BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Golonka RM, Saha P, Yeoh BS, Chattopadhyay S, Gewirtz AT, Joe B, Vijay-Kumar M. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020;52:217-221. [PMID: 32275178 DOI: 10.1152/physiolgenomics.00033.2020] [Cited by in Crossref: 62] [Cited by in F6Publishing: 67] [Article Influence: 31.0] [Reference Citation Analysis]
Number Citing Articles
1 Essa S, Shamsah M, Alsarraf AH, Esmaeil A, Al-shammasi A, Raghupathy R. Influence of SARS-COV-2 Infection on Cytokine Production by Mitogen-Stimulated Peripheral Blood Mononuclear Cells and Neutrophils in COVID-19 Intensive Care Unit Patients. Microorganisms 2022;10:2194. [DOI: 10.3390/microorganisms10112194] [Reference Citation Analysis]
2 Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022. [DOI: 10.1007/s11906-022-01226-0] [Reference Citation Analysis]
3 Bork F, Greve CL, Youn C, Chen S, Wang Y, Nasri M, Focken J, Scheurer J, Engels P, Dubbelaar M, Hipp K, Schittek B, Bugl S, Löffler MW, Skokowa J, Archer NK, Weber AN. Release of the pre-assembled naRNA-LL37 composite DAMP re-defines neutrophil extracellular traps (NETs) as intentional DAMP webs.. [DOI: 10.1101/2022.07.26.499571] [Reference Citation Analysis]
4 Khodakarim N, Kalantari S, Riahi T, Moradians V, Talebi-Taher M, Yassin Z, Afshar H, Kooranifar S, Aloosh O, Ziaie S, Zamani N, Tirkan A, Ramim T. Effectiveness of Plasmapheresis Treatment in the Treatment of Patients with COVID-19 Disease. Med J Islam Repub Iran 2022;36:83. [PMID: 36128282 DOI: 10.47176/mjiri.36.83] [Reference Citation Analysis]
5 Rasmi Y, Hatamkhani S, Naderi R, Shokati A, Nayeb Zadeh V, Hosseinzadeh F, Farnamian Y, Jalali L. Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochem 2022;124:151908. [PMID: 35662001 DOI: 10.1016/j.acthis.2022.151908] [Reference Citation Analysis]
6 Gholami MD, Guppy-Coles K, Nihal S, Langguth D, Sonar P, Ayoko GA, Punyadeera C, Izake EL. A paper-based optical sensor for the screening of viruses through the cysteine residues of their surface proteins: A proof of concept on the detection of coronavirus infection. Talanta 2022;248:123630. [PMID: 35660992 DOI: 10.1016/j.talanta.2022.123630] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Chen T, Hsu M, Lee M, Chou C. Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022;14:1188. [DOI: 10.3390/v14061188] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Chegni H, Babaii H, Hassan ZM, Pourshaban M. Immune response and cytokine storm in SARS-CoV-2 infection: Risk factors, ways of control and treatment. Eur J Inflamm 2022;20:1721727X2210989. [DOI: 10.1177/1721727x221098970] [Reference Citation Analysis]
9 Pastorek M, Dúbrava M, Celec P. On the Origin of Neutrophil Extracellular Traps in COVID-19. Front Immunol 2022;13:821007. [DOI: 10.3389/fimmu.2022.821007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Perpiñan C, Bertran L, Terra X, Aguilar C, Binetti J, Lopez-dupla M, Rull A, Reverté L, Yeregui E, Gómez-bertomeu F, Peraire J, Auguet T; on behalf of COVID-19 Study Group. Resistin and IL-15 as Predictors of Invasive Mechanical Ventilation in COVID-19 Pneumonia Irrespective of the Presence of Obesity and Metabolic Syndrome. JPM 2022;12:391. [DOI: 10.3390/jpm12030391] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Patra R, Das NC, Mukherjee S. Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. Adv Exp Med Biol 2021;1352:87-109. [PMID: 35132596 DOI: 10.1007/978-3-030-85109-5_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Fouladseresht H, Ghamar Talepoor A, Eskandari N, Norouzian M, Ghezelbash B, Beyranvand MR, Nejadghaderi SA, Carson-chahhoud K, Kolahi A, Safiri S. Potential Immune Indicators for Predicting the Prognosis of COVID-19 and Trauma: Similarities and Disparities. Front Immunol 2022;12:785946. [DOI: 10.3389/fimmu.2021.785946] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhang Y, Wang Q, Mackay CR, Ng LG, Kwok I. Neutrophil subsets and their differential roles in viral respiratory diseases. J Leukoc Biol 2022. [PMID: 35040189 DOI: 10.1002/JLB.1MR1221-345R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 El-Aarag SA, Mahmoud A, ElHefnawi M. Identifying potential novel insights for COVID-19 pathogenesis and therapeutics using an integrated bioinformatics analysis of host transcriptome. Int J Biol Macromol 2022;194:770-80. [PMID: 34826456 DOI: 10.1016/j.ijbiomac.2021.11.124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Datta D, Singh R, Velayutham R, Bhattacharya A, Ray U, Dasgupta S, Dutta S, Saha A, Roy D, Ghosh S, Arumugam S, Datta P, Ganguly N. SARS-CoV-2 Infection after Effects: Multi-Organ Damage through Oxygen Radicals. Apollo Med 2022;0:0. [DOI: 10.4103/am.am_122_22] [Reference Citation Analysis]
16 Yazgan İ. Covid-19’a karşı mRNA SARS-CoV2 spesifik ve Çocukluk Dönemi Aşıları. Türk Doğa ve Fen Dergisi 2021;10:338-350. [DOI: 10.46810/tdfd.994622] [Reference Citation Analysis]
17 Ruffin M, Bigot J, Calmel C, Mercier J, Givelet M, Oliva J, Pizzorno A, Rosa-Calatrava M, Corvol H, Balloy V, Terrier O, Guillot L. Flagellin From Pseudomonas aeruginosa Modulates SARS-CoV-2 Infectivity in Cystic Fibrosis Airway Epithelial Cells by Increasing TMPRSS2 Expression. Front Immunol 2021;12:714027. [PMID: 34950129 DOI: 10.3389/fimmu.2021.714027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Almutairi MM, Sivandzade F, Albekairi TH, Alqahtani F, Cucullo L. Neuroinflammation and Its Impact on the Pathogenesis of COVID-19. Front Med (Lausanne) 2021;8:745789. [PMID: 34901061 DOI: 10.3389/fmed.2021.745789] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
19 Julian DR, Kazakoff MA, Patel A, Jaynes J, Willis MS, Yates CC. Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19. Curr Pathobiol Rep 2021;:1-13. [PMID: 34900402 DOI: 10.1007/s40139-021-00226-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
20 Hassan SM, Jawad MJ, Jawad MJ, Abu-raghif AR, Hadi NR. GASTROINTESTINAL AND METABOLIC DISTURBANCES IN POST-COVID-19 DISEASE OUTCOMES. Wiad Lek 2021;74:3160-3167. [DOI: 10.36740/wlek202112107] [Reference Citation Analysis]
21 Liu J, Du C, Pu L, Xiang P, Xiong H, Xie W, Chen Z, Li A. Comparative therapeutic efficacy of interferon alfa-2b and combination lopinavir/ritonavir plus interferon alfa-2b against SARS-CoV-2. BMC Infect Dis 2021;21:885. [PMID: 34461841 DOI: 10.1186/s12879-021-06595-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Mehata AK, Viswanadh MK, Priya V, Vikas, Muthu MS. Harnessing immunological targets for COVID-19 immunotherapy. Future Virol 2021. [PMID: 34447458 DOI: 10.2217/fvl-2021-0048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol 2021; 27(30): 5047-5059 [PMID: 34497434 DOI: 10.3748/wjg.v27.i30.5047] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Aykac K, Ozsurekci Y, Yayla BCC, Gurlevik SL, Oygar PD, Bolu NB, Tasar MA, Erdinc FS, Ertem GT, Neselioglu S, Erel O, Cengiz AB, Ceyhan M. Oxidant and antioxidant balance in patients with COVID-19. Pediatr Pulmonol 2021;56:2803-10. [PMID: 34265172 DOI: 10.1002/ppul.25549] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
