BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Levin BJ, Huang YY, Peck SC, Wei Y, Martínez-Del Campo A, Marks JA, Franzosa EA, Huttenhower C, Balskus EP. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science 2017;355:eaai8386. [PMID: 28183913 DOI: 10.1126/science.aai8386] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 14.6] [Reference Citation Analysis]
Number Citing Articles
1 Syrén P. Enzymatic Hydrolysis of Tertiary Amide Bonds by anti Nucleophilic Attack and Protonation. J Org Chem 2018;83:13543-8. [DOI: 10.1021/acs.joc.8b02053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Gerlt JA. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. Biochemistry 2017;56:4293-308. [PMID: 28826221 DOI: 10.1021/acs.biochem.7b00614] [Cited by in Crossref: 105] [Cited by in F6Publishing: 84] [Article Influence: 21.0] [Reference Citation Analysis]
3 Li A, Laville E, Tarquis L, Lombard V, Ropartz D, Terrapon N, Henrissat B, Guieysse D, Esque J, Durand J, Morgavi DP, Potocki-Veronese G. Analysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function. Microb Genom 2020;6. [PMID: 32667876 DOI: 10.1099/mgen.0.000404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ. 2018;360:j5145. [PMID: 29311119 DOI: 10.1136/bmj.j5145] [Cited by in Crossref: 147] [Cited by in F6Publishing: 128] [Article Influence: 36.8] [Reference Citation Analysis]
5 Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021;22:553-71. [PMID: 34083778 DOI: 10.1038/s41576-021-00363-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
6 Li Y, Cao H, Wang X, Guo L, Ding X, Zhao W, Zhang F. Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 34802351 DOI: 10.1080/10408398.2021.2004993] [Reference Citation Analysis]
7 Li BC, Zhang T, Li YQ, Ding GB. Target Discovery of Novel α-L-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Appl Biochem Biotechnol 2019;189:1245-61. [PMID: 31236895 DOI: 10.1007/s12010-019-03063-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Copp JN, Akiva E, Babbitt PC, Tokuriki N. Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry 2018;57:4651-62. [PMID: 30052428 DOI: 10.1021/acs.biochem.8b00473] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
9 Mandel MJ, Broderick NA, Martens EC, Guillemin K. Reports from a Healthy Community: The 7th Conference on Beneficial Microbes. Appl Environ Microbiol 2018:AEM. [PMID: 30578257 DOI: 10.1128/AEM.02562-18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Beller HR, Rodrigues AV, Zargar K, Wu YW, Saini AK, Saville RM, Pereira JH, Adams PD, Tringe SG, Petzold CJ, Keasling JD. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat Chem Biol 2018;14:451-7. [PMID: 29556105 DOI: 10.1038/s41589-018-0017-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
11 Buckel W. Enzymatic Reactions Involving Ketyls: From a Chemical Curiosity to a General Biochemical Mechanism. Biochemistry 2019;58:5221-33. [PMID: 30995029 DOI: 10.1021/acs.biochem.9b00171] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
12 Walsh J, Griffin BT, Clarke G, Hyland NP. Drug-gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol 2018;175:4415-29. [PMID: 29782640 DOI: 10.1111/bph.14366] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
13 Yadav M, Chauhan NS. Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics. J Appl Microbiol 2021;130:1425-41. [PMID: 33022786 DOI: 10.1111/jam.14883] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
