BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev 2017;69:497-564. [PMID: 28978633 DOI: 10.1124/pr.117.014050] [Cited by in Crossref: 218] [Cited by in F6Publishing: 227] [Article Influence: 43.6] [Reference Citation Analysis]
Number Citing Articles
1 Rong F, Wang T, Zhou Q, Peng H, Yang J, Fan Q, Li P. Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications. Bioactive Materials 2023;19:198-216. [DOI: 10.1016/j.bioactmat.2022.03.043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
2 Zhao Z, Guo W, Xu C, Wang Q, Mao C, Wan M. Physiological functions and donor design of hydrogen sulfide and its application in central nervous system diseases. Chemical Engineering Journal 2023;452:139089. [DOI: 10.1016/j.cej.2022.139089] [Reference Citation Analysis]
3 Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022;44:1289-308. [PMID: 35930288 DOI: 10.1080/0886022X.2022.2107936] [Reference Citation Analysis]
4 Chen H, Guan X, Liu Q, Yang L, Guo J, Gao F, Qi Y, Wu X, Zhang F, Tian X. Co-assembled Nanocarriers of De Novo Thiol-Activated Hydrogen Sulfide Donors with an RGDFF Pentapeptide for Targeted Therapy of Non-Small-Cell Lung Cancer. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c14570] [Reference Citation Analysis]
5 Zhao X, Ding M, Ning L, Yuan F, Li J, Guo Y, Mu Y, Zhang J. Biothiol-triggered H2S release from a near-infrared fluorescent H2S donor promotes cutaneous wound healing. Acta Materia Medica 2022;1. [DOI: 10.15212/amm-2022-0032] [Reference Citation Analysis]
6 Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants 2022;11:2162. [DOI: 10.3390/antiox11112162] [Reference Citation Analysis]
7 Zhang Q, Gao Y, Zhang Y, Jing M, Wang D, Wang Y, Khattak S, Qi H, Cai C, Zhang J, Ngowi EE, Khan NH, Li T, Ji A, Jiang Q, Ji X, Li Y, Wu D. Cystathionine γ-lyase mediates cell proliferation, migration, and invasion of nasopharyngeal carcinoma. Oncogene 2022. [DOI: 10.1038/s41388-022-02512-6] [Reference Citation Analysis]
8 Xu Y, Wang A, Li Y. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022;12:984525. [DOI: 10.3389/fonc.2022.984525] [Reference Citation Analysis]
9 Li ZT, Wang JW, Hu XH, Zhu L, Jiang Y, Gao MJ, Zhan XB. The effects of high-fat foods on gut microbiota and small molecule intestinal gases: release kinetics and distribution in vitro colon model. Heliyon 2022;8:e10911. [PMID: 36247129 DOI: 10.1016/j.heliyon.2022.e10911] [Reference Citation Analysis]
10 Ascenção K, Lheimeur B, Szabo C. Regulation of CyR61 expression and release by 3-mercaptopyruvate sulfurtransferase in colon cancer cells. Redox Biol 2022;56:102466. [PMID: 36113340 DOI: 10.1016/j.redox.2022.102466] [Reference Citation Analysis]
11 Szabo C. Novel Regulatory Roles of Hydrogen Sulfide in Health and Disease. Biomolecules 2022;12:1372. [DOI: 10.3390/biom12101372] [Reference Citation Analysis]
12 Bonardi A, Micheli L, Di Cesare Mannelli L, Ghelardini C, Gratteri P, Nocentini A, Supuran CT. Development of Hydrogen Sulfide-Releasing Carbonic Anhydrases IX- and XII-Selective Inhibitors with Enhanced Antihyperalgesic Action in a Rat Model of Arthritis. J Med Chem 2022. [PMID: 36121705 DOI: 10.1021/acs.jmedchem.2c00982] [Reference Citation Analysis]
13 Kong L, Lu W, Cao X, Wei Y, Sun J, Wang Y. The design strategies and biological applications of probes for the gaseous signaling molecule hydrogen sulfide. J Mater Chem B 2022. [PMID: 36107014 DOI: 10.1039/d2tb01210c] [Reference Citation Analysis]
14 Panagaki T, Pecze L, Randi EB, Nieminen AI, Szabo C. Role of the cystathionine β-synthase / H2S pathway in the development of cellular metabolic dysfunction and pseudohypoxia in down syndrome. Redox Biology 2022;55:102416. [DOI: 10.1016/j.redox.2022.102416] [Reference Citation Analysis]
15 Tucci P, Bove M, Sikora V, Dimonte S, Morgese MG, Schiavone S, Di Cesare Mannelli L, Ghelardini C, Trabace L. Glucoraphanin Triggers Rapid Antidepressant Responses in a Rat Model of Beta Amyloid-Induced Depressive-like Behaviour. Pharmaceuticals 2022;15:1054. [DOI: 10.3390/ph15091054] [Reference Citation Analysis]
16 Bhattacherjee D, Raina K, Mandal TK, Thummer RP, Bhabak KP. Targeting Wnt/β-catenin signaling pathway in triple-negative breast cancer by benzylic organotrisulfides: Contribution of the released hydrogen sulfide towards potent anti-cancer activity. Free Radic Biol Med 2022:S0891-5849(22)00557-3. [PMID: 36038037 DOI: 10.1016/j.freeradbiomed.2022.08.029] [Reference Citation Analysis]
17 Li G, Lei H, Yang Y, Zhong X, Gong F, Gong Y, Zhou Y, Zhang Y, Shi H, Xiao Z, Dong Z, Cheng L. Titanium Sulfide Nanosheets Serve as Cascade Bioreactors for H2 S-Mediated Programmed Gas-Sonodynamic Cancer Therapy. Adv Sci (Weinh) 2022;:e2201069. [PMID: 36026580 DOI: 10.1002/advs.202201069] [Reference Citation Analysis]
18 Oza PP, Kashfi K. Utility of NO and H2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022;128:72-102. [PMID: 36029975 DOI: 10.1016/j.niox.2022.08.003] [Reference Citation Analysis]
19 Zuhra K, Petrosino M, Gupta B, Panagaki T, Cecconi M, Myrianthopoulos V, Schneiter R, Mikros E, Majtan T, Szabo C. Epigallocatechin gallate is a potent inhibitor of cystathionine beta-synthase: Structure-activity relationship and mechanism of action. Nitric Oxide 2022;128:12-24. [PMID: 35973674 DOI: 10.1016/j.niox.2022.07.007] [Reference Citation Analysis]
20 Yang Y, Deng N, Tian K, Liu L, Wang Z, Wei D, Liu H, Jiang Z. Development of hydrogen sulfide donors for anti-atherosclerosis therapeutics research: Challenges and future priorities. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.909178] [Reference Citation Analysis]
21 Garcia AC, Zakharov LN, Pluth MD. Supramolecular Activation of S8 by Cucurbiturils in Water and Mechanism of Reduction to H2S by Thiols: Insights into Biological Sulfane Sulfur Trafficking. J Am Chem Soc 2022. [PMID: 35929817 DOI: 10.1021/jacs.2c06332] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 2022. [PMID: 35931887 DOI: 10.1038/s41569-022-00741-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Medina-terol GJ, Huerta de la Cruz S, Beltran-ornelas JH, Sánchez-lópez A, Centurión D. Pharmacological evidence that potassium channels mediate hydrogen sulfide-induced inhibition of the vasopressor sympathetic outflow in pithed rats. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.175160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Petrosino M, Zuhra K, Kopec J, Hutchin A, Szabo C, Majtan T. H2S biogenesis by cystathionine beta-synthase: mechanism of inhibition by aminooxyacetic acid and unexpected role of serine. Cell Mol Life Sci 2022;79:438. [PMID: 35864237 DOI: 10.1007/s00018-022-04479-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Haas de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants 2022;11:1410. [DOI: 10.3390/antiox11071410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zheng Y, Zhao Y, Bai M, Gu H, Li X. Metal-organic frameworks as a therapeutic strategy for lung diseases. J Mater Chem B 2022. [PMID: 35848605 DOI: 10.1039/d2tb00690a] [Reference Citation Analysis]
27 Denoix N, Mccook O, Scheuerle A, Kapapa T, Hoffmann A, Gündel H, Waller C, Szabo C, Radermacher P, Merz T. Brain Histology and Immunohistochemistry After Resuscitation From Hemorrhagic Shock in Swine With Pre-Existing Atherosclerosis and Sodium Thiosulfate (Na2S2O3) Treatment. Front Med 2022;9:925433. [DOI: 10.3389/fmed.2022.925433] [Reference Citation Analysis]
28 Gao Y, Zhang H, Wang Y, Han T, Jin J, Li J, Tang Y, Liu C. L-Cysteine Alleviates Myenteric Neuron Injury Induced by Intestinal Ischemia/Reperfusion via Inhibitin the Macrophage NLRP3-IL-1β Pathway. Front Pharmacol 2022;13:899169. [PMID: 35754513 DOI: 10.3389/fphar.2022.899169] [Reference Citation Analysis]
