Christensen G, Sejersted OM, Louch WE. Synchrony of cardiomyocyte Ca(2+) release is controlled by T-tubule organization, SR Ca(2+) content, and ryanodine receptor Ca(2+) sensitivity. Biophys J 2013;104:1685-97. [PMID: 23601316 DOI: 10.1016/j.bpj.2013.03.022] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
143 Kyrychenko S, Poláková E, Kang C, Pocsai K, Ullrich ND, Niggli E, Shirokova N. Hierarchical accumulation of RyR post-translational modifications drives disease progression in dystrophic cardiomyopathy. Cardiovasc Res 2013;97:666-75. [PMID: 23263329 DOI: 10.1093/cvr/cvs425] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
144 Edling CE, Fazmin IT, Saadeh K, Chadda KR, Ahmad S, Valli H, Huang CL, Jeevaratnam K. Molecular basis of arrhythmic substrate in ageing murine peroxisome proliferator-activated receptor γ co-activator deficient hearts modelling mitochondrial dysfunction. Biosci Rep 2019;39:BSR20190403. [PMID: 31778152 DOI: 10.1042/BSR20190403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
145 Louch WE, Perdreau-dahl H, Edwards AG. Image-Driven Modeling of Nanoscopic Cardiac Function: Where Have We Come From, and Where Are We Going? Front Physiol 2022;13:834211. [DOI: 10.3389/fphys.2022.834211] [Reference Citation Analysis]
146 Meissner G. Regulation of Ryanodine Receptor Ion Channels Through Posttranslational Modifications. Curr Top Membr 2010;66:91-113. [PMID: 21666757 DOI: 10.1016/S1063-5823(10)66005-X] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
147 Liu X, Wang S, Guo X, Li Y, Ogurlu R, Lu F, Prondzynski M, de la Serna Buzon S, Ma Q, Zhang D, Wang G, Cotton J, Guo Y, Xiao L, Milan DJ, Xu Y, Schlame M, Bezzerides VJ, Pu WT. Increased Reactive Oxygen Species-Mediated Ca2+/Calmodulin-Dependent Protein Kinase II Activation Contributes to Calcium Handling Abnormalities and Impaired Contraction in Barth Syndrome. Circulation 2021;143:1894-911. [PMID: 33793303 DOI: 10.1161/CIRCULATIONAHA.120.048698] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
148 Bougaki M, Searles RJ, Kida K, Yu J, Buys ES, Ichinose F. Nos3 protects against systemic inflammation and myocardial dysfunction in murine polymicrobial sepsis. Shock 2010;34:281-90. [PMID: 19997049 DOI: 10.1097/SHK.0b013e3181cdc327] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
149 Ruiz-Hurtado G, Li L, Fernández-Velasco M, Rueda A, Lefebvre F, Wang Y, Mateo P, Cassan C, Gellen B, Benitah JP, Gómez AM. Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes. J Gen Physiol 2015;146:295-306. [PMID: 26371209 DOI: 10.1085/jgp.201511366] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
150 Islam MMT, Tarnowski D, Zhang M, Trum M, Lebek S, Mustroph J, Daniel H, Moellencamp J, Pabel S, Sossalla S, El-Armouche A, Nikolaev VO, Shah AM, Eaton P, Maier LS, Sag CM, Wagner S. Enhanced Heart Failure in Redox-Dead Cys17Ser PKARIα Knock-In Mice. J Am Heart Assoc 2021;10:e021985. [PMID: 34583520 DOI: 10.1161/JAHA.121.021985] [Reference Citation Analysis]
151 Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 2011;1813:1323-32. [PMID: 20869994 DOI: 10.1016/j.bbamcr.2010.09.010] [Cited by in Crossref: 97] [Cited by in F6Publishing: 98] [Article Influence: 8.1] [Reference Citation Analysis]
152 Zhu S, Guleria RS, Thomas CM, Roth A, Gerilechaogetu F, Kumar R, Dostal DE, Baker KM, Pan J. Loss of myocardial retinoic acid receptor α induces diastolic dysfunction by promoting intracellular oxidative stress and calcium mishandling in adult mice. J Mol Cell Cardiol 2016;99:100-12. [PMID: 27539860 DOI: 10.1016/j.yjmcc.2016.08.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