25 Domínguez-Díaz C, Varela-Trinidad GU, Muñoz-Sánchez G, Solórzano-Castanedo K, Avila-Arrezola KE, Iñiguez-Gutiérrez L, Delgado-Rizo V, Fafutis-Morris M. To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021;10:1469. [PMID: 34208037 DOI: 10.3390/cells10061469] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Hanan N, Doud RL Jr, Park IW, Jones HP, Mathew SO. The Many Faces of Innate Immunity in SARS-CoV-2 Infection. Vaccines (Basel) 2021;9:596. [PMID: 34199761 DOI: 10.3390/vaccines9060596] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Ye CH, Hsu WL, Peng GR, Yu WC, Lin WC, Hu S, Yu SH. Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplant 2021;30:9636897211010632. [PMID: 33949207 DOI: 10.1177/09636897211010632] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
28 Hu CA, Murphy I, Klimaj S, Reece J, Chand HS. SARS-CoV-2, Inflammatory Apoptosis, and Cytokine Storm Syndrome. TOCOVIDJ 2021;1:22-31. [DOI: 10.2174/2666958702101010022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ngo VL, Gewirtz AT. Microbiota as a potentially-modifiable factor influencing COVID-19. Curr Opin Virol 2021;49:21-6. [PMID: 34000641 DOI: 10.1016/j.coviro.2021.04.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
30 Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. Nanocarrier vaccines for SARS-CoV-2. Adv Drug Deliv Rev 2021;171:215-39. [PMID: 33428995 DOI: 10.1016/j.addr.2021.01.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 40.0] [Reference Citation Analysis]
31 Glanz A, Chakravarty S, Varghese M, Kottapalli A, Fan S, Chakravarti R, Chattopadhyay S. Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses 2021;13:575. [PMID: 33805458 DOI: 10.3390/v13040575] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
32 Saksena N, Bonam SR, Miranda-Saksena M. Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Front Genet 2021;12:581726. [PMID: 33828579 DOI: 10.3389/fgene.2021.581726] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
33 Ferraro E, Germanò M, Mollace R, Mollace V, Malara N. HIF-1, the Warburg Effect, and Macrophage/Microglia Polarization Potential Role in COVID-19 Pathogenesis. Oxid Med Cell Longev 2021;2021:8841911. [PMID: 33815663 DOI: 10.1155/2021/8841911] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
34 Kozlov EM, Ivanova E, Grechko AV, Wu WK, Starodubova AV, Orekhov AN. Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2 Infection. Diseases 2021;9:17. [PMID: 33668325 DOI: 10.3390/diseases9010017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
35 McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). Compr Physiol 2021;11:1575-89. [PMID: 33577121 DOI: 10.1002/cphy.c200020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
36 Iqbal Yatoo M, Hamid Z, Rather I, Nazir QUA, Bhat RA, Ul Haq A, Magray SN, Haq Z, Sah R, Tiwari R, Natesan S, Bilal M, Harapan H, Dhama K. Immunotherapies and immunomodulatory approaches in clinical trials - a mini review. Hum Vaccin Immunother 2021;17:1897-909. [PMID: 33577374 DOI: 10.1080/21645515.2020.1871295] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
37 Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol 2020;11:583777. [PMID: 33708109 DOI: 10.3389/fphar.2020.583777] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 37.0] [Reference Citation Analysis]