29 Munteanu C, Rotariu M, Turnea M, Dogaru G, Popescu C, Spînu A, Andone I, Postoiu R, Ionescu EV, Oprea C, Albadi I, Onose G. Recent Advances in Molecular Research on Hydrogen Sulfide (H2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci 2022;23:6720. [PMID: 35743160 DOI: 10.3390/ijms23126720] [Reference Citation Analysis]
30 Messerer DAC, Gaessler H, Hoffmann A, Gröger M, Benz K, Huhn A, Hezel F, Calzia E, Radermacher P, Datzmann T. The H2S Donor Sodium Thiosulfate (Na2S2O3) Does Not Improve Inflammation and Organ Damage After Hemorrhagic Shock in Cardiovascular Healthy Swine. Front Immunol 2022;13:901005. [DOI: 10.3389/fimmu.2022.901005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Casili G, Randi E, Panagaki T, Zuhra K, Petrosino M, Szabo C. Inhibition of the 3-mercaptopyruvate sulfurtransferase-hydrogen sulfide system promotes cellular lipid accumulation. Geroscience 2022. [PMID: 35680713 DOI: 10.1007/s11357-022-00600-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022. [PMID: 35657029 DOI: 10.1002/med.21913] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
33 Chen R, Ye H, Fang T, Liu S, Yi L, Cheng L. An NBD tertiary amine is a fluorescent quencher and/or a weak green-light fluorophore in H2S-specific probes. Org Biomol Chem 2022;20:4128-34. [PMID: 35510487 DOI: 10.1039/d2ob00442a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Yu B, Kang T, Xu Y, Liu Y, Ma Y, Ke B. Prodrugs of Persulfide and Sulfide: Is There a Pharmacological Difference between the Two in the Context of Rapid Exchanges among Various Sulfur Species In Vivo? Angew Chem Int Ed Engl 2022;61:e202201668. [PMID: 35218121 DOI: 10.1002/anie.202201668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102331] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
36 Liu J, Wang X, Cheng Y, Yu Y, Zhao M, Huang J, Yu P, Fu Q, Song Y, Liu Y. Application of a fluorescent H2S probe based on excited-state intramolecular proton transfer for detecting latent mechanism of H2S-induced MCF-7 apoptosis. Future Med Chem 2022. [PMID: 35383482 DOI: 10.4155/fmc-2021-0309] [Reference Citation Analysis]
37 Zhang J, Li S, Yang Z, Liu C, Chen X, Zhang Y, Zhang F, Shi H, Chen X, Tao L, Shan H, Zhang M. Implantation of injectable SF hydrogel with sustained hydrogen sulfide delivery reduces neuronal pyroptosis and enhances functional recovery after severe intracerebral hemorrhage. Biomaterials Advances 2022;135:212743. [DOI: 10.1016/j.bioadv.2022.212743] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zhang Y, Fang J, Ye S, Zhao Y, Wang A, Mao Q, Cui C, Feng Y, Li J, Li S, Zhang M, Shi H. A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat Commun 2022;13:1685. [PMID: 35354794 DOI: 10.1038/s41467-022-29284-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
39 Szabo C. Hydrogen Sulfide, an Emerging Regulator of Acid-Sensing Ion Channels. Function (Oxf) 2021;2:zqab014. [PMID: 35330814 DOI: 10.1093/function/zqab014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Peng Z, Kellenberger S. Hydrogen Sulfide Upregulates Acid-sensing Ion Channels via the MAPK-Erk1/2 Signaling Pathway. Function (Oxf) 2021;2:zqab007. [PMID: 35330812 DOI: 10.1093/function/zqab007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Sun C, Yu W, lv B, Zhang Y, Du S, Zhang H, Du J, Jin H, Sun Y, Huang Y. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation. PLoS ONE 2022;17:e0264891. [DOI: 10.1371/journal.pone.0264891] [Reference Citation Analysis]
42 Yu B, Kang T, Xu Y, Liu Y, Ma Y, Ke B. Prodrugs of Persulfide and Sulfide: Is There a Pharmacological Difference between the Two in the Context of Rapid Exchanges among Various Sulfur Species In Vivo ?. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202201668] [Reference Citation Analysis]
43 Ma Y, Wang S, Wu Y, Liu B, Li L, Wang W, Weng H, Ding H. Hepatic stellate cell mediates transcription of TNFSF14 in hepatocellular carcinoma cells via H2S/CSE-JNK/JunB signaling pathway. Cell Death Dis 2022;13:238. [DOI: 10.1038/s41419-022-04678-z] [Reference Citation Analysis]
44 Kang X, Huang H, Jiang C, Cheng L, Sang Y, Cai X, Dong Y, Sun L, Wen X, Xi Z, Yi L. Cysteine-Activated Small-Molecule H2Se Donors Inspired by Synthetic H2S Donors. J Am Chem Soc 2022. [PMID: 35192764 DOI: 10.1021/jacs.1c12006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Vellecco V, Panza E, Bibli SI, Casillo GM, Raucci F, Manzo OL, Smimmo M, Villani R, Cavezza MR, Fleming I, d'Emmanuele di Villa Bianca R, Maione F, Cirino G, Bucci M. Phosphodiesterases S-sulfhydration contributes to human skeletal muscle function. Pharmacol Res 2022;:106108. [PMID: 35121122 DOI: 10.1016/j.phrs.2022.106108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022;11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
47 Zhou Y, Li X, Xue WL, Jin S, Li MY, Zhang CC, Yu B, Zhu L, Liang K, Chen Y, Tao BB, Zhu Y, Wang MJ, Zhu YC. YB-1 recruits Drosha to promote splicing of pri-miR-192 to mediate the proangiogenic effects of H2S. Antioxid Redox Signal 2022. [PMID: 35044231 DOI: 10.1089/ars.2021.0105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Panagaki T, Lozano-Montes L, Janickova L, Zuhra K, Szabo MP, Majtan T, Rainer G, Maréchal D, Herault Y, Szabo C. Overproduction of hydrogen sulfide, generated by cystathionine β-synthase, disrupts brain wave patterns and contributes to neurobehavioral dysfunction in a rat model of down syndrome. Redox Biol 2022;:102233. [PMID: 35042677 DOI: 10.1016/j.redox.2022.102233] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
49 Ye H, Sun L, Pang Z, Ji X, Jiao Y, Tu X, Huang H, Tang X, Xi Z, Yi L. Cell-Trappable BODIPY-NBD Dyad for Imaging of Basal and Stress-Induced H2S in Live Biosystems. Anal Chem 2022. [PMID: 35019257 DOI: 10.1021/acs.analchem.1c04324] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
50 Sukhwal P, Pathan S, Chundawat NS, Bhargav A, Vithal RA, Singh GP. Synthesis and Characterization of Cystathionine-y-lyase (CSE) Inhibitors 1-(1H-Tetrazol-5-yl)but-3-yn-1-amine. Asian J Org Med Chem 2022;7:159-162. [DOI: 10.14233/ajomc.2022.ajomc-p379] [Reference Citation Analysis]
51 Zhang Y, Chen Y, Shi X, Bai Y, He W, Guo Z. A sensitive and ratiometric fluorescent probe for imaging cytosolic H2S generation. New J Chem 2022;46:21464-21469. [DOI: 10.1039/d2nj04533h] [Reference Citation Analysis]
52 Ganguly BB. Triplicated HSA21 genes and mtDNA on mitochondrial dysfunction. Genetics and Neurobiology of Down Syndrome 2022. [DOI: 10.1016/b978-0-323-90456-8.00012-0] [Reference Citation Analysis]
53 Cuevasanta E, Benchoam D, Möller MN, Carballal S, Banerjee R, Alvarez B. Hydrogen sulfide and persulfides. Redox Chemistry and Biology of Thiols 2022. [DOI: 10.1016/b978-0-323-90219-9.00011-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Peleli M, Zampas P, Papapetropoulos A. Hydrogen Sulfide and the Kidney: Physiological Roles, Contribution to Pathophysiology, and Therapeutic Potential. Antioxidants & Redox Signaling. [DOI: 10.1089/ars.2021.0014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. The Reactive Species Interactome in the Brain. Antioxid Redox Signal 2021;35:1176-206. [PMID: 34498917 DOI: 10.1089/ars.2020.8238] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
56 Mccook O, Denoix N, Merz T. The Gasotransmitter Hydrogen Sulfide and the Neuropeptide Oxytocin as Potential Mediators of Beneficial Cardiovascular Effects through Meditation after Traumatic Events. Trauma Care 2021;1:183-94. [DOI: 10.3390/traumacare1030016] [Reference Citation Analysis]
