BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Poli P, Morone G, Rosati G, Masiero S. Robotic technologies and rehabilitation: new tools for stroke patients' therapy. Biomed Res Int 2013;2013:153872. [PMID: 24350244 DOI: 10.1155/2013/153872] [Cited by in Crossref: 78] [Cited by in F6Publishing: 34] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Buesing C, Fisch G, O'Donnell M, Shahidi I, Thomas L, Mummidisetty CK, Williams KJ, Takahashi H, Rymer WZ, Jayaraman A. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil 2015;12:69. [PMID: 26289955 DOI: 10.1186/s12984-015-0062-0] [Cited by in Crossref: 83] [Cited by in F6Publishing: 47] [Article Influence: 11.9] [Reference Citation Analysis]
2 Rúbio GDP, Martins Ferreira FMR, Brandão FHDL, Machado VF, Tonelli LG, Martins JSR, Kozan RF, Vimieiro CBS. Evaluation of Commercial Ropes Applied as Artificial Tendons in Robotic Rehabilitation Orthoses. Applied Sciences 2020;10:920. [DOI: 10.3390/app10030920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Aprile I, Pecchioli C, Loreti S, Cruciani A, Padua L, Germanotta M. Improving the Efficiency of Robot-Mediated Rehabilitation by Using a New Organizational Model: An Observational Feasibility Study in an Italian Rehabilitation Center. Applied Sciences 2019;9:5357. [DOI: 10.3390/app9245357] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
4 Zhao M, Wang G, Wang A, Cheng LJ, Lau Y. Robot-assisted distal training improves upper limb dexterity and function after stroke: a systematic review and meta-regression. Neurol Sci 2022;43:1641-57. [PMID: 35089447 DOI: 10.1007/s10072-022-05913-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Tanaka N, Matsushita S, Sonoda Y, Maruta Y, Fujitaka Y, Sato M, Simomori M, Onaka R, Harada K, Hirata T, Kinoshita S, Okamoto T, Okamura H. Effect of Stride Management Assist Gait Training for Poststroke Hemiplegia: A Single Center, Open-Label, Randomized Controlled Trial. J Stroke Cerebrovasc Dis 2019;28:477-86. [PMID: 30420315 DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
6 Zhang X, Elnady AM, Randhawa BK, Boyd LA, Menon C. Combining Mental Training and Physical Training With Goal-Oriented Protocols in Stroke Rehabilitation: A Feasibility Case Study. Front Hum Neurosci 2018;12:125. [PMID: 29666575 DOI: 10.3389/fnhum.2018.00125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Portaro S, Naro A, Leo A, Cimino V, Balletta T, Buda A, Accorinti M, Calabrò RS. Overground exoskeletons may boost neuroplasticity in myotonic dystrophy type 1 rehabilitation: A case report. Medicine (Baltimore) 2019;98:e17582. [PMID: 31725606 DOI: 10.1097/MD.0000000000017582] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
8 Nakayama S, Tolbert TJ, Nov O, Porfiri M. Social Information as a Means to Enhance Engagement in Citizen Science‐Based Telerehabilitation. Journal of the Association for Information Science and Technology 2019;70:587-95. [DOI: 10.1002/asi.24147] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
9 Oña ED, Cano-de la Cuerda R, Sánchez-Herrera P, Balaguer C, Jardón A. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb. J Healthc Eng 2018;2018:9758939. [PMID: 29707189 DOI: 10.1155/2018/9758939] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
10 Ramlee MH, Beng GK, Bajuri N, Abdul Kadir MR. Finite element analysis of the wrist in stroke patients: the effects of hand grip. Med Biol Eng Comput 2018;56:1161-71. [DOI: 10.1007/s11517-017-1762-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
11 Meng W, Liu Q, Zhou Z, Ai Q, Sheng B, Xie S(. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015;31:132-45. [DOI: 10.1016/j.mechatronics.2015.04.005] [Cited by in Crossref: 212] [Cited by in F6Publishing: 12] [Article Influence: 30.3] [Reference Citation Analysis]
12 Bizovičar N, Matjačić Z, Stanonik I, Goljar N. Overground gait training using a motorized assistive device in patients with severe disabilities after stroke. Int J Rehabil Res 2017;40:46-52. [PMID: 27779500 DOI: 10.1097/MRR.0000000000000199] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
13 Alfieri FM, Dias CDS, Dos Santos ACA, Battistella LR. Acute Effect of Robotic Therapy (G-EO System™) on the Lower Limb Temperature Distribution of a Patient with Stroke Sequelae. Case Rep Neurol Med 2019;2019:8408492. [PMID: 31205792 DOI: 10.1155/2019/8408492] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
14 Koçak M, Gezgin E. PARS, low-cost portable rehabilitation system for upper arm. HardwareX 2022;11:e00299. [DOI: 10.1016/j.ohx.2022.e00299] [Reference Citation Analysis]