14 McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021;50:10857-94. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Dawson CD, Irwin SM, Backman LRF, Le C, Wang JX, Vennelakanti V, Yang Z, Kulik HJ, Drennan CL, Balskus EP. Molecular basis of C-S bond cleavage in the glycyl radical enzyme isethionate sulfite-lyase. Cell Chem Biol 2021:S2451-9456(21)00110-0. [PMID: 33773110 DOI: 10.1016/j.chembiol.2021.03.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Maini Rekdal V, Nol Bernadino P, Luescher MU, Kiamehr S, Le C, Bisanz JE, Turnbaugh PJ, Bess EN, Balskus EP. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. Elife 2020;9:e50845. [PMID: 32067637 DOI: 10.7554/eLife.50845] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Nguyen HTH, Andrikopoulos PC, Bím D, Rulíšek L, Dang A, Tureček F. Radical Reactions Affecting Polar Groups in Threonine Peptide Ions. J Phys Chem B 2017;121:6557-69. [DOI: 10.1021/acs.jpcb.7b04661] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
18 Backman LRF, Funk MA, Dawson CD, Drennan CL. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 2017;52:674-95. [PMID: 28901199 DOI: 10.1080/10409238.2017.1373741] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 7.6] [Reference Citation Analysis]
19 Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019;30:683-709. [PMID: 29241353 DOI: 10.1089/ars.2017.7335] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
20 Yan D, Cao L, Zhou M, Mohimani H. TransDiscovery: Discovering Biotransformation from Human Microbiota by Integrating Metagenomic and Metabolomic Data. Metabolites 2022;12:119. [DOI: 10.3390/metabo12020119] [Reference Citation Analysis]
21 Fletcher JR, Erwin S, Lanzas C, Theriot CM. Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. mSphere 2018;3:e00089-18. [PMID: 29600278 DOI: 10.1128/mSphere.00089-18] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 12.8] [Reference Citation Analysis]
22 Yang Z, Kulik HJ. Protein Dynamics and Substrate Protonation States Mediate the Catalytic Action of trans-4-Hydroxy-l-Proline Dehydratase. J Phys Chem B 2021;125:7774-84. [PMID: 34236200 DOI: 10.1021/acs.jpcb.1c05320] [Reference Citation Analysis]
23 Glasner ME. Finding enzymes in the gut metagenome. Science 2017;355:577-8. [PMID: 28183934 DOI: 10.1126/science.aam7446] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
24 Reed AD, Fletcher JR, Huang YY, Thanissery R, Rivera AJ, Parsons RJ, Stewart AK, Kountz DJ, Shen A, Balskus EP, Theriot CM. The Stickland Reaction Precursor trans-4-Hydroxy-l-Proline Differentially Impacts the Metabolism of Clostridioides difficile and Commensal Clostridia. mSphere 2022;:e0092621. [PMID: 35350846 DOI: 10.1128/msphere.00926-21] [Reference Citation Analysis]
25 Malik A, Kim SB. A comprehensive in silico analysis of sortase superfamily. J Microbiol 2019;57:431-43. [DOI: 10.1007/s12275-019-8545-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
26 Levin BJ, Balskus EP. Characterization of 1,2-Propanediol Dehydratases Reveals Distinct Mechanisms for B12-Dependent and Glycyl Radical Enzymes. Biochemistry 2018;57:3222-6. [PMID: 29526088 DOI: 10.1021/acs.biochem.8b00164] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
27 Rho M, Song WJ. Discovery of Novel Gene Functions by Chemistry-Guided Targeted Sequence Analysis. Biochemistry 2020;59:10-1. [PMID: 31633344 DOI: 10.1021/acs.biochem.9b00790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Levin BJ, Balskus EP. Discovering radical-dependent enzymes in the human gut microbiota. Current Opinion in Chemical Biology 2018;47:86-93. [DOI: 10.1016/j.cbpa.2018.09.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
29 Greene BL, Stubbe J, Nocera DG. Selenocysteine Substitution in a Class I Ribonucleotide Reductase. Biochemistry 2019;58:5074-84. [PMID: 31774661 DOI: 10.1021/acs.biochem.9b00973] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Kammel M, Sawers RG. The Autonomous Glycyl Radical Protein GrcA Restores Activity to Inactive Full-Length Pyruvate Formate-Lyase In Vivo. J Bacteriol 2022;:e0007022. [PMID: 35377165 DOI: 10.1128/jb.00070-22] [Reference Citation Analysis]
31 Jia B, Han X, Kim KH, Jeon CO. Discovery and mining of enzymes from the human gut microbiome. Trends Biotechnol 2021:S0167-7799(21)00138-4. [PMID: 34304905 DOI: 10.1016/j.tibtech.2021.06.008] [Reference Citation Analysis]