57 Li TT, Xin DQ, Ke HF, Chu XL, Zhao YJ, Yue SW, Liu DX, Wang Z. L-Cysteine attenuates osteopontin-mediated neuroinflammation following hypoxia-ischemia insult in neonatal mice by inducing S-sulfhydration of Stat3. Acta Pharmacol Sin 2021. [PMID: 34737419 DOI: 10.1038/s41401-021-00794-2] [Reference Citation Analysis]
58 Mys L, Goshovska Y, Strutynska N, Fedichkina R, Korkach Y, Strutynskyi R, Sagach V. Pyridoxal-5-phosphate induced cardioprotection in aging associated with up-expression of cystathionine-γ-lyase, 3-mercaptopyruvate sulfurtransferase, and ATP-sensitive potassium channels. Eur J Clin Invest 2021;:e13683. [PMID: 34587304 DOI: 10.1111/eci.13683] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Olah E, Rumbus Z, Kormos V, Tekus V, Pakai E, Wilson HV, Fekete K, Solymar M, Kelava L, Keringer P, Gaszner B, Whiteman M, Keeble J, Pinter E, Garami A. The Hypothermic Effect of Hydrogen Sulfide Is Mediated by the Transient Receptor Potential Ankyrin-1 Channel in Mice. Pharmaceuticals (Basel) 2021;14:992. [PMID: 34681216 DOI: 10.3390/ph14100992] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Truitt C, Hoff WD, Deole R. Health Functionalities of Betaine in Patients With Homocystinuria. Front Nutr 2021;8:690359. [PMID: 34568401 DOI: 10.3389/fnut.2021.690359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
61 Shackelford RE, Mohammad IZ, Meram AT, Kim D, Alotaibi F, Patel S, Ghali GE, Kevil CG. Molecular Functions of Hydrogen Sulfide in Cancer. Pathophysiology 2021;28:437-56. [DOI: 10.3390/pathophysiology28030028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
62 Quan FS, Lee GJ. Analytical Methods for Detection of Gasotransmitter Hydrogen Sulfide Released from Live Cells. Biomed Res Int 2021;2021:5473965. [PMID: 34497847 DOI: 10.1155/2021/5473965] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
63 Nasi S, Ehirchiou D, Bertrand J, Castelblanco M, Mitchell J, Ishii I, So A, Busso N. The Gasotransmitter Hydrogen Sulfide (H2S) Prevents Pathologic Calcification (PC) in Cartilage. Antioxidants (Basel) 2021;10:1433. [PMID: 34573065 DOI: 10.3390/antiox10091433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Zhang L, Jiang X, Liu N, Li M, Kang J, Chen L, Tang J, Dong S, Lu F, Zhang W. Exogenous H2 S prevents the nuclear translocation of PDC-E1 and inhibits vascular smooth muscle cell proliferation in the diabetic state. J Cell Mol Med 2021;25:8201-14. [PMID: 34418283 DOI: 10.1111/jcmm.16688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
65 McCook O, Denoix N, Radermacher P, Waller C, Merz T. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med 2021;10:3484. [PMID: 34441780 DOI: 10.3390/jcm10163484] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
66 Bibli SI, Fleming I. Oxidative post translational modifications: a focus on cysteine S-sulfhydration and the regulation of endothelial fitness. Antioxid Redox Signal 2021. [PMID: 34346251 DOI: 10.1089/ars.2021.0162] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
67 Wang Y, Ni X, Chadha R, McCartney C, Lam Y, Brummett B, Ramush G, Xian M. Methods for Suppressing Hydrogen Sulfide in Biological Systems. Antioxid Redox Signal 2021. [PMID: 34162216 DOI: 10.1089/ars.2021.0088] [Reference Citation Analysis]
68 Hellmich MR, Chao C, Módis K, Ding Y, Zatarain JR, Thanki K, Maskey M, Druzhyna N, Untereiner AA, Ahmad A, Xue Y, Chen H, Russell WK, Wang J, Zhou J, Szabo C. Efficacy of Novel Aminooxyacetic Acid Prodrugs in Colon Cancer Models: Towards Clinical Translation of the Cystathionine β-Synthase Inhibition Concept. Biomolecules 2021;11:1073. [PMID: 34439739 DOI: 10.3390/biom11081073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
69 Gombos Z, Koltai E, Torma F, Bakonyi P, Kolonics A, Aczel D, Ditroi T, Nagy P, Kawamura T, Radak Z. Hypertrophy of Rat Skeletal Muscle Is Associated with Increased SIRT1/Akt/mTOR/S6 and Suppressed Sestrin2/SIRT3/FOXO1 Levels. Int J Mol Sci 2021;22:7588. [PMID: 34299206 DOI: 10.3390/ijms22147588] [Reference Citation Analysis]
70 Bai X, Batallé G, Pol O. The Anxiolytic and Antidepressant Effects of Diallyl Disulfide and GYY4137 in Animals with Chronic Neuropathic Pain. Antioxidants (Basel) 2021;10:1074. [PMID: 34356307 DOI: 10.3390/antiox10071074] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
71 Trummer M, Galardon E, Fischer A, Toegel S, Mayer B, Steiner G, Kloesch B. Characterization of the Inducible and Slow-Releasing Hydrogen Sulfide and Persulfide Donor P*: Insights into Hydrogen Sulfide Signaling. Antioxidants (Basel) 2021;10:1049. [PMID: 34209813 DOI: 10.3390/antiox10071049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
72 Wang RH, Chu YH, Lin KT. The Hidden Role of Hydrogen Sulfide Metabolism in Cancer. Int J Mol Sci 2021;22:6562. [PMID: 34207284 DOI: 10.3390/ijms22126562] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
73 Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021;35:341-56. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
74 Schulz J, Kramer S, Kanatli Y, Kuebart A, Bauer I, Picker O, Vollmer C, Truse R, Herminghaus A. Sodium Thiosulfate Improves Intestinal and Hepatic Microcirculation Without Affecting Mitochondrial Function in Experimental Sepsis. Front Immunol 2021;12:671935. [PMID: 34163476 DOI: 10.3389/fimmu.2021.671935] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021;67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
76 Khattak S, Zhang QQ, Sarfraz M, Muhammad P, Ngowi EE, Khan NH, Rauf S, Wang YZ, Qi HW, Wang D, Afzal A, Ji XY, Wu DD. The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021;11:682. [PMID: 34062820 DOI: 10.3390/biom11050682] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
77 Cheng W, Xue X, Gan L, Jin P, Zhang B, Guo M, Si J, Du H, Chen H, Fang J. Individual and successive detection of H2S and HClO in living cells and zebrafish by a dual-channel fluorescent probe with longer emission wavelength. Anal Chim Acta 2021;1156:338362. [PMID: 33781461 DOI: 10.1016/j.aca.2021.338362] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
78 Martínez-Ahumada E, Díaz-Ramírez ML, Velásquez-Hernández MJ, Jancik V, Ibarra IA. Capture of toxic gases in MOFs: SO2, H2S, NH3 and NO x. Chem Sci 2021;12:6772-99. [PMID: 34123312 DOI: 10.1039/d1sc01609a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 31.0] [Reference Citation Analysis]
79 Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med 2021;169:258-70. [PMID: 33892115 DOI: 10.1016/j.freeradbiomed.2021.04.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
80 Bantzi M, Augsburger F, Loup J, Berset Y, Vasilakaki S, Myrianthopoulos V, Mikros E, Szabo C, Bochet CG. Novel Aryl-Substituted Pyrimidones as Inhibitors of 3-Mercaptopyruvate Sulfurtransferase with Antiproliferative Efficacy in Colon Cancer. J Med Chem 2021;64:6221-40. [PMID: 33856792 DOI: 10.1021/acs.jmedchem.1c00260] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
81 Cano-Galiano A, Oudin A, Fack F, Allega MF, Sumpton D, Martinez-Garcia E, Dittmar G, Hau AC, De Falco A, Herold-Mende C, Bjerkvig R, Meiser J, Tardito S, Niclou SP. Cystathionine-γ-lyase drives antioxidant defense in cysteine-restricted IDH1-mutant astrocytomas. Neurooncol Adv 2021;3:vdab057. [PMID: 34250481 DOI: 10.1093/noajnl/vdab057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
82 Smith WH, Birnbaum J, Wolden CA. Production and purification of anhydrous sodium sulfide. Journal of Sulfur Chemistry 2021;42:426-42. [DOI: 10.1080/17415993.2021.1907390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
83 Islam RK, Donnelly E, Hossain F, Gardner JD, Islam KN. H2S Prodrug, SG-1002, Protects Against Myocardial Oxidative Damage and Hypertrophy via Induction of Cystathionine β-Synthase and Antioxidant Proteins.. [DOI: 10.1101/2021.03.28.437435] [Reference Citation Analysis]
