BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao D, Sun Y, Tan Y, Zhang Z, Hou Z, Gao C, Feng P, Zhang X, Yi W, Gao F. Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice. Oxid Med Cell Longev 2018;2018:4079041. [PMID: 29849892 DOI: 10.1155/2018/4079041] [Cited by in Crossref: 32] [Cited by in F6Publishing: 39] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Li K, Wan B, Li S, Chen Z, Jia H, Song Y, Zhang J, Ju W, Ma H, Wang Y. Mitochondrial dysfunction in cardiovascular disease: Towards exercise regulation of mitochondrial function. Front Physiol 2023;14. [DOI: 10.3389/fphys.2023.1063556] [Reference Citation Analysis]
2 Alizadeh Pahlavani H, Laher I, Knechtle B, Zouhal H. Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol 2022;13:1040381. [PMID: 36561214 DOI: 10.3389/fphys.2022.1040381] [Reference Citation Analysis]
3 Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS, Maslov LN. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2022. [DOI: 10.1007/s10495-022-01786-1] [Reference Citation Analysis]
4 Viloria MAD, Li Q, Lu W, Nhu NT, Liu Y, Cui ZY, Cheng YJ, Lee SD. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease. Front Cardiovasc Med 2022;9:949744. [PMID: 36304547 DOI: 10.3389/fcvm.2022.949744] [Reference Citation Analysis]
5 Lashgari AA, Azarbayjani MA, Peeri M, Nasehi M, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. The effect of short endurance training on the expression level of PINK-1, Parkin and PGC-1α in the heart of nicotine-sensitized rats. MEDICAL SCIENCES 2022;32:281-292. [DOI: 10.52547/iau.32.3.281] [Reference Citation Analysis]
6 Pahlavani HA. Exercise-induced signaling pathways to counteracting cardiac apoptotic processes. Front Cell Dev Biol 2022;10:950927. [DOI: 10.3389/fcell.2022.950927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. Front Aging 2022;3. [DOI: 10.3389/fragi.2022.951417] [Reference Citation Analysis]
8 Hastings MH, Herrera JJ, Guseh JS, Atlason B, Houstis NE, Abdul Kadir A, Li H, Sheffield C, Singh AP, Roh JD, Day SM, Rosenzweig A. Animal Models of Exercise From Rodents to Pythons. Circ Res 2022;130:1994-2014. [PMID: 35679366 DOI: 10.1161/CIRCRESAHA.122.320247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Wan W, Hua F, Fang P, Li C, Deng F, Chen S, Ying J, Wang X. Regulation of Mitophagy by Sirtuin Family Proteins: A Vital Role in Aging and Age-Related Diseases. Front Aging Neurosci 2022;14:845330. [DOI: 10.3389/fnagi.2022.845330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Peugnet V, Chwastyniak M, Mulder P, Lancel S, Bultot L, Fourny N, Renguet E, Bugger H, Beseme O, Loyens A, Heyse W, Richard V, Amouyel P, Bertrand L, Pinet F, Dubois-deruy E. Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes. Antioxidants 2022;11:723. [DOI: 10.3390/antiox11040723] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Kato T, Noda T, Tanaka S, Yagasaki H, Iwama M, Tanihata S, Arai M, Minatoguchi S, Okura H. Impact of accelerated washout of Technetium-99m-sestamibi on exercise tolerance in patients with acute coronary syndrome: single-center experience. Heart Vessels 2022. [PMID: 35344069 DOI: 10.1007/s00380-022-02058-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022;11:872. [DOI: 10.3390/cells11050872] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Huang L, Yao T, Chen J, Zhang Z, Yang W, Gao X, Dan Y, He Y. Effect of Sirt3 on retinal pigment epithelial cells in high glucose through Foxo3a/ PINK1-Parkin pathway mediated mitophagy. Exp Eye Res 2022;:109015. [PMID: 35240195 DOI: 10.1016/j.exer.2022.109015] [Reference Citation Analysis]
14 Li J, Lu K, Zhang X, Wang T, Li Q, Yu X, Han W, Sun L. SIRT3-mediated mitochondrial autophagy in refeeding syndrome-related myocardial injury in sepsis rats. Ann Transl Med 2022;10:211. [PMID: 35280405 DOI: 10.21037/atm-22-222] [Reference Citation Analysis]
15 Gu C, Yan J, Zhao L, Wu G, Wang Y. Regulation of Mitochondrial Dynamics by Aerobic Exercise in Cardiovascular Diseases. Front Cardiovasc Med 2022;8. [DOI: 10.3389/fcvm.2021.788505] [Reference Citation Analysis]
16 Batalha CMPF, Vercesi AE, Souza-Pinto NC. The Many Roles Mitochondria Play in Mammalian Aging. Antioxid Redox Signal 2022. [PMID: 34715739 DOI: 10.1089/ars.2021.0074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Wang C, Wang Y, Shen L. Mitochondrial proteins in heart failure: The role of deacetylation by SIRT3. Pharmacol Res 2021;172:105802. [PMID: 34363948 DOI: 10.1016/j.phrs.2021.105802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 Picca A, Calvani R, Coelho-Júnior HJ, Marzetti E. Mitophagy: At the heart of mitochondrial quality control in cardiac aging and frailty. Exp Gerontol 2021;153:111508. [PMID: 34358665 DOI: 10.1016/j.exger.2021.111508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