153 Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, Sidor A, Abraham TP, O'Rourke B. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res 2014;115:44-54. [PMID: 24780171 DOI: 10.1161/CIRCRESAHA.115.303062] [Cited by in Crossref: 107] [Cited by in F6Publishing: 63] [Article Influence: 13.4] [Reference Citation Analysis]
154 Wang L, Ginnan RG, Wang YX, Zheng YM. Interactive Roles of CaMKII/Ryanodine Receptor Signaling and Inflammation in Lung Diseases. Adv Exp Med Biol 2021;1303:305-17. [PMID: 33788199 DOI: 10.1007/978-3-030-63046-1_16] [Reference Citation Analysis]
155 Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021;8:646932. [PMID: 33659284 DOI: 10.3389/fcvm.2021.646932] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
156 Santos-Miranda A, Joviano-Santos JV, Ribeiro GA, Botelho AFM, Rocha P, Vieira LQ, Cruz JS, Roman-Campos D. Reactive oxygen species and nitric oxide imbalances lead to in vivo and in vitro arrhythmogenic phenotype in acute phase of experimental Chagas disease. PLoS Pathog 2020;16:e1008379. [PMID: 32160269 DOI: 10.1371/journal.ppat.1008379] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
157 Donelson J, Wang Q, Monroe TO, Jiang X, Zhou J, Yu H, Mo Q, Sun Q, Marini JC, Wang X, Nakata PA, Hirschi KD, Wang J, Rodney GG, Wehrens XHT, Cheng N. Cardiac-specific ablation of glutaredoxin 3 leads to cardiac hypertrophy and heart failure. Physiol Rep 2019;7:e14071. [PMID: 31033205 DOI: 10.14814/phy2.14071] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
158 Yang HW, Lin CY, Lin FZ, Yu PL, Huang SM, Chen YC, Tsai CS, Yang HY. Phosphodiesterase-1 inhibitor modulates Ca2+ regulation in sirtuin 1-deficient mouse cardiomyocytes. Eur J Pharmacol 2021;910:174498. [PMID: 34506778 DOI: 10.1016/j.ejphar.2021.174498] [Reference Citation Analysis]
159 Srivastava S, Yadav S, Singh G, Bajwa SS. Wnt/β-catenin antagonist pyrvinium rescues high dose isoproterenol induced cardiotoxicity in rats: Biochemical and immunohistological evidences. Chemico-Biological Interactions 2022;358:109902. [DOI: 10.1016/j.cbi.2022.109902] [Reference Citation Analysis]
160 Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Györke S. The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 2011;90:493-502. [PMID: 21273243 DOI: 10.1093/cvr/cvr025] [Cited by in Crossref: 97] [Cited by in F6Publishing: 94] [Article Influence: 8.8] [Reference Citation Analysis]
161 Cabassi A, Miragoli M. Altered Mitochondrial Metabolism and Mechanosensation in the Failing Heart: Focus on Intracellular Calcium Signaling. Int J Mol Sci 2017;18:E1487. [PMID: 28698526 DOI: 10.3390/ijms18071487] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
162 Domeier TL, Roberts CJ, Gibson AK, Hanft LM, McDonald KS, Segal SS. Dantrolene suppresses spontaneous Ca2+ release without altering excitation-contraction coupling in cardiomyocytes of aged mice. Am J Physiol Heart Circ Physiol 2014;307:H818-29. [PMID: 25038147 DOI: 10.1152/ajpheart.00287.2014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
163 Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D. Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 2014;466:1129-37. [PMID: 24515294 DOI: 10.1007/s00424-014-1469-3] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 8.1] [Reference Citation Analysis]
164 Dashwood A, Cheesman E, Beard N, Haqqani H, Wong YW, Molenaar P. Understanding How Phosphorylation and Redox Modifications Regulate Cardiac Ryanodine Receptor Type 2 Activity to Produce an Arrhythmogenic Phenotype in Advanced Heart Failure. ACS Pharmacol Transl Sci 2020;3:563-82. [PMID: 32832863 DOI: 10.1021/acsptsci.0c00003] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