84 Renieris G, Droggiti DE, Katrini K, Koufargyris P, Gkavogianni T, Karakike E, Antonakos N, Damoraki G, Karageorgos A, Sabracos L, Katsouda A, Jentho E, Weis S, Wang R, Bauer M, Szabo C, Platoni K, Kouloulias V, Papapetropoulos A, Giamarellos-Bourboulis EJ. Host cystathionine-γ lyase derived hydrogen sulfide protects against Pseudomonas aeruginosa sepsis. PLoS Pathog 2021;17:e1009473. [PMID: 33770141 DOI: 10.1371/journal.ppat.1009473] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
85 Abramavicius S, Petersen AG, Renaltan NS, Prat-Duran J, Torregrossa R, Stankevicius E, Whiteman M, Simonsen U. GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and KV7 Channel Blockers in Rat Small Mesenteric Arteries. Front Pharmacol 2021;12:613989. [PMID: 33841145 DOI: 10.3389/fphar.2021.613989] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
86 LaPenna KB, Polhemus DJ, Doiron JE, Hidalgo HA, Li Z, Lefer DJ. Hydrogen Sulfide as a Potential Therapy for Heart Failure-Past, Present, and Future. Antioxidants (Basel) 2021;10:485. [PMID: 33808673 DOI: 10.3390/antiox10030485] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
87 Ciccone V, Genah S, Morbidelli L. Endothelium as a Source and Target of H2S to Improve Its Trophism and Function. Antioxidants (Basel) 2021;10:486. [PMID: 33808872 DOI: 10.3390/antiox10030486] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
88 Randi EB, Casili G, Jacquemai S, Szabo C. Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis. Antioxidants (Basel) 2021;10:361. [PMID: 33673622 DOI: 10.3390/antiox10030361] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
89 Li T, Li J, Li T, Zhao Y, Ke H, Wang S, Liu D, Wang Z. L-Cysteine Provides Neuroprotection of Hypoxia-Ischemia Injury in Neonatal Mice via a PI3K/Akt-Dependent Mechanism. Drug Des Devel Ther 2021;15:517-29. [PMID: 33603342 DOI: 10.2147/DDDT.S293025] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
90 Paganelli F, Mottola G, Fromonot J, Marlinge M, Deharo P, Guieu R, Ruf J. Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int J Mol Sci 2021;22:1690. [PMID: 33567540 DOI: 10.3390/ijms22041690] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
91 Li T, Chu X, Xin D, Ke H, Wang S, Liu D, Chen W, Wang Z. H2S prevents peripheral immune cell invasion, increasing [Ca2+]i and excessive phagocytosis following hypoxia-ischemia injury in neonatal mice. Biomed Pharmacother 2021;135:111207. [PMID: 33460958 DOI: 10.1016/j.biopha.2020.111207] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
92 Gyöngyösi A, Verner V, Bereczki I, Kiss-Szikszai A, Zilinyi R, Tósaki Á, Bak I, Borbás A, Herczegh P, Lekli I. Basic Pharmacological Characterization of EV-34, a New H2S-Releasing Ibuprofen Derivative. Molecules 2021;26:599. [PMID: 33498831 DOI: 10.3390/molecules26030599] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021;10:220. [PMID: 33499368 DOI: 10.3390/cells10020220] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 30.0] [Reference Citation Analysis]
94 Ascenção K, Dilek N, Augsburger F, Panagaki T, Zuhra K, Szabo C. Pharmacological induction of mesenchymal-epithelial transition via inhibition of H2S biosynthesis and consequent suppression of ACLY activity in colon cancer cells. Pharmacol Res 2021;165:105393. [PMID: 33484818 DOI: 10.1016/j.phrs.2020.105393] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
95 Zou S, Shimizu T, Yamamoto M, Shimizu S, Higashi Y, Karashima T, Saito M. Age-related differences in responses to hydrogen sulfide in the bladder of spontaneously hypertensive rats. Int J Urol 2021;28:459-65. [PMID: 33403726 DOI: 10.1111/iju.14478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Nin DS, Idres SB, Deng L. Cysteine Metabolism in Cancer Progression and Therapy Resistance. Oxidative Stress 2021. [DOI: 10.1007/978-981-16-0522-2_7] [Reference Citation Analysis]
97 Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021;50:7436-95. [PMID: 34075930 DOI: 10.1039/d0cs01096k] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 47.0] [Reference Citation Analysis]
98 Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2021;55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
99 Merz T, Denoix N, Wepler M, Gäßler H, Messerer DAC, Hartmann C, Datzmann T, Radermacher P, McCook O. H2S in acute lung injury: a therapeutic dead end(?). Intensive Care Med Exp 2020;8:33. [PMID: 33336306 DOI: 10.1186/s40635-020-00324-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
100 Panagaki T, Randi EB, Szabo C. Role of Hydrogen Sulfide and 3-Mercaptopyruvate Sulfurtransferase in the Regulation of the Endoplasmic Reticulum Stress Response in Hepatocytes. Biomolecules 2020;10:E1692. [PMID: 33352938 DOI: 10.3390/biom10121692] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
101 Xu M, Zhang L, Song S, Pan L, Muhammad Arslan I, Chen Y, Yang S. Hydrogen sulfide: Recent progress and perspectives for the treatment of dermatological diseases. J Adv Res 2021;27:11-7. [PMID: 33318862 DOI: 10.1016/j.jare.2020.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
102 Lignelli E, Palumbo F, Bayindir SG, Nagahara N, Vadász I, Herold S, Seeger W, Morty RE. The H2S-generating enzyme 3-mercaptopyruvate sulfurtransferase regulates pulmonary vascular smooth muscle cell migration and proliferation but does not impact normal or aberrant lung development. Nitric Oxide 2021;107:31-45. [PMID: 33338600 DOI: 10.1016/j.niox.2020.12.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation 2021;143:935-48. [PMID: 33307764 DOI: 10.1161/CIRCULATIONAHA.120.051877] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
104 Barrera A, Morales-Loredo H, Garcia JM, Fregoso G, Pace CE, Mendiola PJ, Naik JS, Gonzalez Bosc LV, Kanagy NL. Simulated sleep apnea alters hydrogen sulfide regulation of blood flow and pressure. Am J Physiol Heart Circ Physiol 2021;320:H511-9. [PMID: 33275519 DOI: 10.1152/ajpheart.00672.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
105 Croppi G, Zhou Y, Yang R, Bian Y, Zhao M, Hu Y, Ruan BH, Yu J, Wu F. Discovery of an Inhibitor for Bacterial 3-Mercaptopyruvate Sulfurtransferase that Synergistically Controls Bacterial Survival. Cell Chemical Biology 2020;27:1483-1499.e9. [DOI: 10.1016/j.chembiol.2020.10.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
106 Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, Peng C. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett 2021;503:240-8. [PMID: 33246091 DOI: 10.1016/j.canlet.2020.11.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 11.5] [Reference Citation Analysis]
107 Zuhra K, Tomé CS, Forte E, Vicente JB, Giuffrè A. The multifaceted roles of sulfane sulfur species in cancer-associated processes. Biochim Biophys Acta Bioenerg 2021;1862:148338. [PMID: 33212042 DOI: 10.1016/j.bbabio.2020.148338] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
108 Pecze L, Randi EB, Szabo C. Meta-analysis of metabolites involved in bioenergetic pathways reveals a pseudohypoxic state in Down syndrome. Mol Med 2020;26:102. [PMID: 33167881 DOI: 10.1186/s10020-020-00225-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
109 Yamamoto M, Shimizu T, Zou S, Shimizu S, Higashi Y, Fujieda M, Saito M. Brain hydrogen sulfide suppresses the micturition reflex via brain GABA receptors in rats. Nitric Oxide 2020;104-105:44-50. [DOI: 10.1016/j.niox.2020.08.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
110 Renieris G, Katrini K, Damoulari C, Akinosoglou K, Psarrakis C, Kyriakopoulou M, Dimopoulos G, Lada M, Koufargyris P, Giamarellos-Bourboulis EJ. Serum Hydrogen Sulfide and Outcome Association in Pneumonia by the SARS-CoV-2 Coronavirus. Shock 2020;54:633-7. [PMID: 32433216 DOI: 10.1097/SHK.0000000000001562] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 25.5] [Reference Citation Analysis]