32 Du Y, Li X, Su C, Wang L, Jiang J, Hong B. The human gut microbiome - a new and exciting avenue in cardiovascular drug discovery. Expert Opin Drug Discov 2019;14:1037-52. [PMID: 31315489 DOI: 10.1080/17460441.2019.1638909] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Andorfer MC, Backman LRF, Li PL, Ulrich EC, Drennan CL. Rescuing activity of oxygen-damaged pyruvate formate-lyase by a spare part protein. J Biol Chem 2021;297:101423. [PMID: 34801558 DOI: 10.1016/j.jbc.2021.101423] [Reference Citation Analysis]
34 Peck SC, Denger K, Burrichter A, Irwin SM, Balskus EP, Schleheck D. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc Natl Acad Sci U S A 2019;116:3171-6. [PMID: 30718429 DOI: 10.1073/pnas.1815661116] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 17.7] [Reference Citation Analysis]
35 Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol 2017;18:851-60. [PMID: 28722709 DOI: 10.1038/ni.3780] [Cited by in Crossref: 263] [Cited by in F6Publishing: 243] [Article Influence: 52.6] [Reference Citation Analysis]
36 Copp JN, Anderson DW, Akiva E, Babbitt PC, Tokuriki N. Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. Methods Enzymol 2019;620:315-47. [PMID: 31072492 DOI: 10.1016/bs.mie.2019.03.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
37 Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, Zink EM, Casey CP, Taylor BC, Lane CJ, Bramer LM, Isern NG, Hoyt DW, Noecker C, Sweredoski MJ, Moradian A, Borenstein E, Jansson JK, Knight R, Metz TO, Lois C, Geschwind DH, Krajmalnik-Brown R, Mazmanian SK. Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell 2019;177:1600-1618.e17. [PMID: 31150625 DOI: 10.1016/j.cell.2019.05.004] [Cited by in Crossref: 258] [Cited by in F6Publishing: 231] [Article Influence: 129.0] [Reference Citation Analysis]
38 Fletcher JR, Pike CM, Parsons RJ, Rivera AJ, Foley MH, McLaren MR, Montgomery SA, Theriot CM. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Nat Commun 2021;12:462. [PMID: 33469019 DOI: 10.1038/s41467-020-20746-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
39 Fregulia P, Neves ALA, Dias RJP, Campos MM. A review of rumen parameters in bovines with divergent feed efficiencies: What do these parameters tell us about improving animal productivity and sustainability? Livestock Science 2021;254:104761. [DOI: 10.1016/j.livsci.2021.104761] [Reference Citation Analysis]
40 Stack TMM, Gerlt JA. Discovery of novel pathways for carbohydrate metabolism. Curr Opin Chem Biol 2021;61:63-70. [PMID: 33197748 DOI: 10.1016/j.cbpa.2020.09.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol 2018;16:171-81. [PMID: 29307889 DOI: 10.1038/nrmicro.2017.149] [Cited by in Crossref: 161] [Cited by in F6Publishing: 144] [Article Influence: 40.3] [Reference Citation Analysis]
42 Neves ALA, Yu J, Suzuki Y, Baez-Magana M, Arutyunova E, O'Hara E, McAllister T, Ominski KH, Lemieux MJ, Guan LL. Accelerated discovery of novel glycoside hydrolases using targeted functional profiling and selective pressure on the rumen microbiome. Microbiome 2021;9:229. [PMID: 34814938 DOI: 10.1186/s40168-021-01147-1] [Reference Citation Analysis]
43 Liu D, Wei Y, Liu X, Zhou Y, Jiang L, Yin J, Wang F, Hu Y, Nanjaraj Urs AN, Liu Y, Ang EL, Zhao S, Zhao H, Zhang Y. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat Commun 2018;9:4224. [PMID: 30310076 DOI: 10.1038/s41467-018-06627-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
44 Backman LR, Huang YY, Andorfer MC, Gold B, Raines RT, Balskus EP, Drennan CL. Molecular basis for catabolism of the abundant metabolite trans-4-hydroxy-L-proline by a microbial glycyl radical enzyme. Elife 2020;9:e51420. [PMID: 32180548 DOI: 10.7554/eLife.51420] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Zallot R, Oberg N, Gerlt JA. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry 2019;58:4169-82. [PMID: 31553576 DOI: 10.1021/acs.biochem.9b00735] [Cited by in Crossref: 109] [Cited by in F6Publishing: 81] [Article Influence: 36.3] [Reference Citation Analysis]
