BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hoffmann C, Krause S, Stoiber EM, Mohr A, Rieken S, Schramm O, Debus J, Sterzing F, Bendl R, Giske K. Accuracy quantification of a deformable image registration tool applied in a clinical setting. J Appl Clin Med Phys 2014;15:4564. [PMID: 24423856 DOI: 10.1120/jacmp.v15i1.4564] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Dossun C, Niederst C, Noel G, Meyer P. Evaluation of DIR algorithm performance in real patients for radiotherapy treatments: A systematic review of operator-dependent strategies. Phys Med 2022;101:137-57. [PMID: 36007403 DOI: 10.1016/j.ejmp.2022.08.011] [Reference Citation Analysis]
2 Rich BJ, Spieler BO, Yang Y, Young L, Amestoy W, Monterroso M, Wang L, Dal Pra A, Yang F. Erring Characteristics of Deformable Image Registration-Based Auto-Propagation for Internal Target Volume in Radiotherapy of Locally Advanced Non-Small Cell Lung Cancer. Front Oncol 2022;12:929727. [DOI: 10.3389/fonc.2022.929727] [Reference Citation Analysis]
3 Santoro M, Strolin S, Paolani G, Della Gala G, Bartoloni A, Giacometti C, Ammendolia I, Morganti AG, Strigari L. Recent Applications of Artificial Intelligence in Radiotherapy: Where We Are and Beyond. Applied Sciences 2022;12:3223. [DOI: 10.3390/app12073223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Rong Y, Rosu-Bubulac M, Benedict SH, Cui Y, Ruo R, Connell T, Kashani R, Latifi K, Chen Q, Geng H, Sohn J, Xiao Y. Rigid and Deformable Image Registration for Radiation Therapy: A Self-Study Evaluation Guide for NRG Oncology Clinical Trial Participation. Pract Radiat Oncol 2021;11:282-98. [PMID: 33662576 DOI: 10.1016/j.prro.2021.02.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
5 Juan-Cruz C, Fast MF, Sonke JJ. A multivariable study of deformable image registration evaluation metrics in 4DCT of thoracic cancer patients. Phys Med Biol 2021;66:035019. [PMID: 33227717 DOI: 10.1088/1361-6560/abcd18] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Gil N, Lipton ML, Fleysher R. Registration quality filtering improves robustness of voxel-wise analyses to the choice of brain template. Neuroimage 2021;227:117657. [PMID: 33338620 DOI: 10.1016/j.neuroimage.2020.117657] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Huang Y, Wang H, Li C, Hu Q, Liu H, Deng J, Li W, Wang R, Wu H, Zhang Y. A Preliminary Simulation Study of Dose-Guided Adaptive Radiotherapy Based on Halcyon MV Cone-Beam CT Images With Retrospective Data From a Phase II Clinical Trial. Front Oncol 2020;10:574889. [DOI: 10.3389/fonc.2020.574889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Weppler S, Schinkel C, Kirkby C, Smith W. Lasso logistic regression to derive workflow-specific algorithm performance requirements as demonstrated for head and neck cancer deformable image registration in adaptive radiation therapy. Phys Med Biol 2020;65:195013. [PMID: 32580170 DOI: 10.1088/1361-6560/ab9fc8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yang Z, Liu H, Liu Y, Stojadinovic S, Timmerman R, Nedzi L, Dan T, Wardak Z, Lu W, Gu X. A web-based brain metastases segmentation and labeling platform for stereotactic radiosurgery. Med Phys 2020;47:3263-76. [PMID: 32333797 DOI: 10.1002/mp.14201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Weppler S, Schinkel C, Kirkby C, Smith W. Data clustering to select clinically-relevant test cases for algorithm benchmarking and characterization. Phys Med Biol 2020;65:055014. [PMID: 31962297 DOI: 10.1088/1361-6560/ab6e54] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Huang Y, Li C, Wang H, Hu Q, Wang R, Chang C, Ma W, Li W, Wu H, Zhang Y. A quantitative evaluation of deformable image registration based on MV cone beam CT images: Impact of deformation magnitudes and image modalities. Phys Med 2020;71:82-7. [PMID: 32097874 DOI: 10.1016/j.ejmp.2020.02.