BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moret F, Reddi E. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). J Porphyrins Phthalocyanines 2017;21:239-56. [DOI: 10.1142/s1088424617300014] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Demchenko AP. Phototheranostics: Combining Targeting, Imaging, Therapy. Introduction to Fluorescence Sensing 2023. [DOI: 10.1007/978-3-031-19089-6_17] [Reference Citation Analysis]
2 Gvozdev DA, Solovchenko AE, Martynov AG, Yagodin AV, Strakhovskaya MG, Gorbunova YG, Maksimov EG. Fluorescence Quenching of Carboxy-Substituted Phthalocyanines Conjugated with Nanoparticles under High Stoichiometric Ratios. Photonics 2022;9:668. [DOI: 10.3390/photonics9090668] [Reference Citation Analysis]
3 Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers 2022;14:4462. [DOI: 10.3390/cancers14184462] [Reference Citation Analysis]
4 Li B, Fu Y, Xie M, Feng L, Niu X, Que L, You Z. Gold-based nanoparticles realize photothermal and photodynamic synergistic treatment of liver cancer and improve the anaerobic tumor microenvironment under near-infrared light. Front Bioeng Biotechnol 2022;10:957349. [DOI: 10.3389/fbioe.2022.957349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Tng DJH, Chong LM, Chua MLK, Zhang Y, Yong K. Nanoparticles for Enhanced Radiotherapy and Imaging Applications. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications 2022. [DOI: 10.1007/978-3-031-09636-5_2] [Reference Citation Analysis]
6 Mirzaei M, Rasouli AH, Saedi A. HOMO-LUMO photosensitization analyses of coronene-cytosine complexes. MGC 2021;20:565-73. [DOI: 10.3233/mgc-210078] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
7 Gvozdev D, Ramonova А, Slonimskiy Y, Gudkova V, Nikelshparg E, Moisenovich A, Moisenovich М, Zaitsev A, Olshevskaya V, Paschenko V, Maksimov Е. Nanodiamonds as a platform for targeted delivery of chlorin-based photosensitizers to cancer cells. Diamond and Related Materials 2021;120:108676. [DOI: 10.1016/j.diamond.2021.108676] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Chong LM, Tng DJH, Tan LLY, Chua MLK, Zhang Y. Recent advances in radiation therapy and photodynamic therapy. Applied Physics Reviews 2021;8:041322. [DOI: 10.1063/5.0060424] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
9 Arbeloa EM, Militello MP, Bertolotti SG, Previtali CM. Photosensitizer-dendrimer systems in anticancer treatments: From photophysics to PDT applications. Dendrimer-Based Nanotherapeutics 2021. [DOI: 10.1016/b978-0-12-821250-9.00021-4] [Reference Citation Analysis]
10 Molupe N, Babu B, Prinsloo E, Kaassis AYA, Edkins K, Mack J, Nyokong T. Photodynamic activity of Sn(IV) meso -tetraacenaphthylporphyrin and its methyl-β-cyclodextrin inclusion complexes on MCF-7 breast cancer cells. J Porphyrins Phthalocyanines 2019;23:1486-94. [DOI: 10.1142/s1088424619501633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Pfister S, Sauser L, Gjuroski I, Furrer J, Vermathen M. Monitoring the encapsulation of chlorin e6 derivatives into polymer carriers by NMR spectroscopy. J Porphyrins Phthalocyanines 2019;23:1576-86. [DOI: 10.1142/s1088424619501815] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
12 Guo X, Wu H, Miao W, Wu Y, Hao E, Jiao L. Mitochondria-targeted porphyrin-based photosensitizers containing triphenylphosphonium cations showing efficient in vitro photodynamic therapy effects. J Porphyrins Phthalocyanines 2019;23:1505-14. [DOI: 10.1142/s1088424619501682] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
13 Bogoeva V, Petrova L, Bouckaert J, Yordanova A, Ivanov I, Vanderesse R, Frochot C. Dual function of lectins — new perspectives in targeted photodynamic therapy. J Porphyrins Phthalocyanines 2019;23:1241-50. [DOI: 10.1142/s1088424619300209] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Pehlivan EG, Ek Y, Topkaya D, Tazebay UH, Dumoulin F. Effect of PVP formulation on the in vitro photodynamic efficiency of a photosensitizing phthalocyanine. J Porphyrins Phthalocyanines 2019;23:1587-91. [DOI: 10.1142/s108842461950189x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Rakhimzhanova RI, Shanazarov NA, Turzhanova DE. Photodynamic therapy of intradermal metastatic breast cancer (literature review). Biomedical photonics 2019;8:36-42. [DOI: 10.24931/2413-9432-2019-8-3-36-42] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
16 Grigore ME, Ion R, Iancu L, Grigorescu RM. Tailored porphyrin–gold nanoparticles for biomedical applications. J Porphyrins Phthalocyanines 2019;23:766-80. [DOI: 10.1142/s108842461930012x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]