BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Han C, Wang Z, Xu Y, Chen S, Han Y, Li L, Wang M, Jin X. Roles of Reactive Oxygen Species in Biological Behaviors of Prostate Cancer. Biomed Res Int 2020;2020:1269624. [PMID: 33062666 DOI: 10.1155/2020/1269624] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Pizent A, Anđelković M, Tariba Lovaković B, Živković Semren T, Buha Djordjevic A, Gamulin M, Bonderović V, Aćimović M, Bulat Z. Environmental Exposure to Metals, Parameters of Oxidative Stress in Blood and Prostate Cancer: Results from Two Cohorts. Antioxidants 2022;11:2044. [DOI: 10.3390/antiox11102044] [Reference Citation Analysis]
2 Buttari B, Arese M, Oberley-deegan RE, Saso L, Chatterjee A. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Front Physiol 2022;13:989793. [DOI: 10.3389/fphys.2022.989793] [Reference Citation Analysis]
3 Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022;64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Reference Citation Analysis]
4 Kim D, Byun J, Kim SI, Chung HH, Kim YW, Shim G, Oh YK. DNA-cloaked nanoparticles for tumor microenvironment-responsive activation. J Control Release 2022:S0168-3659(22)00551-X. [PMID: 36037974 DOI: 10.1016/j.jconrel.2022.08.044] [Reference Citation Analysis]
5 Lygirou V, Fasoulakis K, Stroggilos R, Makridakis M, Latosinska A, Frantzi M, Katafigiotis I, Alamanis C, Stravodimos KG, Constantinides CA, Vlahou A, Zoidakis J. Proteomic Analysis of Prostate Cancer FFPE Samples Reveals Markers of Disease Progression and Aggressiveness. Cancers 2022;14:3765. [DOI: 10.3390/cancers14153765] [Reference Citation Analysis]
6 Costanzo-Garvey DL, Case AJ, Watson GF, Alsamraae M, Chatterjee A, Oberley-Deegan RE, Dutta S, Abdalla MY, Kielian T, Lindsey ML, Cook LM. Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils. Clin Exp Metastasis 2022. [PMID: 35604506 DOI: 10.1007/s10585-022-10170-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Kalinina EV, Gavriliuk LA, Pokrovsky VS. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. Biochemistry (Mosc) 2022;87:413-24. [PMID: 35790374 DOI: 10.1134/S0006297922050030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Jit BP, Pradhan B, Dash R, Bhuyan PP, Behera C, Behera RK, Sharma A, Alcaraz M, Jena M. Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways. Antioxidants (Basel) 2021;11:49. [PMID: 35052553 DOI: 10.3390/antiox11010049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
9 Sun Y, Chen G, He J, Li JX, Gan XY, Ji SF, Huang Y, Chen XH, He ML, Huang ZG. Clinical Significance and Underlying Mechanisms of CELSR3 in Metastatic Prostate Cancer Based on Immunohistochemistry, Data Mining, and In Silico Analysis. Cancer Biother Radiopharm 2021. [PMID: 34582697 DOI: 10.1089/cbr.2021.0178] [Reference Citation Analysis]
10 Bertok T, Bertokova A, Hroncekova S, Chocholova E, Svecova N, Lorencova L, Kasak P, Tkac J. Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. Chemosensors 2021;9:205. [DOI: 10.3390/chemosensors9080205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Abdelaal MR, Soror SH, Elnagar MR, Haffez H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021;26:506. [PMID: 33477997 DOI: 10.3390/molecules26020506] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]