19 Wang C, Liu L, Wang Y, Xu D. Advances in the mechanism and treatment of mitochondrial quality control involved in myocardial infarction. J Cell Mol Med 2021;25:7110-21. [PMID: 34160885 DOI: 10.1111/jcmm.16744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Ravi V, Mishra S, Sundaresan NR. Role of sirtuins in cardiovascular diseases. Sirtuin Biology in Medicine 2021. [DOI: 10.1016/b978-0-12-814118-2.00021-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Xie W, Zhu T, Zhou P, Xu H, Meng X, Ding T, Nan F, Sun G, Sun X. Notoginseng Leaf Triterpenes Ameliorates OGD/R-Induced Neuronal Injury via SIRT1/2/3-Foxo3a-MnSOD/PGC-1α Signaling Pathways Mediated by the NAMPT-NAD Pathway. Oxid Med Cell Longev 2020;2020:7308386. [PMID: 33149812 DOI: 10.1155/2020/7308386] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
22 Zhou H, He L, Xu G, Chen L. Mitophagy in cardiovascular disease. Clinica Chimica Acta 2020;507:210-8. [DOI: 10.1016/j.cca.2020.04.033] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
23 Shahi HA, Kadoguchi T, Shimada K, Fukao K, Matsushita S, Aikawa T, Ouchi S, Shiozawa T, Takahashi S, Sato-Okabayashi Y, Akita K, Isoda K, Miyazaki T, Daida H. Voluntary exercise and cardiac remodeling in a myocardial infarction model. Open Med (Wars) 2020;15:545-55. [PMID: 33313409 DOI: 10.1515/med-2020-0109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Guan Y, Drake JC, Yan Z. Exercise-Induced Mitophagy in Skeletal Muscle and Heart. Exerc Sport Sci Rev 2019;47:151-6. [PMID: 30985475 DOI: 10.1249/JES.0000000000000192] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
25 Ghosh R, Vinod V, Symons JD, Boudina S. Protein and Mitochondria Quality Control Mechanisms and Cardiac Aging. Cells 2020;9:E933. [PMID: 32290135 DOI: 10.3390/cells9040933] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
26 Fan H, He Z, Huang H, Zhuang H, Liu H, Liu X, Yang S, He P, Yang H, Feng D. Mitochondrial Quality Control in Cardiomyocytes: A Critical Role in the Progression of Cardiovascular Diseases. Front Physiol 2020;11:252. [PMID: 32292354 DOI: 10.3389/fphys.2020.00252] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
27 Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020;32:1188-236. [PMID: 32050773 DOI: 10.1089/ars.2019.7763] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
28 Hu H, Lin Y, Xu X, Lin S, Chen X, Wang S. The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020;114:104412. [PMID: 32113905 DOI: 10.1016/j.yexmp.2020.104412] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
29 Li H, Hastings MH, Rhee J, Trager LE, Roh JD, Rosenzweig A. Targeting Age-Related Pathways in Heart Failure. Circ Res 2020;126:533-51. [PMID: 32078451 DOI: 10.1161/CIRCRESAHA.119.315889] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 16.3] [Reference Citation Analysis]
30 Liu X, Li X, Zhu W, Zhang Y, Hong Y, Liang X, Fan B, Zhao H, He H, Zhang F. Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair. J Cell Physiol. 2020;. [PMID: 31960418 DOI: 10.1002/jcp.29456] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
31 Wu NN, Tian H, Chen P, Wang D, Ren J, Zhang Y. Physical Exercise and Selective Autophagy: Benefit and Risk on Cardiovascular Health. Cells 2019;8:E1436. [PMID: 31739509 DOI: 10.3390/cells8111436] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 10.3] [Reference Citation Analysis]
32 Darband SG, Sadighparvar S, Yousefi B, Kaviani M, Mobaraki K, Majidinia M. Combination of exercise training and L-arginine reverses aging process through suppression of oxidative stress, inflammation, and apoptosis in the rat heart. Pflugers Arch 2020;472:169-78. [PMID: 31624955 DOI: 10.1007/s00424-019-02311-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
33 Pi H, Liu M, Xi Y, Chen M, Tian L, Xie J, Chen M, Wang Z, Yang M, Yu Z, Zhou Z, Gao F. Long-term exercise prevents hepatic steatosis: a novel role of FABP1 in regulation of autophagy-lysosomal machinery. FASEB J 2019;33:11870-83. [PMID: 31366243 DOI: 10.1096/fj.201900812R] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
34 Vernucci E, Tomino C, Molinari F, Limongi D, Aventaggiato M, Sansone L, Tafani M, Russo MA. Mitophagy and Oxidative Stress in Cancer and Aging: Focus on Sirtuins and Nanomaterials. Oxid Med Cell Longev 2019;2019:6387357. [PMID: 31210843 DOI: 10.1155/2019/6387357] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
35 Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A. Relationships Between Ion Channels, Mitochondrial Functions and Inflammation in Human Aging. Front Physiol 2019;10:158. [PMID: 30881309 DOI: 10.3389/fphys.2019.00158] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
36 Li J, Xu J, Qin X, Yang H, Han J, Jia Y, Zhu H, Zhu L, Li J, Xie W, Hu D, Zhang X, Gao F. Acute pancreatic beta cell apoptosis by IL-1β is responsible for postburn hyperglycemia: Evidence from humans and mice. Biochim Biophys Acta Mol Basis Dis 2019;1865:275-84. [PMID: 30419339 DOI: 10.1016/j.bbadis.2018.11.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
37 Moyzis A, Gustafsson ÅB. Multiple recycling routes: Canonical vs. non-canonical mitophagy in the heart. Biochim Biophys Acta Mol Basis Dis 2019;1865:797-809. [PMID: 30290272 DOI: 10.1016/j.bbadis.2018.09.034] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]