165 Prosser BL, Ward CW, Lederer WJ. Subcellular Ca2+ signaling in the heart: the role of ryanodine receptor sensitivity. J Gen Physiol 2010;136:135-42. [PMID: 20660656 DOI: 10.1085/jgp.201010406] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
166 Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann Resonance band. Sci Rep 2019;9:1645. [PMID: 30733450 DOI: 10.1038/s41598-018-36341-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 6.3] [Reference Citation Analysis]
167 DeSantiago J, Bare DJ, Banach K. Ischemia/Reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. Stem Cells Dev 2013;22:2497-507. [PMID: 23614555 DOI: 10.1089/scd.2013.0136] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
168 Fernandez-Chas M, Curtis MJ, Niederer SA. Mechanism of doxorubicin cardiotoxicity evaluated by integrating multiple molecular effects into a biophysical model. Br J Pharmacol 2018;175:763-81. [PMID: 29161764 DOI: 10.1111/bph.14104] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
169 Domeier TL, Blatter LA, Zima AV. Alteration of sarcoplasmic reticulum Ca2+ release termination by ryanodine receptor sensitization and in heart failure. J Physiol 2009;587:5197-209. [PMID: 19736296 DOI: 10.1113/jphysiol.2009.177576] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 4.8] [Reference Citation Analysis]
170 Hegner P, Lebek S, Maier LS, Arzt M, Wagner S. The Effect of Gender and Sex Hormones on Cardiovascular Disease, Heart Failure, Diabetes, and Atrial Fibrillation in Sleep Apnea. Front Physiol 2021;12:741896. [PMID: 34744785 DOI: 10.3389/fphys.2021.741896] [Reference Citation Analysis]
171 Moris D, Spartalis M, Spartalis E, Karachaliou GS, Karaolanis GI, Tsourouflis G, Tsilimigras DI, Tzatzaki E, Theocharis S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med 2017;5:326. [PMID: 28861423 DOI: 10.21037/atm.2017.06.27] [Cited by in Crossref: 71] [Cited by in F6Publishing: 61] [Article Influence: 14.2] [Reference Citation Analysis]
172 Woulfe KC, Wilson CE, Nau S, Chau S, Phillips EK, Zang S, Tompkins C, Sucharov CC, Miyamoto SD, Stauffer BL. Acute isoproterenol leads to age-dependent arrhythmogenesis in guinea pigs. Am J Physiol Heart Circ Physiol 2018;315:H1051-62. [PMID: 30028197 DOI: 10.1152/ajpheart.00061.2018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
173 Badone B, Ronchi C, Kotta MC, Sala L, Ghidoni A, Crotti L, Zaza A. Calmodulinopathy: Functional Effects of CALM Mutations and Their Relationship With Clinical Phenotypes. Front Cardiovasc Med 2018;5:176. [PMID: 30619883 DOI: 10.3389/fcvm.2018.00176] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
174 Mei Y, Xu L, Kramer HF, Tomberlin GH, Townsend C, Meissner G. Stabilization of the skeletal muscle ryanodine receptor ion channel-FKBP12 complex by the 1,4-benzothiazepine derivative S107. PLoS One 2013;8:e54208. [PMID: 23349825 DOI: 10.1371/journal.pone.0054208] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
175 Matuz-Mares D, Riveros-Rosas H, Vilchis-Landeros MM, Vázquez-Meza H. Glutathione Participation in the Prevention of Cardiovascular Diseases. Antioxidants (Basel) 2021;10:1220. [PMID: 34439468 DOI: 10.3390/antiox10081220] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS. Modeling Local X-ROS and Calcium Signaling in the Heart. Biophys J 2015;109:2037-50. [PMID: 26588563 DOI: 10.1016/j.bpj.2015.09.031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
177 Joseph LC, Subramanyam P, Radlicz C, Trent CM, Iyer V, Colecraft HM, Morrow JP. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm 2016;13:1699-706. [PMID: 27154230 DOI: 10.1016/j.hrthm.2016.05.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]