15 Wang X, Tian C, Duan X, Gu Y, Huang N. A medical manipulator system with lasers in photodynamic therapy of port wine stains. Biomed Res Int 2014;2014:384646. [PMID: 25302297 DOI: 10.1155/2014/384646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
16 Hobbs B, Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Front Neurorobot 2020;14:19. [PMID: 32351377 DOI: 10.3389/fnbot.2020.00019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
17 Dierick F, Dehas M, Isambert JL, Injeyan S, Bouché AF, Bleyenheuft Y, Portnoy S. Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy? PLoS One 2017;12:e0178636. [PMID: 28575054 DOI: 10.1371/journal.pone.0178636] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
18 Morone G, Spitoni GF, De Bartolo D, Ghanbari Ghooshchy S, Di Iulio F, Paolucci S, Zoccolotti P, Iosa M. Rehabilitative devices for a top-down approach. Expert Rev Med Devices 2019;16:187-95. [PMID: 30677307 DOI: 10.1080/17434440.2019.1574567] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
19 Islam MR, Assad-uz-zaman M, Al Zubayer Swapnil A, Ahmed T, Rahman MH. An ergonomic shoulder for robot-aided rehabilitation with hybrid control. Microsyst Technol 2021;27:159-72. [DOI: 10.1007/s00542-020-04934-2] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Chiriatti G, Bottiglione A, Palmieri G. Manipulability Optimization of a Rehabilitative Collaborative Robotic System. Machines 2022;10:452. [DOI: 10.3390/machines10060452] [Reference Citation Analysis]
21 Tucan P, Vaida C, Plitea N, Pisla A, Carbone G, Pisla D. Risk-Based Assessment Engineering of a Parallel Robot Used in Post-Stroke Upper Limb Rehabilitation. Sustainability 2019;11:2893. [DOI: 10.3390/su11102893] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
22 Selamat SNS, Che Me R, Ahmad Ainuddin H, Salim MSF, Ramli HR, Romli MH. The Application of Technological Intervention for Stroke Rehabilitation in Southeast Asia: A Scoping Review With Stakeholders' Consultation. Front Public Health 2022;9:783565. [DOI: 10.3389/fpubh.2021.783565] [Reference Citation Analysis]
23 Bindawas SM, Vennu VS. Stroke rehabilitation. A call to action in Saudi Arabia. Neurosciences (Riyadh) 2016;21:297-305. [PMID: 27744457 DOI: 10.17712/nsj.2016.4.20160075] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
24 Ferreira FMRM, Chaves MEA, Oliveira VC, Martins JSR, Vimieiro CBS, Van Petten AMVN. Effect of Robot-Assisted Therapy on Participation of People with Limited Upper Limb Functioning: A Systematic Review with GRADE Recommendations. Occup Ther Int 2021;2021:6649549. [PMID: 34393681 DOI: 10.1155/2021/6649549] [Reference Citation Analysis]
25 Chen ZJ, Gu MH, He C, Xiong CH, Xu J, Huang XL. Robot-Assisted Arm Training in Stroke Individuals With Unilateral Spatial Neglect: A Pilot Study. Front Neurol 2021;12:691444. [PMID: 34305798 DOI: 10.3389/fneur.2021.691444] [Reference Citation Analysis]
26 Ramlee MH, Gan KB. FUNCTION AND BIOMECHANICS OF UPPER LIMB IN POST-STROKE PATIENTS — A SYSTEMATIC REVIEW. J Mech Med Biol 2017;17:1750099. [DOI: 10.1142/s0219519417500993] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
27 Fazekas G, Tavaszi I. The future role of robots in neuro-rehabilitation. Expert Review of Neurotherapeutics 2019;19:471-3. [DOI: 10.1080/14737175.2019.1617700] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Zuccon G, Bottin M, Ceccarelli M, Rosati G. Design and Performance of an Elbow Assisting Mechanism. Machines 2020;8:68. [DOI: 10.3390/machines8040068] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
29 [DOI: 10.1109/biorob.2014.6913815] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
30 Yang J, Zhao Z, Du C, Wang W, Peng Q, Qiu J, Wang G. The realization of robotic neurorehabilitation in clinical: use of computational intelligence and future prospects analysis. Expert Rev Med Devices 2020;17:1311-22. [PMID: 33252284 DOI: 10.1080/17434440.2020.1852930] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 De Luca A, Squeri V, Barone LM, Vernetti Mansin H, Ricci S, Pisu I, Cassiano C, Capra C, Lentino C, De Michieli L, Sanfilippo CA, Saglia JA, Checchia GA. Dynamic Stability and Trunk Control Improvements Following Robotic Balance and Core Stability Training in Chronic Stroke Survivors: A Pilot Study. Front Neurol 2020;11:494. [PMID: 32625162 DOI: 10.3389/fneur.2020.00494] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Oña ED, Garcia-haro JM, Jardón A, Balaguer C. Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs. Applied Sciences 2019;9:2586. [DOI: 10.3390/app9132586] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
