BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meyer KF, Krauss-Etschmann S, Kooistra W, Reinders-Luinge M, Timens W, Kobzik L, Plösch T, Hylkema MN. Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring. Am J Physiol Lung Cell Mol Physiol 2017;312:L542-55. [PMID: 28130259 DOI: 10.1152/ajplung.00271.2016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Cahill KM, Gartia MR, Sahu S, Bergeron SR, Heffernan LM, Paulsen DB, Penn AL, Noël A. In utero exposure to electronic-cigarette aerosols decreases lung fibrillar collagen content, increases Newtonian resistance and induces sex-specific molecular signatures in neonatal mice. Toxicol Res 2022;38:205-24. [DOI: 10.1007/s43188-021-00103-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Hu W, Wang G, He B, Hu S, Luo H, Wen Y, Chen L, Wang H. Effects of prenatal nicotine exposure on hepatic glucose and lipid metabolism in offspring rats and its hereditability. Toxicology 2020;432:152378. [PMID: 31972234 DOI: 10.1016/j.tox.2020.152378] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Lkhagvadorj K, Zeng Z, Meyer KF, Verweij LP, Kooistra W, Reinders-Luinge M, Dijkhuizen HW, de Graaf IAM, Plösch T, Hylkema MN. Postnatal Smoke Exposure Further Increases the Hepatic Nicotine Metabolism in Prenatally Smoke Exposed Male Offspring and Is Linked with Aberrant Cyp2a5 Methylation. Int J Mol Sci 2020;22:E164. [PMID: 33375250 DOI: 10.3390/ijms22010164] [Reference Citation Analysis]
4 Zazara DE, Wegmann M, Giannou AD, Hierweger AM, Alawi M, Thiele K, Huber S, Pincus M, Muntau AC, Solano ME, Arck PC. A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice. J Allergy Clin Immunol 2020;145:1641-54. [PMID: 32305348 DOI: 10.1016/j.jaci.2020.01.050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Meyer KF, Verkaik-Schakel RN, Timens W, Kobzik L, Plösch T, Hylkema MN. The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific. Epigenetics 2017;12:1076-91. [PMID: 29160127 DOI: 10.1080/15592294.2017.1403691] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
6 Zhang L, Valizadeh H, Alipourfard I, Bidares R, Aghebati-Maleki L, Ahmadi M. Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review. COPD 2020;17:333-42. [PMID: 32558592 DOI: 10.1080/15412555.2020.1780576] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Peixoto TC, Moura EG, Soares PN, Rodrigues VST, Claudio-Neto S, Oliveira E, Manhães AC, Lisboa PC. Nicotine exposure during lactation causes disruption of hedonic eating behavior and alters dopaminergic system in adult female rats. Appetite 2021;160:105115. [PMID: 33453337 DOI: 10.1016/j.appet.2021.105115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lkhagvadorj K, Meyer KF, Verweij LP, Kooistra W, Reinders-Luinge M, Dijkhuizen HW, de Graaf IAM, Plösch T, Hylkema MN. Prenatal smoke exposure induces persistent Cyp2a5 methylation and increases nicotine metabolism in the liver of neonatal and adult male offspring. Epigenetics 2020;15:1370-85. [PMID: 32573327 DOI: 10.1080/15592294.2020.1782655] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Dehmel S, Nathan P, Bartel S, El-Merhie N, Scherb H, Milger K, John-Schuster G, Yildirim AO, Hylkema M, Irmler M, Beckers J, Schaub B, Eickelberg O, Krauss-Etschmann S. Intrauterine smoke exposure deregulates lung function, pulmonary transcriptomes, and in particular insulin-like growth factor (IGF)-1 in a sex-specific manner. Sci Rep 2018;8:7547. [PMID: 29765129 DOI: 10.1038/s41598-018-25762-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
10 Ji X, Yue H, Li G, Sang N. Maternal smoking-induced lung injuries in dams and offspring via inflammatory cytokines. Environ Int 2021;156:106618. [PMID: 33989842 DOI: 10.1016/j.envint.2021.106618] [Reference Citation Analysis]