111 Shackelford R, Ozluk E, Islam MZ, Hopper B, Meram A, Ghali G, Kevil CG. Hydrogen sulfide and DNA repair. Redox Biol 2021;38:101675. [PMID: 33202302 DOI: 10.1016/j.redox.2020.101675] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
112 Paul BD, Snyder SH, Kashfi K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 2021;38:101772. [PMID: 33137711 DOI: 10.1016/j.redox.2020.101772] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 29.0] [Reference Citation Analysis]
113 Zhao C, Yu N, Li W, Cai H, Liu M, Hu Y, Liu Y, Tang M. Slow-Release H2S Donor Anethole Dithiolethione Protects Liver From Lipotoxicity by Improving Fatty Acid Metabolism. Front Pharmacol 2020;11:549377. [PMID: 33071780 DOI: 10.3389/fphar.2020.549377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
114 Zuhra K, Panagaki T, Randi EB, Augsburger F, Blondel M, Friocourt G, Herault Y, Szabo C. Mechanism of cystathionine-β-synthase inhibition by disulfiram: The role of bis(N,N-diethyldithiocarbamate)-copper(II). Biochem Pharmacol 2020;182:114267. [PMID: 33035509 DOI: 10.1016/j.bcp.2020.114267] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
115 Nin DS, Idres SB, Song ZJ, Moore PK, Deng LW. Biological Effects of Morpholin-4-Ium 4 Methoxyphenyl (Morpholino) Phosphinodithioate and Other Phosphorothioate-Based Hydrogen Sulfide Donors. Antioxid Redox Signal 2020;32:145-58. [PMID: 31642346 DOI: 10.1089/ars.2019.7896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
116 Dattilo M. The role of host defences in Covid 19 and treatments thereof. Mol Med. 2020;26:90. [PMID: 32993497 DOI: 10.1186/s10020-020-00216-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
117 Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020;25:E3984. [PMID: 32882966 DOI: 10.3390/molecules25173984] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
118 Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H2 S donors in COVID-19 therapy. Br J Pharmacol 2020;177:4931-41. [PMID: 32783196 DOI: 10.1111/bph.15230] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 18.5] [Reference Citation Analysis]
119 Wang H, Shi X, Qiu M, Lv S, Zheng H, Niu B, Liu H. Hydrogen Sulfide Plays an Important Role by Influencing NLRP3 inflammasome. Int J Biol Sci 2020;16:2752-60. [PMID: 33110394 DOI: 10.7150/ijbs.47595] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
120 Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2019;20:1180-202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
121 Fantel AM, Myrianthopoulos V, Georgoulis A, Lougiakis N, Zantza I, Lamprinidis G, Augsburger F, Marakos P, Vorgias CE, Szabo C, Pouli N, Papapetropoulos A, Mikros E. Screening of Heteroaromatic Scaffolds against Cystathionine Beta-Synthase Enables Identification of Substituted Pyrazolo[3,4-c]Pyridines as Potent and Selective Orthosteric Inhibitors. Molecules 2020;25:E3739. [PMID: 32824311 DOI: 10.3390/molecules25163739] [Reference Citation Analysis]
122 Denoix N, McCook O, Ecker S, Wang R, Waller C, Radermacher P, Merz T. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel) 2020;9:E748. [PMID: 32823845 DOI: 10.3390/antiox9080748] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
123 Bartman CM, Schiliro M, Helan M, Prakash YS, Linden D, Pabelick C. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. FASEB J 2020;34:12991-3004. [PMID: 32777143 DOI: 10.1096/fj.202001180R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
124 Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020;161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 26.0] [Reference Citation Analysis]
125 Pluth MD, Zhao Y, Cerda MM. H2S donors with optical responses. Methods Enzymol 2020;641:149-64. [PMID: 32713521 DOI: 10.1016/bs.mie.2020.04.039] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
126 Éva Sikura K, Combi Z, Potor L, Szerafin T, Hendrik Z, Méhes G, Gergely P, Whiteman M, Beke L, Fürtös I, Balla G, Balla J. Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization. J Adv Res 2021;27:165-76. [PMID: 33318875 DOI: 10.1016/j.jare.2020.07.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
127 Mahato SK, Bhattacherjee D, Bhabak KP. The biothiol-triggered organotrisulfide-based self-immolative fluorogenic donors of hydrogen sulfide enable lysosomal trafficking. Chem Commun (Camb) 2020;56:7769-72. [PMID: 32555887 DOI: 10.1039/d0cc00613k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
128 Ismail I, Chen Z, Sun L, Ji X, Ye H, Kang X, Huang H, Song H, Bolton SG, Xi Z, Pluth MD, Yi L. Highly efficient H2S scavengers via thiolysis of positively-charged NBD amines. Chem Sci 2020;11:7823-8. [PMID: 34094155 DOI: 10.1039/d0sc01518k] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
129 Chen JJY, van der Vlies AJ, Hasegawa U. Hydrogen sulfide-releasing micelles for promoting angiogenesis. Polym Chem 2020;11:4454-63. [PMID: 33796157 DOI: 10.1039/d0py00495b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
130 Ahmad A, Druzhyna N, Szabo C. Effect of 3-mercaptopyruvate Sulfurtransferase Deficiency on the Development of Multiorgan Failure, Inflammation, and Wound Healing in Mice Subjected to Burn Injury. J Burn Care Res 2019;40:148-56. [PMID: 30649358 DOI: 10.1093/jbcr/irz007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
131 Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020;33:1010-45. [PMID: 32370538 DOI: 10.1089/ars.2020.8060] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
132 Ren WJ, Fu J, Yin HY, Xu NG, Tang CZ, Liu LZ, Yu SG, Tang Y. CBS-Induced H2S Generation in Hippocampus Inhibits EA-Induced Analgesia. Evid Based Complement Alternat Med 2020;2020:5917910. [PMID: 32419814 DOI: 10.1155/2020/5917910] [Reference Citation Analysis]
133 Wang Y, Xing QQ, Tu JK, Tang WB, Yuan XN, Xie YY, Wang W, Peng ZZ, Huang L, Xu H, Qin J, Xiao XC, Tao LJ, Yuan QJ. Involvement of hydrogen sulfide in the progression of renal fibrosis. Chin Med J (Engl) 2019;132:2872-80. [PMID: 31856060 DOI: 10.1097/CM9.0000000000000537] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
134 Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation - An update. J Adv Res 2021;27:85-97. [PMID: 33318869 DOI: 10.1016/j.jare.2020.05.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 17.0] [Reference Citation Analysis]
135 Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A, Di Lisa F. The role of mitochondrial reactive oxygen species, NO and H2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med 2020;24:6510-22. [PMID: 32383522 DOI: 10.1111/jcmm.15279] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 19.5] [Reference Citation Analysis]
136 Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020;10:E697. [PMID: 32365821 DOI: 10.3390/biom10050697] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 27.5] [Reference Citation Analysis]
137 Panagaki T, Randi EB, Szabo C. Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation and Cellular Bioenergetics in Human Down Syndrome Fibroblasts. Biomolecules 2020;10:E653. [PMID: 32340322 DOI: 10.3390/biom10040653] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
138 Cabarga L, Batallé G, Pol O. Treatment with slow-releasing hydrogen sulfide donors inhibits the nociceptive and depressive-like behaviours accompanying chronic neuropathic pain: Endogenous antioxidant system activation. J Psychopharmacol 2020;34:737-49. [PMID: 32312156 DOI: 10.1177/0269881120913154] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