46 Lin S, Zhang H, Wang X, Lin T, Chen Z, Liu J, Wang J. Abundance of Lipopolysaccharide Heptosyltransferase I in Human Gut Microbiome and Its Association With Cardiovascular Disease and Liver Cirrhosis. Front Microbiol 2021;12:756976. [PMID: 34917047 DOI: 10.3389/fmicb.2021.756976] [Reference Citation Analysis]
47 Rajakovich LJ, Balskus EP. Metabolic functions of the human gut microbiota: the role of metalloenzymes. Nat Prod Rep 2019;36:593-625. [PMID: 30452039 DOI: 10.1039/c8np00074c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 10] [Article Influence: 9.7] [Reference Citation Analysis]
48 Yang Z, Mehmood R, Wang M, Qi HW, Steeves AH, Kulik HJ. Revealing quantum mechanical effects in enzyme catalysis with large-scale electronic structure simulation. React Chem Eng 2019;4:298-315. [PMID: 31572618 DOI: 10.1039/C8RE00213D] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
49 Yoshida Y, Moriya Y, Mino T, Sakamoto M. Regio‐ and Enantioselective Synthesis of α‐Amino‐δ‐Ketoesters Through Catalytic Umpolung Reaction of α‐Iminoesters with Enones. Adv Synth Catal 2018;360:4142-6. [DOI: 10.1002/adsc.201800791] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
50 Bodea S, Balskus EP. Purification and Characterization of the Choline Trimethylamine-Lyase (CutC)-Activating Protein CutD. Radical SAM Enzymes. Elsevier; 2018. pp. 73-94. [DOI: 10.1016/bs.mie.2018.04.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
51 Williamson A, Leiros HS. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res 2020;48:8225-42. [PMID: 32365176 DOI: 10.1093/nar/gkaa307] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Shanahan ER, McMaster JJ, Staudacher HM. Conducting research on diet-microbiome interactions: A review of current challenges, essential methodological principles, and recommendations for best practice in study design. J Hum Nutr Diet 2021;34:631-44. [PMID: 33639033 DOI: 10.1111/jhn.12868] [Reference Citation Analysis]
53 Turnbaugh PJ. Making Millennial Medicine More Meta. mSystems 2018;3:e00154-17. [PMID: 29556544 DOI: 10.1128/mSystems.00154-17] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Plichta DR, Somani J, Pichaud M, Wallace ZS, Fernandes AD, Perugino CA, Lähdesmäki H, Stone JH, Vlamakis H, Chung DC, Khanna D, Pillai S, Xavier RJ. Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis. Genome Med 2021;13:35. [PMID: 33648559 DOI: 10.1186/s13073-021-00853-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
55 Reed AD, Nethery MA, Stewart A, Barrangou R, Theriot CM. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Clostridia Carrying the Bile Acid-Inducible (bai) Operon. J Bacteriol 2020;202:e00039-20. [PMID: 32179626 DOI: 10.1128/JB.00039-20] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
56 Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, Hua G, N Nanjaraj Urs A, Liu D, Wang F, Guo C, Tong Y, Li M, Liu Y, Ang EL, Zhao H, Yuchi Z, Zhang Y. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun 2019;10:1609. [PMID: 30962433 DOI: 10.1038/s41467-019-09618-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
57 Jäger CM, Croft AK. Anaerobic Radical Enzymes for Biotechnology. ChemBioEng Reviews 2018;5:143-62. [DOI: 10.1002/cben.201800003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
58 Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet. 2017;18:690-699. [PMID: 28824167 DOI: 10.1038/nrg.2017.63] [Cited by in Crossref: 203] [Cited by in F6Publishing: 175] [Article Influence: 40.6] [Reference Citation Analysis]
