BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bhangra KS, Busuttil F, Phillips JB, Rahim AA. Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016;2016:7502178. [PMID: 27212954 DOI: 10.1155/2016/7502178] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.987195] [Reference Citation Analysis]
2 Guglielmo M, Marta B. Stem Cells and the Microenvironment: Reciprocity with Asymmetry in Regenerative Medicine. Acta Biotheor 2022;70:24. [PMID: 35962861 DOI: 10.1007/s10441-022-09448-0] [Reference Citation Analysis]
3 Trueman RP, Ahlawat AS, Phillips JB. A Shock to the (Nervous) System: Bioelectricity Within Peripheral Nerve Tissue Engineering. Tissue Engineering Part B: Reviews 2022. [DOI: 10.1089/ten.teb.2021.0159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Liu G, Ma M, Meng H, Liu J, Zheng Y, Peng J, Wei S, Sun Y, Wang Y, Xie Y, Li J. In-situ self-assembly of bacterial cellulose/poly(3,4-ethylenedioxythiophene)-sulfonated nanofibers for peripheral nerve repair. Carbohydrate Polymers 2022;281:119044. [DOI: 10.1016/j.carbpol.2021.119044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
5 Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Adv Sci (Weinh) 2022;9:e2103875. [PMID: 35182046 DOI: 10.1002/advs.202103875] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
6 Rayner MLD, Healy J, Phillips JB. Drug Therapies for Peripheral Nerve Injuries. Peripheral Nerve Tissue Engineering and Regeneration 2022. [DOI: 10.1007/978-3-030-21052-6_16] [Reference Citation Analysis]
7 Chandy T. Nerve tissue engineering on degradable scaffold. Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-824064-9.00011-3] [Reference Citation Analysis]
8 Pajer K, Nógrádi A. Therapeutic Cells and Stem Cells for Nerve Regeneration. Peripheral Nerve Tissue Engineering and Regeneration 2022. [DOI: 10.1007/978-3-030-21052-6_7] [Reference Citation Analysis]
9 Rayner MLD, Day AGE, Bhangra KS, Sinden J, Phillips JB. Engineered neural tissue made using clinical-grade human neural stem cells supports regeneration in a long gap peripheral nerve injury model. Acta Biomater 2021;135:203-13. [PMID: 34455110 DOI: 10.1016/j.actbio.2021.08.030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Doblado LR, Martínez-ramos C, Pradas MM. Biomaterials for Neural Tissue Engineering. Front Nanotechnol 2021;3:643507. [DOI: 10.3389/fnano.2021.643507] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
11 Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. Tissue Eng Part B Rev 2021. [PMID: 33593147 DOI: 10.1089/ten.TEB.2020.0355] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Grossemy S, Chan PPY, Doran PM. Enhanced Neural Differentiation Using Simultaneous Application of 3D Scaffold Culture, Fluid Flow, and Electrical Stimulation in Bioreactors. Adv Biol (Weinh) 2021;5:e2000136. [PMID: 33852182 DOI: 10.1002/adbi.202000136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Pajer K, Nógrádi A. Therapeutic Cells and Stem Cells for Nerve Regeneration. Peripheral Nerve Tissue Engineering and Regeneration 2021. [DOI: 10.1007/978-3-030-06217-0_7-1] [Reference Citation Analysis]
14 Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue Engineering. Cells 2020;9:E2497. [PMID: 33213068 DOI: 10.3390/cells9112497] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
15 Muangsanit P, Day A, Dimiou S, Ataç AF, Kayal C, Park H, Nazhat SN, Phillips JB. Rapidly formed stable and aligned dense collagen gels seeded with Schwann cells support peripheral nerve regeneration. J Neural Eng 2020;17:046036. [DOI: 10.1088/1741-2552/abaa9c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
16 Rayner MLD, Grillo A, Williams GR, Tawfik E, Zhang T, Volitaki C, Craig DQM, Healy J, Phillips JB. Controlled local release of PPARγ agonists from biomaterials to treat peripheral nerve injury. J Neural Eng 2020;17:046030. [PMID: 32780719 DOI: 10.1088/1741-2552/aba7cc] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
17 Damásio Alvites R, Vieira Branquinho M, Rita Caseiro A, Santos Pedrosa S, Lúcia Luís A, Geuna S, Severo Proença Varejão A, Colette Maurício A. Biomaterials and Cellular Systems at the Forefront of Peripheral Nerve Regeneration. Peripheral Nerve Disorders and Treatment 2020. [DOI: 10.5772/intechopen.87043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Rayner MLD, Healy J, Phillips JB. Drug Therapies for Peripheral Nerve Injuries. Peripheral Nerve Tissue Engineering and Regeneration 2020. [DOI: 10.1007/978-3-030-06217-0_16-1] [Reference Citation Analysis]
19 Evaristo-Mendonça F, Sardella-Silva G, Kasai-Brunswick TH, Campos RMP, Domizi P, Santiago MF, de Melo Reis RA, Mendez-Otero R, Ribeiro-Resende VT, Pimentel-Coelho PM. Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells Int 2019;2019:7692973. [PMID: 31531025 DOI: 10.1155/2019/7692973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
20 Huang CW, Hsueh YY, Huang WC, Patel S, Li S. Multipotent vascular stem cells contribute to neurovascular regeneration of peripheral nerve. Stem Cell Res Ther 2019;10:234. [PMID: 31376835 DOI: 10.1186/s13287-019-1317-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
21 Grossemy S, Chan PPY, Doran PM. Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Integrative Biology 2019;11:264-79. [DOI: 10.1093/intbio/zyz022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