139 Mendonça BP, Cardoso JDS, Michels M, Vieira AC, Wendhausen D, Manfredini A, Singer M, Dal-Pizzol F, Dyson A. Neuroprotective effects of ammonium tetrathiomolybdate, a slow-release sulfide donor, in a rodent model of regional stroke. Intensive Care Med Exp 2020;8:13. [PMID: 32274608 DOI: 10.1186/s40635-020-00300-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
140 Augsburger F, Randi EB, Jendly M, Ascencao K, Dilek N, Szabo C. Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics in Murine Colon Cancer Cells. Biomolecules 2020;10:E447. [PMID: 32183148 DOI: 10.3390/biom10030447] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
141 Costa SKPF, Muscara MN, Allain T, Dallazen J, Gonzaga L, Buret AG, Vaughan DJ, Fowler CJ, de Nucci G, Wallace JL. Enhanced Analgesic Effects and Gastrointestinal Safety of a Novel, Hydrogen Sulfide-Releasing Anti-Inflammatory Drug (ATB-352): A Role for Endogenous Cannabinoids. Antioxid Redox Signal 2020;33:1003-9. [PMID: 32064887 DOI: 10.1089/ars.2019.7884] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
142 Olson KR, Gao Y, DeLeon ER, Markel TA, Drucker N, Boone D, Whiteman M, Steiger AK, Pluth MD, Tessier CR, Stahelin RV. Extended hypoxia-mediated H2 S production provides for long-term oxygen sensing. Acta Physiol (Oxf) 2020;228:e13368. [PMID: 31442361 DOI: 10.1111/apha.13368] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
143 Zhao C, Yu N, Li W, Cai H, Liu M, Hu Y, Liu Y, Tang M. Anethole dithiolethione improves liver fatty acid metabolism in hamster fed high-fat diets.. [DOI: 10.1101/2020.02.18.954875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
144 Katsouda A, Peleli M, Asimakopoulou A, Papapetropoulos A, Beis D. Generation and Characterization of a CRISPR/Cas9 -Induced 3-mst Deficient Zebrafish. Biomolecules 2020;10:E317. [PMID: 32079278 DOI: 10.3390/biom10020317] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
145 Peleli M, Bibli SI, Li Z, Chatzianastasiou A, Varela A, Katsouda A, Zukunft S, Bucci M, Vellecco V, Davos CH, Nagahara N, Cirino G, Fleming I, Lefer DJ, Papapetropoulos A. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol 2020;176:113833. [PMID: 32027885 DOI: 10.1016/j.bcp.2020.113833] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 16.0] [Reference Citation Analysis]
146 Szabo C. The re-emerging pathophysiological role of the cystathionine-β-synthase - hydrogen sulfide system in Down syndrome. FEBS J 2020;287:3150-60. [PMID: 31955501 DOI: 10.1111/febs.15214] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
147 Boubeta FM, Bieza SA, Bringas M, Palermo JC, Boechi L, Estrin DA, Bari SE. Hemeproteins as Targets for Sulfide Species. Antioxidants & Redox Signaling 2020;32:247-57. [DOI: 10.1089/ars.2019.7878] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
148 Marutani E, Ichinose F. Emerging pharmacological tools to control hydrogen sulfide signaling in critical illness. Intensive Care Med Exp 2020;8:5. [PMID: 32006269 DOI: 10.1186/s40635-020-0296-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
149 Yue T, Zuo S, Bu D, Zhu J, Chen S, Ma Y, Ma J, Guo S, Wen L, Zhang X, Hu J, Wang Y, Yao Z, Chen G, Wang X, Pan Y, Wang P, Liu Y. Aminooxyacetic acid (AOAA) sensitizes colon cancer cells to oxaliplatin via exaggerating apoptosis induced by ROS. J Cancer 2020;11:1828-38. [PMID: 32194794 DOI: 10.7150/jca.35375] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
150 Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020;16:264-71. [PMID: 31929754 DOI: 10.7150/ijbs.38143] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
151 Datzmann T, Hoffmann A, Mccook O, Merz T, Wachter U, Preuss J, Vettorazzi S, Calzia E, Gröger M, Kohn F, Schmid A, Denoix N, Radermacher P, Wepler M. Effects of sodium thiosulfate (Na2S2O3) during resuscitation from hemorrhagic shock in swine with preexisting atherosclerosis. Pharmacological Research 2020;151:104536. [DOI: 10.1016/j.phrs.2019.104536] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
152 Batallé G, Cabarga L, Pol O. The Inhibitory Effects of Slow-Releasing Hydrogen Sulfide Donors in the Mechanical Allodynia, Grip Strength Deficits, and Depressive-Like Behaviors Associated with Chronic Osteoarthritis Pain. Antioxidants (Basel) 2019;9:E31. [PMID: 31905764 DOI: 10.3390/antiox9010031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
153 Olson KR, Gao Y, Arif F, Patel S, Yuan X, Mannam V, Howard S, Batinic-Haberle I, Fukuto J, Minnion M, Feelisch M, Straub KD. Manganese Porphyrin-Based SOD Mimetics Produce Polysulfides from Hydrogen Sulfide. Antioxidants (Basel) 2019;8:E639. [PMID: 31842297 DOI: 10.3390/antiox8120639] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
154 Grman M, Misak A, Kurakova L, Brezova V, Cacanyiova S, Berenyiova A, Balis P, Tomasova L, Kharma A, Domínguez-Álvarez E, Chovanec M, Ondrias K. Products of Sulfide/Selenite Interaction Possess Antioxidant Properties, Scavenge Superoxide-Derived Radicals, React with DNA, and Modulate Blood Pressure and Tension of Isolated Thoracic Aorta. Oxid Med Cell Longev 2019;2019:9847650. [PMID: 31885828 DOI: 10.1155/2019/9847650] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
155 Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020;32:110-44. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
156 Papapetropoulos A, Wallace JL, Wang R. From primordial gas to the medicine cabinet. Br J Pharmacol 2020;177:715-9. [PMID: 31726475 DOI: 10.1111/bph.14929] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
157 Olson KR, Briggs A, Devireddy M, Xian M, Gao Y. Are the beneficial effects of 'antioxidant' lipoic acid mediated through metabolism of reactive sulfur species? Free Radic Biol Med 2020;146:139-49. [PMID: 31676393 DOI: 10.1016/j.freeradbiomed.2019.10.410] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
158 Levinn CM, Cerda MM, Pluth MD. Activatable Small-Molecule Hydrogen Sulfide Donors. Antioxid Redox Signal 2020;32:96-109. [PMID: 31554416 DOI: 10.1089/ars.2019.7841] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 14.7] [Reference Citation Analysis]
159 Gambari L, Grigolo B, Grassi F. Hydrogen Sulfide in Bone Tissue Regeneration and Repair: State of the Art and New Perspectives. Int J Mol Sci 2019;20:E5231. [PMID: 31652532 DOI: 10.3390/ijms20205231] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
160 Morales-Loredo H, Barrera A, Garcia JM, Pace CE, Naik JS, Gonzalez Bosc LV, Kanagy NL. Hydrogen sulfide regulation of renal and mesenteric blood flow. Am J Physiol Heart Circ Physiol 2019;317:H1157-65. [PMID: 31625777 DOI: 10.1152/ajpheart.00303.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
161 Li Z, Polhemus DJ, Lefer DJ. Evolution of Hydrogen Sulfide Therapeutics to Treat Cardiovascular Disease. Circ Res 2018;123:590-600. [PMID: 30355137 DOI: 10.1161/CIRCRESAHA.118.311134] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 23.0] [Reference Citation Analysis]
162 Chen S, Yue T, Huang Z, Zhu J, Bu D, Wang X, Pan Y, Liu Y, Wang P. Inhibition of hydrogen sulfide synthesis reverses acquired resistance to 5-FU through miR-215-5p-EREG/TYMS axis in colon cancer cells. Cancer Lett 2019;466:49-60. [PMID: 31542354 DOI: 10.1016/j.canlet.2019.09.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
163 Levinn CM, Cerda MM, Pluth MD. Development and Application of Carbonyl Sulfide-Based Donors for H2S Delivery. Acc Chem Res 2019;52:2723-31. [PMID: 31390174 DOI: 10.1021/acs.accounts.9b00315] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
164 Panagaki T, Randi EB, Augsburger F, Szabo C. Overproduction of H2S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in Down syndrome. Proc Natl Acad Sci U S A 2019;116:18769-71. [PMID: 31481613 DOI: 10.1073/pnas.1911895116] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 20.7] [Reference Citation Analysis]