59 Huang YY, Martínez-Del Campo A, Balskus EP. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes 2018;9:437-51. [PMID: 29405826 DOI: 10.1080/19490976.2018.1435244] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
60 Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017;356:eaag2770. [PMID: 28642381 DOI: 10.1126/science.aag2770] [Cited by in Crossref: 325] [Cited by in F6Publishing: 302] [Article Influence: 81.3] [Reference Citation Analysis]
61 Teng J, Chen M, Xie Y, Wang D, Jiang J, Li G, Wang H, Fan Y, Wei Z, Su C. Hierarchically Porous Single Nanocrystals of Bimetallic Metal–Organic Framework for Nanoreactors with Enhanced Conversion. Chem Mater 2018;30:6458-68. [DOI: 10.1021/acs.chemmater.8b02884] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
62 Zallot R, Oberg NO, Gerlt JA. 'Democratized' genomic enzymology web tools for functional assignment. Curr Opin Chem Biol 2018;47:77-85. [PMID: 30268904 DOI: 10.1016/j.cbpa.2018.09.009] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 17.3] [Reference Citation Analysis]
63 Han M, Yang P, Zhong C, Ning K. The Human Gut Virome in Hypertension. Front Microbiol 2018;9:3150. [PMID: 30619215 DOI: 10.3389/fmicb.2018.03150] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
64 Ravcheev DA, Moussu L, Smajic S, Thiele I. Comparative Genomic Analysis Reveals Novel Microcompartment-Associated Metabolic Pathways in the Human Gut Microbiome. Front Genet 2019;10:636. [PMID: 31333721 DOI: 10.3389/fgene.2019.00636] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
65 Kenny DJ, Balskus EP. Engineering chemical interactions in microbial communities. Chem Soc Rev 2018;47:1705-29. [PMID: 29210396 DOI: 10.1039/c7cs00664k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
66 Viborg AH, Terrapon N, Lombard V, Michel G, Czjzek M, Henrissat B, Brumer H. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J Biol Chem 2019;294:15973-86. [PMID: 31501245 DOI: 10.1074/jbc.RA119.010619] [Cited by in Crossref: 50] [Cited by in F6Publishing: 26] [Article Influence: 16.7] [Reference Citation Analysis]
67 Reed AD, Theriot CM. Contribution of Inhibitory Metabolites and Competition for Nutrients to Colonization Resistance against Clostridioides difficile by Commensal Clostridium. Microorganisms 2021;9:371. [PMID: 33673352 DOI: 10.3390/microorganisms9020371] [Reference Citation Analysis]
68 Gumkowski JD, Martinie RJ, Corrigan PS, Pan J, Bauerle MR, Almarei M, Booker SJ, Silakov A, Krebs C, Boal AK. Analysis of RNA Methylation by Phylogenetically Diverse Cfr Radical S-Adenosylmethionine Enzymes Reveals an Iron-Binding Accessory Domain in a Clostridial Enzyme. Biochemistry 2019;58:3169-84. [PMID: 31246421 DOI: 10.1021/acs.biochem.9b00197] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
69 Zallot R, Oberg N, Gerlt JA. Discovery of new enzymatic functions and metabolic pathways using genomic enzymology web tools. Curr Opin Biotechnol 2021;69:77-90. [PMID: 33418450 DOI: 10.1016/j.copbio.2020.12.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
70 Pulliero A, Traversi D, Franchitti E, Barchitta M, Izzotti A, Agodi A. The Interaction among Microbiota, Epigenetic Regulation, and Air Pollutants in Disease Prevention. J Pers Med 2021;12:14. [PMID: 35055330 DOI: 10.3390/jpm12010014] [Reference Citation Analysis]
71 Deng WH, Lu Y, Liao RZ. Revealing the Mechanism of Isethionate Sulfite-Lyase by QM/MM Calculations. J Chem Inf Model 2021;61:5871-82. [PMID: 34806370 DOI: 10.1021/acs.jcim.1c00978] [Reference Citation Analysis]
72 Kountz DJ, Balskus EP. Leveraging Microbial Genomes and Genomic Context for Chemical Discovery. Acc Chem Res 2021;54:2788-97. [PMID: 34087065 DOI: 10.1021/acs.accounts.1c00100] [Reference Citation Analysis]
73 Jia B, Park D, Hahn Y, Jeon CO. Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes 2020;11:1300-13. [PMID: 32329665 DOI: 10.1080/19490976.2020.1748261] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]