33 Vourganas I, Stankovic V, Stankovic L, Kerr A. Factors That Contribute to the Use of Stroke Self-Rehabilitation Technologies: A Review. JMIR Biomed Eng 2019;4:e13732. [DOI: 10.2196/13732] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Pripfl J, Körtner T, Batko-klein D, Hebesberger D, Weninger M, Gisinger C. Social service robots to support independent living: Experiences from a field trial. Z Gerontol Geriat 2016;49:282-7. [DOI: 10.1007/s00391-016-1067-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
35 Zuccon G, Lenzo B, Bottin M, Rosati G. Rehabilitation robotics after stroke: a bibliometric literature review. Expert Rev Med Devices 2022. [PMID: 35786139 DOI: 10.1080/17434440.2022.2096438] [Reference Citation Analysis]
36 Ercolini G, Trigili E, Baldoni A, Crea S, Vitiello N. A Novel Generation of Ergonomic Upper-Limb Wearable Robots: Design Challenges and Solutions. Robotica 2019;37:2056-72. [DOI: 10.1017/s0263574718001340] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Atashzar SF, Shahbazi M, Patel RV. Haptics-enabled Interactive NeuroRehabilitation Mechatronics: Classification, Functionality, Challenges and Ongoing Research. Mechatronics 2019;57:1-19. [DOI: 10.1016/j.mechatronics.2018.03.002] [Cited by in Crossref: 17] [Article Influence: 5.7] [Reference Citation Analysis]
38 Stefano M, Patrizia P, Mario A, Ferlini G, Rizzello R, Rosati G. Robotic upper limb rehabilitation after acute stroke by NeReBot: evaluation of treatment costs. Biomed Res Int 2014;2014:265634. [PMID: 24967345 DOI: 10.1155/2014/265634] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
39 Martino Cinnera A, Pucello A, Lupo A, Gimigliano F, Mammucari E, Cicero DL, Iosa M, Paolucci S, Morone G. Upper limb motor improvement in chronic stroke after combining botulinum toxin A injection and multi-joints robot-assisted therapy: a case report. Oxf Med Case Reports 2019;2019:omz097. [PMID: 31772737 DOI: 10.1093/omcr/omz097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Delussu AS, Morone G, Iosa M, Bragoni M, Paolucci S, Traballesi M. Concurrent validity of Physiological Cost Index in walking over ground and during robotic training in subacute stroke patients. Biomed Res Int 2014;2014:384896. [PMID: 24967363 DOI: 10.1155/2014/384896] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
41 Knaepen K, Mierau A, Swinnen E, Fernandez Tellez H, Michielsen M, Kerckhofs E, Lefeber D, Meeusen R. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking? PLoS One 2015;10:e0140626. [PMID: 26485148 DOI: 10.1371/journal.pone.0140626] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
42 Nizamis K, Athanasiou A, Almpani S, Dimitrousis C, Astaras A. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Sensors (Basel) 2021;21:2084. [PMID: 33809721 DOI: 10.3390/s21062084] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Iosa M, Morone G, Fusco A, Castagnoli M, Fusco FR, Pratesi L, Paolucci S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil 2015;22:306-16. [PMID: 26258456 DOI: 10.1179/1074935714Z.0000000036] [Cited by in Crossref: 75] [Cited by in F6Publishing: 23] [Article Influence: 10.7] [Reference Citation Analysis]
44 Bong JH, Jung S, Park N, Kim SJ, Park S. Development of a Novel Robotic Rehabilitation System With Muscle-to-Muscle Interface. Front Neurorobot 2020;14:3. [PMID: 32132916 DOI: 10.3389/fnbot.2020.00003] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Ferreira FMRM, Chaves MEA, Oliveira VC, Van Petten AMVN, Vimieiro CBS. Effectiveness of robot therapy on body function and structure in people with limited upper limb function: A systematic review and meta-analysis. PLoS One 2018;13:e0200330. [PMID: 30001417 DOI: 10.1371/journal.pone.0200330] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
46 Elnady AM, Zhang X, Xiao ZG, Yong X, Randhawa BK, Boyd L, Menon C. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform. Front Hum Neurosci 2015;9:168. [PMID: 25870554 DOI: 10.3389/fnhum.2015.00168] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
47 Rehmat N, Zuo J, Meng W, Liu Q, Xie SQ, Liang H. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. Int J Intell Robot Appl 2018;2:283-95. [DOI: 10.1007/s41315-018-0064-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
48 Khalid S, Alnajjar F, Gochoo M, Renawi A, Shimoda S. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disabil Rehabil Assist Technol 2021;:1-15. [PMID: 33861684 DOI: 10.1080/17483107.2021.1906960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Cho JE, Yoo JS, Kim KE, Cho ST, Jang WS, Cho KH, Lee WH. Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients. Biomed Res Int 2018;2018:4085298. [PMID: 29546057 DOI: 10.1155/2018/4085298] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]