BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Casas-Sanchez A, Romero-Ramirez A, Hargreaves E, Ellis CC, Grajeda BI, Estevao IL, Patterson EI, Hughes GL, Almeida IC, Zech T, Acosta-Serrano Á. Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection. mBio 2022;:e0371821. [PMID: 35164559 DOI: 10.1128/mbio.03718-21] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Newby ML, Fogarty CA, Allen JD, Butler J, Fadda E, Crispin M. Variations within the Glycan Shield of SARS-CoV-2 Impact Viral Spike Dynamics. J Mol Biol 2023;435:167928. [PMID: 36565991 DOI: 10.1016/j.jmb.2022.167928] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Kuhaudomlarp S, Imberty A. Involvement of sialoglycans in SARS-COV-2 infection: Opportunities and challenges for glyco-based inhibitors. IUBMB Life 2022;74:1253-63. [PMID: 36349722 DOI: 10.1002/iub.2692] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Alavi M, Mozafari MR, Ghaemi S, Ashengroph M, Hasanzadeh Davarani F, Mohammadabadi M. Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study. Biomedicines 2022;10. [PMID: 36551830 DOI: 10.3390/biomedicines10123074] [Reference Citation Analysis]
4 Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Mass Spectrom Rev 2022;:e21813. [PMID: 36177493 DOI: 10.1002/mas.21813] [Reference Citation Analysis]
5 Yang Q, Kelkar A, Sriram A, Hombu R, Hughes TA, Neelamegham S. Role for N-glycans and calnexin-calreticulin chaperones in SARS-CoV-2 Spike maturation and viral infectivity. Sci Adv 2022;8:eabq8678. [PMID: 36149962 DOI: 10.1126/sciadv.abq8678] [Reference Citation Analysis]
6 Zhu B, Chen Z, Shen J, Xu Y, Lan R, Sun S. Structural- and Site-Specific N-Glycosylation Characterization of COVID-19 Virus Spike with StrucGP. Anal Chem 2022. [PMID: 36036581 DOI: 10.1021/acs.analchem.2c02265] [Reference Citation Analysis]
7 Tripathi N, Goel B, Bhardwaj N, Vishwakarma RA, Jain SK. Exploring the Potential of Chemical Inhibitors for Targeting Post-translational Glycosylation of Coronavirus (SARS-CoV-2). ACS Omega. [DOI: 10.1021/acsomega.2c02345] [Reference Citation Analysis]
8 Chawla H, Fadda E, Crispin M. Principles of SARS-CoV-2 Glycosylation. Current Opinion in Structural Biology 2022. [DOI: 10.1016/j.sbi.2022.102402] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
9 Escobar EE, Wang S, Goswami R, Lanzillotti MB, Li L, McLellan JS, Brodbelt JS. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022. [PMID: 35388686 DOI: 10.1021/acs.analchem.1c04874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Duczynski J, Raston CL, Stubbs KA. Exploiting angled thin film vortex microfluidics for expeditious syntheses of iminosugars. RSC Adv 2022;12:23162-8. [DOI: 10.1039/d2ra04409a] [Reference Citation Analysis]