165 Xu JW, Gao DD, Peng L, Qiu ZE, Ke LJ, Zhu YX, Zhang YL, Zhou WL. The gasotransmitter hydrogen sulfide inhibits transepithelial anion secretion of pregnant mouse endometrial epithelium. Nitric Oxide 2019;90:37-46. [PMID: 31175932 DOI: 10.1016/j.niox.2019.05.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
166 Zhao Y, Steiger AK, Pluth MD. Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways. J Am Chem Soc 2019;141:13610-8. [PMID: 31373809 DOI: 10.1021/jacs.9b06319] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 10.3] [Reference Citation Analysis]
167 Zou S, Shimizu T, Yamamoto M, Shimizu S, Higashi Y, Saito M. Hydrogen sulfide-induced relaxation of the bladder is attenuated in spontaneously hypertensive rats. Int Urol Nephrol 2019;51:1507-15. [PMID: 31289981 DOI: 10.1007/s11255-019-02222-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
168 Hu Y, Li X, Fang Y, Shi W, Li X, Chen W, Xian M, Ma H. Reactive oxygen species-triggered off-on fluorescence donor for imaging hydrogen sulfide delivery in living cells. Chem Sci 2019;10:7690-4. [PMID: 31803407 DOI: 10.1039/c9sc02323b] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 14.3] [Reference Citation Analysis]
169 Zaorska E, Hutsch T, Gawryś-kopczyńska M, Ostaszewski R, Ufnal M, Koszelewski D. Evaluation of thioamides, thiolactams and thioureas as hydrogen sulfide (H2S) donors for lowering blood pressure. Bioorganic Chemistry 2019;88:102941. [DOI: 10.1016/j.bioorg.2019.102941] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
170 Dulac M, Nagarathinam C, Dansette P, Mansuy D, Boucher JL. Mechanism of H2S Formation from the Metabolism of Anetholedithiolethione and Anetholedithiolone by Rat Liver Microsomes. Drug Metab Dispos 2019;47:1061-5. [PMID: 31213461 DOI: 10.1124/dmd.119.087205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
171 Li H, Gao X, Huang X, Wang X, Xu S, Uchita T, Gao M, Xu J, Hua H, Li D. Hydrogen sulfide donating ent-kaurane and spirolactone-type 6,7-seco-ent-kaurane derivatives: Design, synthesis and antiproliferative properties. Eur J Med Chem 2019;178:446-57. [PMID: 31202992 DOI: 10.1016/j.ejmech.2019.06.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
172 Hofstetter R, Elvers BJ, Potlitz F, Link A, Schulzke C. Crystal structure of 7,8,15,16,17-penta-thiadi-spiro-[5.2.59.36]hepta-deca-ne. Acta Crystallogr E Crystallogr Commun 2019;75:888-91. [PMID: 31391988 DOI: 10.1107/S2056989019007138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
173 Durham T, Zander D, Stomeo N, Minnion M, Hogarth G, Feelisch M, Singer M, Dyson A. Chemistry, pharmacology, and cellular uptake mechanisms of thiometallate sulfide donors. Br J Pharmacol 2020;177:745-56. [PMID: 30924528 DOI: 10.1111/bph.14670] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
174 Xiao AY, Maynard MR, Piett CG, Nagel ZD, Alexander JS, Kevil CG, Berridge MV, Pattillo CB, Rosen LR, Miriyala S, Harrison L. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells. Redox Biol 2019;26:101220. [PMID: 31176262 DOI: 10.1016/j.redox.2019.101220] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
175 Vellecco V, Martelli A, Bibli IS, Vallifuoco M, Manzo OL, Panza E, Citi V, Calderone V, de Dominicis G, Cozzolino C, Basso EM, Mariniello M, Fleming I, Mancini A, Bucci M, Cirino G. Anomalous Kv 7 channel activity in human malignant hyperthermia syndrome unmasks a key role for H2 S and persulfidation in skeletal muscle. Br J Pharmacol 2020;177:810-23. [PMID: 31051045 DOI: 10.1111/bph.14700] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
176 He JT, Li H, Yang L, Cheng KL. Involvement of Endothelin-1, H2S and Nrf2 in Beneficial Effects of Remote Ischemic Preconditioning in Global Cerebral Ischemia-Induced Vascular Dementia in Mice. Cell Mol Neurobiol 2019;39:671-86. [PMID: 31025223 DOI: 10.1007/s10571-019-00670-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
177 Martelli A, Piragine E, Citi V, Testai L, Pagnotta E, Ugolini L, Lazzeri L, Di Cesare Mannelli L, Manzo OL, Bucci M, Ghelardini C, Breschi MC, Calderone V. Erucin exhibits vasorelaxing effects and antihypertensive activity by H2 S-releasing properties. Br J Pharmacol 2020;177:824-35. [PMID: 30825379 DOI: 10.1111/bph.14645] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
178 Kim TJ, Lee YJ, Ahn YJ, Lee GJ. Characterization of H2S releasing properties of various H2S donors utilizing microplate cover-based colorimetric assay. Anal Biochem 2019;574:57-65. [PMID: 30946806 DOI: 10.1016/j.ab.2019.03.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
179 Misak A, Kurakova L, Goffa E, Brezova V, Grman M, Ondriasova E, Chovanec M, Ondrias K. Sulfide (Na₂S) and Polysulfide (Na₂S₂) Interacting with Doxycycline Produce/Scavenge Superoxide and Hydroxyl Radicals and Induce/Inhibit DNA Cleavage. Molecules 2019;24:E1148. [PMID: 30909480 DOI: 10.3390/molecules24061148] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
180 Centeno JM, López-Morales MA, Aliena-Valero A, Jover-Mengual T, Burguete MC, Castelló-Ruiz M, Miranda FJ. Potassium channels contribute to the increased sensitivity of the rabbit carotid artery to hydrogen sulfide in diabetes. Eur J Pharmacol 2019;853:33-40. [PMID: 30876977 DOI: 10.1016/j.ejphar.2019.03.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
181 Abdollahi Govar A, Törő G, Szaniszlo P, Pavlidou A, Bibli SI, Thanki K, Resto VA, Chao C, Hellmich MR, Szabo C, Papapetropoulos A, Módis K. 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics. Br J Pharmacol 2020;177:866-83. [PMID: 30644090 DOI: 10.1111/bph.14574] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
182 Yang D, Li T, Li Y, Zhang S, Li W, Liang H, Xing Z, Du L, He J, Kuang C, Yang Q. H2S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma. J Exp Clin Cancer Res 2019;38:88. [PMID: 30777103 DOI: 10.1186/s13046-019-1083-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
183 Bibli S, Hu J, Sigala F, Wittig I, Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J, Kojonazarov B, Schürmann C, Siragusa M, Siuda D, Luck B, Abdel Malik R, Filis KA, Zografos G, Chen C, Wang DW, Pfeilschifter J, Brandes RP, Szabo C, Papapetropoulos A, Fleming I. Cystathionine γ Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis. Circulation 2019;139:101-14. [DOI: 10.1161/circulationaha.118.034757] [Cited by in Crossref: 65] [Cited by in F6Publishing: 70] [Article Influence: 21.7] [Reference Citation Analysis]
184 Hou J, He H, Huang S, Qian M, Wang J, Tan X, Han G, Song Y, Xu Z, Liu Y. A mitochondria-targeted nitric oxide donor triggered by superoxide radical to alleviate myocardial ischemia/reperfusion injury. Chem Commun 2019;55:1205-8. [DOI: 10.1039/c8cc07304j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
185 Kharma A, Misak A, Grman M, Brezova V, Kurakova L, Baráth P, Jacob C, Chovanec M, Ondrias K, Domínguez-álvarez E. Release of reactive selenium species from phthalic selenoanhydride in the presence of hydrogen sulfide and glutathione with implications for cancer research. New J Chem 2019;43:11771-83. [DOI: 10.1039/c9nj02245g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
186 Bauer M, Radermacher P, Wepler M. Sodium Thiosulfate: A New Player for Circulatory Shock and Ischemia/Reperfusion Injury? Annual Update in Intensive Care and Emergency Medicine 2019 2019. [DOI: 10.1007/978-3-030-06067-1_14] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
187 Hu Y, Wang L, Han X, Zhou Y, Zhang T, Wang L, Hong T, Zhang W, Guo XX, Sun J, Qi Y, Yu J, Liu H, Wu F. Discovery of a Bioactive Inhibitor with a New Scaffold for Cystathionine γ-Lyase. J Med Chem 2019;62:1677-83. [PMID: 30562026 DOI: 10.1021/acs.jmedchem.8b01720] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