22 Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res 2019;107:2425-46. [DOI: 10.1002/jbm.a.36749] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
23 Mao Q, Nguyen PD, Shanti RM, Shi S, Shakoori P, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cell-Extracellular Vesicles Activate Schwann Cell Repair Phenotype and Promote Nerve Regeneration. Tissue Engineering Part A 2019;25:887-900. [DOI: 10.1089/ten.tea.2018.0176] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
24 Tuturov AO. The role of peripheral nerve surgery in a tissue reinnervation. Chin Neurosurg J 2019;5:5. [PMID: 32922905 DOI: 10.1186/s41016-019-0151-1] [Reference Citation Analysis]
25 Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019;221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
26 Tremp M, Kalbermatten DF. Adipose-Derived Stem Cells (ASCs) for Peripheral Nerve Regeneration. Regenerative Medicine and Plastic Surgery 2019. [DOI: 10.1007/978-3-030-19962-3_30] [Reference Citation Analysis]
27 Zhang PX, Han N, Kou YH, Zhu QT, Liu XL, Quan DP, Chen JG, Jiang BG. Tissue engineering for the repair of peripheral nerve injury. Neural Regen Res 2019;14:51-8. [PMID: 30531070 DOI: 10.4103/1673-5374.243701] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
28 Goncalves K, Przyborski S. The utility of stem cells for neural regeneration. Brain Neurosci Adv 2018;2:2398212818818071. [PMID: 32166173 DOI: 10.1177/2398212818818071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Du J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration. Biomater Sci 2018;6:1299-311. [PMID: 29725688 DOI: 10.1039/c8bm00260f] [Cited by in Crossref: 75] [Cited by in F6Publishing: 75] [Article Influence: 18.8] [Reference Citation Analysis]
30 Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018;7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
31 Kappos EA, Baenziger-Sieber P, Tremp M, Engels PE, Thommen S, Sprenger L, Benz RM, Schaefer DJ, Schaeren S, Kalbermatten DF. Epineural adipose-derived stem cell injection in a sciatic rodent model. Brain Behav 2018;8:e01027. [PMID: 29920989 DOI: 10.1002/brb3.1027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
32 Schuh CMAP, Day AGE, Redl H, Phillips J. An Optimized Collagen-Fibrin Blend Engineered Neural Tissue Promotes Peripheral Nerve Repair. Tissue Eng Part A 2018;24:1332-40. [PMID: 29652609 DOI: 10.1089/ten.TEA.2017.0457] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
33 Soucy JR, Shirzaei Sani E, Portillo Lara R, Diaz D, Dias F, Weiss AS, Koppes AN, Koppes RA, Annabi N. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair. Tissue Eng Part A 2018;24:1393-405. [PMID: 29580168 DOI: 10.1089/ten.TEA.2017.0502] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
34 Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A, Spurkland A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. Cogent Medicine 2018;5:1466404. [DOI: 10.1080/2331205x.2018.1466404] [Cited by in Crossref: 40] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
35 Zhang Q, Nguyen PD, Shi S, Burrell JC, Cullen DK, Le AD. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep. 2018;8:6634. [PMID: 29700345 DOI: 10.1038/s41598-018-24888-w] [Cited by in Crossref: 56] [Cited by in F6Publishing: 61] [Article Influence: 14.0] [Reference Citation Analysis]
36 Liu Z, Hu Z. Aligned contiguous microfiber platform enhances neural differentiation of embryonic stem cells. Sci Rep 2018;8:6087. [PMID: 29666444 DOI: 10.1038/s41598-018-24522-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
37 O'Rourke C, Day AGE, Murray-Dunning C, Thanabalasundaram L, Cowan J, Stevanato L, Grace N, Cameron G, Drake RAL, Sinden J, Phillips JB. An allogeneic 'off the shelf' therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells. Sci Rep 2018;8:2951. [PMID: 29440680 DOI: 10.1038/s41598-018-20927-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
38 Gama KB, Santos DS, Evangelista AF, Silva DN, de Alcântara AC, Dos Santos RR, Soares MBP, Villarreal CF. Conditioned Medium of Bone Marrow-Derived Mesenchymal Stromal Cells as a Therapeutic Approach to Neuropathic Pain: A Preclinical Evaluation. Stem Cells Int 2018;2018:8179013. [PMID: 29535781 DOI: 10.1155/2018/8179013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
39 Zhang Q, Nguyen PD, Shi S, Burrell JC, Xu Q, Cullen KD, Le AD. Neural Crest Stem-Like Cells Non-genetically Induced from Human Gingiva-Derived Mesenchymal Stem Cells Promote Facial Nerve Regeneration in Rats. Mol Neurobiol 2018;55:6965-83. [PMID: 29372546 DOI: 10.1007/s12035-018-0913-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
40 Alvites RD, Santos ARC, Varejão ASP, Maurício AC. Olfactory Mucosa Mesenchymal Stem Cells and Biomaterials: A New Combination to Regenerative Therapies after Peripheral Nerve Injury. Mesenchymal Stem Cells - Isolation, Characterization and Applications 2017. [DOI: 10.5772/intechopen.68174] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
41 Busuttil F, Rahim AA, Phillips JB. Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering. Stem Cells Dev 2017;26:231-8. [PMID: 27960587 DOI: 10.1089/scd.2016.0188] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
42 Valentin LSS. Can Digital Games Be a Way of Improving the Neuroplasticity in Stroke Damage? Can the Adult Brain Grow New Cells or Rewire Itself in Response to a New Experience? OJMP 2017;06:153-165. [DOI: 10.4236/ojmp.2017.62013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]