38 Siddique F, Abbas RZ, Mansoor MK, Alghamdi ES, Saeed M, Ayaz MM, Rahman M, Mahmood MS, Iqbal A, Manzoor M, Abbas A, Javaid A, Hussain I. An Insight Into COVID-19: A 21st Century Disaster and Its Relation to Immunocompetence and Food Antioxidants. Front Vet Sci 2020;7:586637. [PMID: 33521076 DOI: 10.3389/fvets.2020.586637] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
39 Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. Pharmacotherapeutics of SARS-CoV-2 Infections. J Neuroimmune Pharmacol 2021;16:12-37. [PMID: 33403500 DOI: 10.1007/s11481-020-09968-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Vashishtha VM, Kumar P. Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward. Hum Vaccin Immunother 2021;17:1635-49. [PMID: 33270478 DOI: 10.1080/21645515.2020.1845524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
41 Dhama K, Patel SK, Natesan S, Vora KS, Iqbal Yatoo M, Tiwari R, Saxena SK, Singh KP, Singh R, Malik YS. COVID-19 in the elderly people and advances in vaccination approaches. Hum Vaccin Immunother 2020;16:2938-43. [PMID: 33270497 DOI: 10.1080/21645515.2020.1842683] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
42 Cavalcanti LGDH, Oliveira LX, Bustamante MP, Andrade MC. Perspectivas imunoterapêuticas para COVID-19. Rev Cienc Saude 2020;10:6-9. [DOI: 10.21876/rcshci.v10i4.1002] [Reference Citation Analysis]
43 Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact. 2020;19:217. [PMID: 33243230 DOI: 10.1186/s12934-020-01483-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
44 Oves M, Ravindran M, Rauf MA, Omaish Ansari M, Zahin M, Iyer AK, Ismail IMI, Khan MA, Palaniyar N. Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens 2020;9:E985. [PMID: 33255989 DOI: 10.3390/pathogens9120985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Chugh H, Awasthi A, Agarwal Y, Gaur RK, Dhawan G, Chandra R. A comprehensive review on potential therapeutics interventions for COVID-19. Eur J Pharmacol 2021;890:173741. [PMID: 33227287 DOI: 10.1016/j.ejphar.2020.173741] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
46 Balagholi S, Dabbaghi R, Eshghi P, Mousavi SA, Heshmati F, Mohammadi S. Potential of therapeutic plasmapheresis in treatment of COVID-19 patients: Immunopathogenesis and coagulopathy. Transfus Apher Sci 2020;59:102993. [PMID: 33162341 DOI: 10.1016/j.transci.2020.102993] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
47 Akram WM, Menezes GA, Abbas N, Ahmad W, Ahmed AM. Treatment of Multi-Drug Resistant Gram-Negative Bacterial Pathogenic Infections. J Pure Appl Microbiol 2020;14:1639-1647. [DOI: 10.22207/jpam.14.3.02] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics 2020;52:549-57. [PMID: 32991251 DOI: 10.1152/physiolgenomics.00089.2020] [Cited by in Crossref: 135] [Cited by in F6Publishing: 157] [Article Influence: 67.5] [Reference Citation Analysis]
49 Arumugam VA, Thangavelu S, Fathah Z, Ravindran P, Sanjeev AMA, Babu S, Meyyazhagan A, Yatoo MI, Sharun K, Tiwari R, Pandey MK, Sah R, Chandra R, Dhama K. COVID-19 and the World with Co-Morbidities of Heart Disease, Hypertension and Diabetes. J Pure Appl Microbiol 2020;14:1623-38. [DOI: 10.22207/jpam.14.3.01] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
50 Ressaire Q, Dudoignon E, Moreno N, Coutrot M, Dépret F. Low total cholesterol blood level is correlated with pulmonary severity in COVID-19 critical ill patients. Anaesth Crit Care Pain Med 2020;39:733-5. [PMID: 32866665 DOI: 10.1016/j.accpm.2020.07.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