188 Bolton SG, Cerda MM, Gilbert AK, Pluth MD. Effects of sulfane sulfur content in benzyl polysulfides on thiol-triggered H2S release and cell proliferation. Free Radic Biol Med 2019;131:393-8. [PMID: 30579781 DOI: 10.1016/j.freeradbiomed.2018.12.025] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
189 Toliver-Kinsky T, Cui W, Törö G, Lee SJ, Shatalin K, Nudler E, Szabo C. H2S, a Bacterial Defense Mechanism against the Host Immune Response. Infect Immun 2019;87:e00272-18. [PMID: 30323021 DOI: 10.1128/IAI.00272-18] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
190 Zhao Y, Cerda MM, Pluth MD. Fluorogenic hydrogen sulfide (H2S) donors based on sulfenyl thiocarbonates enable H2S tracking and quantification. Chem Sci 2019;10:1873-8. [PMID: 30842856 DOI: 10.1039/c8sc05200j] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 12.3] [Reference Citation Analysis]
191 Simonsen U, Petersen AG. Perivascular adipose tissue: A new possible tissue augmenting coronary vasodilatation in response to acute hypoxia. Acta Physiol (Oxf) 2018;224:e13171. [PMID: 30102843 DOI: 10.1111/apha.13171] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
192 Cerda MM, Newton TD, Zhao Y, Collins BK, Hendon CH, Pluth MD. Dithioesters: simple, tunable, cysteine-selective H2S donors. Chem Sci 2019;10:1773-9. [PMID: 30842844 DOI: 10.1039/c8sc04683b] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
193 Augsburger F, Szabo C. Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res 2020;154:104083. [PMID: 30500457 DOI: 10.1016/j.phrs.2018.11.034] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
194 Covarrubias AE, Lecarpentier E, Lo A, Salahuddin S, Gray KJ, Karumanchi SA, Zsengellér ZK. AP39, a Modulator of Mitochondrial Bioenergetics, Reduces Antiangiogenic Response and Oxidative Stress in Hypoxia-Exposed Trophoblasts: Relevance for Preeclampsia Pathogenesis. Am J Pathol 2019;189:104-14. [PMID: 30315766 DOI: 10.1016/j.ajpath.2018.09.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
195 Zhu Y, Romero EL, Ren X, Sanca AJ, Du C, Liu C, Karim ZA, Alshbool FZ, Khasawneh FT, Zhou J, Zhong D, Geng B. Clopidogrel as a donor probe and thioenol derivatives as flexible promoieties for enabling H2S biomedicine. Nat Commun 2018;9:3952. [PMID: 30262863 DOI: 10.1038/s41467-018-06373-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
196 Cerda MM, Zhao Y, Pluth MD. Thionoesters: A Native Chemical Ligation-Inspired Approach to Cysteine-Triggered H2S Donors. J Am Chem Soc 2018;140:12574-9. [PMID: 30230325 DOI: 10.1021/jacs.8b07268] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
197 Zhao Y, Steiger AK, Pluth MD. Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H 2 S) Donation from γ‐Ketothiocarbamate Donor Motifs. Angew Chem 2018;130:13285-9. [DOI: 10.1002/ange.201806854] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
198 Zhao Y, Steiger AK, Pluth MD. Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H2 S) Donation from γ-Ketothiocarbamate Donor Motifs. Angew Chem Int Ed Engl 2018;57:13101-5. [PMID: 30102448 DOI: 10.1002/anie.201806854] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
199 Zhou J, Lv XH, Fan JJ, Dang LY, Dong K, Gao B, Song AQ, Wu WN. GYY4137 Promotes Mice Feeding Behavior via Arcuate Nucleus Sulfur-Sulfhydrylation and AMPK Activation. Front Pharmacol 2018;9:966. [PMID: 30186182 DOI: 10.3389/fphar.2018.00966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
200 Cacciotti I, Ciocci M, Di Giovanni E, Nanni F, Melino S. Hydrogen Sulfide-Releasing Fibrous Membranes: Potential Patches for Stimulating Human Stem Cells Proliferation and Viability under Oxidative Stress. Int J Mol Sci 2018;19:E2368. [PMID: 30103516 DOI: 10.3390/ijms19082368] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 12.3] [Reference Citation Analysis]
201 Zou S, Shimizu T, Shimizu S, Higashi Y, Nakamura K, Ono H, Aratake T, Saito M. Possible role of hydrogen sulfide as an endogenous relaxation factor in the rat bladder and prostate. Neurourology and Urodynamics 2018;37:2519-26. [DOI: 10.1002/nau.23788] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
202 Zinchuk V, Zhadko D, Gulyai I. Prooxidant-antioxidant balance depending on endothelial nitric oxide synthase G894T polymorphism. BIOMED KHIM 2018;64:349-353. [DOI: 10.18097/pbmc20186404349] [Reference Citation Analysis]
203 Zhao Y, Steiger AK, Pluth MD. Cysteine-activated hydrogen sulfide (H2S) delivery through caged carbonyl sulfide (COS) donor motifs. Chem Commun (Camb) 2018;54:4951-4. [PMID: 29701221 DOI: 10.1039/c8cc02428f] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 13.3] [Reference Citation Analysis]
204 Takahashi S, Hisatsune A, Kurauchi Y, Seki T, Katsuki H. Polysulfide protects midbrain dopaminergic neurons from MPP+-induced degeneration via enhancement of glutathione biosynthesis. Journal of Pharmacological Sciences 2018;137:47-54. [DOI: 10.1016/j.jphs.2018.04.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
205 Hu X, Jiao R, Li H, Wang X, Lyu H, Gao X, Xu F, Li Z, Hua H, Li D. Antiproliferative hydrogen sulfide releasing evodiamine derivatives and their apoptosis inducing properties. European Journal of Medicinal Chemistry 2018;151:376-88. [DOI: 10.1016/j.ejmech.2018.04.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
206 Rose P, Moore PK, Zhu YZ. Garlic and Gaseous Mediators. Trends Pharmacol Sci 2018;39:624-34. [PMID: 29706261 DOI: 10.1016/j.tips.2018.03.009] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
207 Jurkowska H, Wróbel M, Szlęzak D, Jasek-Gajda E. New aspects of antiproliferative activity of 4-hydroxybenzyl isothiocyanate, a natural H2S-donor. Amino Acids 2018;50:699-709. [PMID: 29508061 DOI: 10.1007/s00726-018-2546-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
208 Centurión D, de la Cruz SH, Castillo-santiago SV, Becerril-chacón ME, Torres-pérez JA, Sánchez-lópez A. NaHS prejunctionally inhibits the cardioaccelerator sympathetic outflow in pithed rats. European Journal of Pharmacology 2018;823:35-40. [DOI: 10.1016/j.ejphar.2018.01.030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
209 Mitidieri E, Tramontano T, Gurgone D, Citi V, Calderone V, Brancaleone V, Katsouda A, Nagahara N, Papapetropoulos A, Cirino G, d'Emmanuele di Villa Bianca R, Sorrentino R. Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide 2018;75:53-9. [PMID: 29452248 DOI: 10.1016/j.niox.2018.02.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
210 Christoforidis T, Driver TG, Rehman J, Eddington DT. Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 2018;8:4078-83. [PMID: 30294423 DOI: 10.1039/C7RA12220A] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
211 Olson KR. H2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol 2018;149:77-90. [PMID: 29248597 DOI: 10.1016/j.bcp.2017.12.010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 77] [Article Influence: 14.2] [Reference Citation Analysis]
212 Zhao Y, Henthorn HA, Pluth MD. Kinetic Insights into Hydrogen Sulfide Delivery from Caged-Carbonyl Sulfide Isomeric Donor Platforms. J Am Chem Soc 2017;139:16365-76. [PMID: 29056039 DOI: 10.1021/jacs.7b09527] [Cited by in Crossref: 71] [Cited by in F6Publishing: 70] [Article Influence: 14.2] [Reference Citation Analysis]
213 Szabo C. A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochem Pharmacol 2018;149:5-19. [PMID: 28947277 DOI: 10.1016/j.bcp.2017.09.010] [Cited by in Crossref: 133] [Cited by in F6Publishing: 138] [Article Influence: 26.6] [Reference Citation Analysis]