11 Xie Z, Xia T, Wu D, Che L, Zhang W, Cai X, Liu S. Identification of the key genes in chronic obstructive pulmonary disease by weighted gene co-expression network analysis. Ann Transl Med 2022;10:665. [PMID: 35845513 DOI: 10.21037/atm-22-2523] [Reference Citation Analysis]
12 Wang Z, Li W, Guo Q, Wang Y, Ma L, Zhang X. Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. Biomed Res Int 2018;2018:6057589. [PMID: 30018981 DOI: 10.1155/2018/6057589] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zeng Z, Meyer KF, Lkhagvadorj K, Kooistra W, Reinders-Luinge M, Xu X, Huo X, Song J, Plösch T, Hylkema MN. Prenatal smoke effect on mouse offspring Igf1 promoter methylation from fetal stage to adulthood is organ and sex specific. Am J Physiol Lung Cell Mol Physiol 2020;318:L549-61. [PMID: 31913647 DOI: 10.1152/ajplung.00293.2019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol 2019;41:137-51. [DOI: 10.1007/s00281-018-0713-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
15 Hammer B, Wagner C, Divac Rankov A, Reuter S, Bartel S, Hylkema MN, Krüger A, Svanes C, Krauss-Etschmann S. In utero exposure to cigarette smoke and effects across generations: A conference of animals on asthma. Clin Exp Allergy 2018;48:1378-90. [PMID: 30244507 DOI: 10.1111/cea.13283] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
16 Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019;317:L832-87. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 15.3] [Reference Citation Analysis]
17 Bianchi M, Renzini A, Adamo S, Moresi V. Coordinated Actions of MicroRNAs with other Epigenetic Factors Regulate Skeletal Muscle Development and Adaptation. Int J Mol Sci 2017;18:E840. [PMID: 28420141 DOI: 10.3390/ijms18040840] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
18 Wang B, Chan YL, Zhou S, Saad S, Chen H, Oliver BG. Offspring sex affects the susceptibility to maternal smoking-induced lung inflammation and the effect of maternal antioxidant supplementation in mice. J Inflamm (Lond) 2020;17:24. [PMID: 32774172 DOI: 10.1186/s12950-020-00253-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Sarker RSJ, Conlon TM, Morrone C, Srivastava B, Konyalilar N, Verleden SE, Bayram H, Fehrenbach H, Yildirim AÖ. CARM1 regulates senescence during airway epithelial cell injury in COPD pathogenesis. Am J Physiol Lung Cell Mol Physiol 2019;317:L602-14. [PMID: 31461302 DOI: 10.1152/ajplung.00441.2018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Tang Q, Tu B, Jiang X, Zhang J, Bai L, Meng P, Zhang L, Qin X, Wang B, Chen C, Zou Z. Exposure to carbon black nanoparticles during pregnancy aggravates lipopolysaccharide-induced lung injury in offspring: an intergenerational effect. Am J Physiol Lung Cell Mol Physiol 2021;321:L900-11. [PMID: 34585979 DOI: 10.1152/ajplung.00545.2020] [Reference Citation Analysis]
21 Zakarya R, Adcock I, Oliver BG. Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics 2019;11:32. [PMID: 30782202 DOI: 10.1186/s13148-019-0631-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
22 Noël A, Perveen Z, Xiao R, Hammond H, Le Donne V, Legendre K, Gartia MR, Sahu S, Paulsen DB, Penn AL. Mmp12 Is Upregulated by in utero Second-Hand Smoke Exposures and Is a Key Factor Contributing to Aggravated Lung Responses in Adult Emphysema, Asthma, and Lung Cancer Mouse Models. Front Physiol 2021;12:704401. [PMID: 34912233 DOI: 10.3389/fphys.2021.704401] [Reference Citation Analysis]
23 Cole E, Brown TA, Pinkerton KE, Postma B, Malany K, Yang M, Kim YJ, Hamilton RF Jr, Holian A, Cho YH. Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model. Inhal Toxicol 2017;29:435-42. [PMID: 29124997 DOI: 10.1080/08958378.2017.1392655] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]