BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oña ED, Cano-de la Cuerda R, Sánchez-Herrera P, Balaguer C, Jardón A. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb. J Healthc Eng 2018;2018:9758939. [PMID: 29707189 DOI: 10.1155/2018/9758939] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Garcia-gonzalez A, Fuentes-aguilar RQ, Salgado I, Chairez I. A review on the application of autonomous and intelligent robotic devices in medical rehabilitation. J Braz Soc Mech Sci Eng 2022;44. [DOI: 10.1007/s40430-022-03692-8] [Reference Citation Analysis]
2 Ennaiem F, Chaker A, Sandoval J, Mlika A, Romdhane L, Bennour S, Zeghloul S, Laribi MA. A hybrid cable-driven parallel robot as a solution to the limited rotational workspace issue. Robotica. [DOI: 10.1017/s0263574722000923] [Reference Citation Analysis]
3 Zeiaee A, Zarrin RS, Eib A, Langari R, Tafreshi R. CLEVERarm: A Lightweight and Compact Exoskeleton for Upper-Limb Rehabilitation. IEEE Robot Autom Lett 2022;7:1880-7. [DOI: 10.1109/lra.2021.3138326] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Sarwat H, Sarwat H, Maged SA, Emara TH, Elbokl AM, Awad MI. Design of a Data Glove for Assessment of Hand Performance Using Supervised Machine Learning. Sensors (Basel) 2021;21:6948. [PMID: 34770255 DOI: 10.3390/s21216948] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Fazeli HR, Peng Q. Integrated approaches of BWM-QFD and FUCOM-QFD for improving weighting solution of design matrix. J Intell Manuf. [DOI: 10.1007/s10845-021-01832-w] [Reference Citation Analysis]
6 Gonzalez A, Garcia L, Kilby J, McNair P. Robotic devices for paediatric rehabilitation: a review of design features. Biomed Eng Online 2021;20:89. [PMID: 34488777 DOI: 10.1186/s12938-021-00920-5] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Rowe M, Nicholls DA, Shaw J. How to replace a physiotherapist: artificial intelligence and the redistribution of expertise. Physiother Theory Pract 2021;:1-9. [PMID: 34081573 DOI: 10.1080/09593985.2021.1934924] [Reference Citation Analysis]
8 Ito S, Tomabechi K, Morita R. Perceptual adaptation during a balancing task in the seated posture and its theoretical model. Biol Cybern 2021;115:207-17. [PMID: 33970333 DOI: 10.1007/s00422-021-00873-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Agrafiotis DK, Yang E, Littman GS, Byttebier G, Dipietro L, DiBernardo A, Chavez JC, Rykman A, McArthur K, Hajjar K, Lees KR, Volpe BT, Krams M, Krebs HI. Accurate prediction of clinical stroke scales and improved biomarkers of motor impairment from robotic measurements. PLoS One 2021;16:e0245874. [PMID: 33513170 DOI: 10.1371/journal.pone.0245874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Parre MD, Sujatha B. Novel Human-Centered Robotics: Towards an Automated Process for Neurorehabilitation. Neurol Res Int 2021;2021:6690715. [PMID: 33564477 DOI: 10.1155/2021/6690715] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Passon A, Schauer T, Seel T. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots. Front Robot AI 2020;7:554639. [PMID: 33501318 DOI: 10.3389/frobt.2020.554639] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Baniqued PDE, Stanyer EC, Awais M, Alazmani A, Jackson AE, Mon-Williams MA, Mushtaq F, Holt RJ. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil 2021;18:15. [PMID: 33485365 DOI: 10.1186/s12984-021-00820-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
13 Astrakas LG, De Novi G, Ottensmeyer MP, Pusatere C, Li S, Moskowitz MA, Tzika AA. Improving motor function after chronic stroke by interactive gaming with a redesigned MR-compatible hand training device. Exp Ther Med 2021;21:245. [PMID: 33603853 DOI: 10.3892/etm.2021.9676] [Reference Citation Analysis]
14 Gutiérrez-martínez J, Toledo-peral C, Mercado-gutiérrez J, Vera-hernández A, Leija-salas L, De Stefano L. Neuroprosthesis Devices Based on Micro- and Nanosensors: A Systematic Review. Journal of Sensors 2020;2020:1-19. [DOI: 10.1155/2020/8865889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 de-la-Torre R, Oña ED, Balaguer C, Jardón A. Robot-Aided Systems for Improving the Assessment of Upper Limb Spasticity: A Systematic Review. Sensors (Basel) 2020;20:E5251. [PMID: 32937973 DOI: 10.3390/s20185251] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Norouzi-Gheidari N, Archambault PS, Fung J. Changes in arm kinematics of chronic stroke individuals following "Assist-As-Asked" robot-assisted training in virtual and physical environments: A proof-of-concept study. J Rehabil Assist Technol Eng 2020;7:2055668320926054. [PMID: 32612849 DOI: 10.1177/2055668320926054] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Comput Biol Med 2020;123:103843. [PMID: 32768038 DOI: 10.1016/j.compbiomed.2020.103843] [Cited by in Crossref: 16] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
18 Valdez SI, Gutierrez-carmona I, Keshtkar S, Hernandez EE. Kinematic and dynamic design and optimization of a parallel rehabilitation robot. Intel Serv Robotics 2020;13:365-78. [DOI: 10.1007/s11370-020-00319-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Tucan P, Gherman B, Major K, Vaida C, Major Z, Plitea N, Carbone G, Pisla D. Fuzzy Logic-Based Risk Assessment of a Parallel Robot for Elbow and Wrist Rehabilitation. Int J Environ Res Public Health 2020;17:E654. [PMID: 31963917 DOI: 10.3390/ijerph17020654] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
20 Nwosu AC, Sturgeon B, McGlinchey T, Goodwin CD, Behera A, Mason S, Stanley S, Payne TR. Robotic technology for palliative and supportive care: Strengths, weaknesses, opportunities and threats. Palliat Med 2019;33:1106-13. [PMID: 31250734 DOI: 10.1177/0269216319857628] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
21 Oña ED, Garcia-haro JM, Jardón A, Balaguer C. Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs. Applied Sciences 2019;9:2586. [DOI: 10.3390/app9132586] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
22 Huang S, Cai S, Li G, Chen Y, Ma K, Xie L. sEMG-Based Detection of Compensation Caused by Fatigue During Rehabilitation Therapy: A Pilot Study. IEEE Access 2019;7:127055-65. [DOI: 10.1109/access.2019.2933287] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]