51 Ruffin M, Bigot J, Calmel C, Mercier J, Pizzorno A, Rosa-calatrava M, Corvol H, Balloy V, Terrier O, Guillot L. Flagellin from Pseudomonas aeruginosa modulates SARS-CoV-2 infectivity in CF airway epithelial cells by increasing TMPRSS2 expression.. [DOI: 10.1101/2020.08.24.264564] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res 2020;226:57-69. [PMID: 32827705 DOI: 10.1016/j.trsl.2020.08.004] [Cited by in Crossref: 166] [Cited by in F6Publishing: 179] [Article Influence: 83.0] [Reference Citation Analysis]
53 Crimi E, Benincasa G, Figueroa-Marrero N, Galdiero M, Napoli C. Epigenetic susceptibility to severe respiratory viral infections and its therapeutic implications: a narrative review. Br J Anaesth 2020;125:1002-17. [PMID: 32828489 DOI: 10.1016/j.bja.2020.06.060] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
54 Coelho AR, Oliveira PJ. Dihydroorotate dehydrogenase inhibitors in SARS-CoV-2 infection. Eur J Clin Invest 2020;50:e13366. [PMID: 32735689 DOI: 10.1111/eci.13366] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
55 Zheng X, Li L. Potential Therapeutic Options for COVID-19. Infectious Microbes and Diseases 2020;2:89-95. [DOI: 10.1097/im9.0000000000000033] [Reference Citation Analysis]
56 Clark B, Poulton K. SARS-CoV-2: An immunogenetics call to arms. Int J Immunogenet 2020;47:319-23. [PMID: 32654378 DOI: 10.1111/iji.12504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Silva de Sordi LH, Sales Oliveira Magalhães I, Abreu Casselhas D, Chaves Andrade M. O Papel da Imunidade Inata na COVID-19. Rev Cienc Saude 2020;10:5-8. [DOI: 10.21876/rcshci.v10i3.997] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Prasad K, Khatoon F, Rashid S, Ali N, AlAsmari AF, Ahmed MZ, Alqahtani AS, Alqahtani MS, Kumar V. Targeting hub genes and pathways of innate immune response in COVID-19: A network biology perspective. Int J Biol Macromol 2020;163:1-8. [PMID: 32599245 DOI: 10.1016/j.ijbiomac.2020.06.228] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 24.0] [Reference Citation Analysis]
59 Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020;39:2085-94. [PMID: 32474885 DOI: 10.1007/s10067-020-05190-5] [Cited by in Crossref: 415] [Cited by in F6Publishing: 340] [Article Influence: 207.5] [Reference Citation Analysis]
60 Thalji NK, Patel PA, Elliott M, Augoustides JG. Hematologic Consequences of the Coronavirus Crisis-Focus on Relevant Clues and Complications for the Perioperative Cardiothoracic and Vascular Community. J Cardiothorac Vasc Anesth 2020;34:3189-92. [PMID: 32565045 DOI: 10.1053/j.jvca.2020.05.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Agoramoorthy G. Consider TLR5 for new therapeutic development against COVID-19. J Med Virol 2020;92:2314-5. [PMID: 32391920 DOI: 10.1002/jmv.25997] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 20.0] [Reference Citation Analysis]
62 Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res 2020;158:104904. [PMID: 32430286 DOI: 10.1016/j.phrs.2020.104904] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 33.0] [Reference Citation Analysis]
63 Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol 2020;20:515-6. [PMID: 32728221 DOI: 10.1038/s41577-020-0407-1] [Cited by in Crossref: 274] [Cited by in F6Publishing: 1] [Article Influence: 137.0] [Reference Citation Analysis]
64 [DOI: 10.1101/2020.08.06.238915] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Reference Citation Analysis]