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Takemura A, Nagano A, Kojima H, Ikeda T, Yokoyama N, Tsukamoto K, Noto K, Isomura N, Ueda S, Kawashima H. An uncertainty metric to evaluate deformation vector fields for dose accumulation in radiotherapy. Phys Imaging Radiat Oncol 2018;6:77-82. [PMID: 33458393 DOI: 10.1016/j.phro.2018.05.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Gupta V, Wang Y, Méndez Romero A, Myronenko A, Jordan P, Maurer C, Heijmen B, Hoogeman M. Fast and robust adaptation of organs-at-risk delineations from planning scans to match daily anatomy in pre-treatment scans for online-adaptive radiotherapy of abdominal tumors. Radiotherapy and Oncology 2018;127:332-8. [DOI: 10.1016/j.radonc.2018.02.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
14 Tsai YL, Wu CJ, Shaw S, Yu PC, Nien HH, Lui LT. Quantitative analysis of respiration-induced motion of each liver segment with helical computed tomography and 4-dimensional computed tomography. Radiat Oncol 2018;13:59. [PMID: 29609631 DOI: 10.1186/s13014-018-1007-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
15 Fusella M, Giglioli FR, Fiandra C, Ragona R. Evaluation of dose recalculation vs dose deformation in a commercial platform for deformable image registration with a computational phantom. Medical Dosimetry 2018;43:82-90. [DOI: 10.1016/j.meddos.2017.08.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
16 Grassi E, Fioroni F, Berenato S, Patterson N, Ferri V, Braglia L, Filice A, Versari A, Iori M, Spezi E. Effect of image registration on 3D absorbed dose calculations in 177 Lu-DOTATOC peptide receptor radionuclide therapy. Physica Medica 2018;45:177-85. [DOI: 10.1016/j.ejmp.2017.11.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
17 Yang D, Zhang M, Chang X, Fu Y, Liu S, Li HH, Mutic S, Duan Y. A method to detect landmark pairs accurately between intra-patient volumetric medical images. Med Phys 2017;44:5859-72. [PMID: 28834555 DOI: 10.1002/mp.12526] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
18 Neylon J, Min Y, Low DA, Santhanam A. A neural network approach for fast, automated quantification of DIR performance. Med Phys 2017;44:4126-38. [DOI: 10.1002/mp.12321] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
19 Kim H, Chen J, Phillips J, Pukala J, Yom SS, Kirby N. Validating Dose Uncertainty Estimates Produced by AUTODIRECT: An Automated Program to Evaluate Deformable Image Registration Accuracy. Technol Cancer Res Treat 2017;16:885-92. [PMID: 28490254 DOI: 10.1177/1533034617708076] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
20 Stützer K, Haase R, Lohaus F, Barczyk S, Exner F, Löck S, Rühaak J, Lassen-Schmidt B, Corr D, Richter C. Evaluation of a deformable registration algorithm for subsequent lung computed tomography imaging during radiochemotherapy. Med Phys 2016;43:5028. [PMID: 27587033 DOI: 10.1118/1.4960366] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
21 Lian J, Shao Y, Potter LD, Chen RC, Holmes JA, Pryser EA, Shen J, Shen D, Wang AZ. Prostate deformation from inflatable rectal probe cover and dosimetric effects in prostate seed implant brachytherapy. Med Phys 2016;43:6569. [PMID: 27908182 DOI: 10.1118/1.4967481] [Reference Citation Analysis]
22 Zukauskaite R, Brink C, Hansen CR, Bertelsen A, Johansen J, Grau C, Eriksen JG. Open source deformable image registration system for treatment planning and recurrence CT scans : Validation in the head and neck region. Strahlenther Onkol 2016;192:545-51. [PMID: 27323754 DOI: 10.1007/s00066-016-0998-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
23 Riegel AC, Antone JG, Zhang H, Jain P, Raince J, Rea A, Bergamo AM, Kapur A, Potters L. Deformable image registration and interobserver variation in contour propagation for radiation therapy planning. J Appl Clin Med Phys 2016;17:347-57. [PMID: 27167289 DOI: 10.1120/jacmp.v17i3.6110] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
24 Kirby N, Chen J, Kim H, Morin O, Nie K, Pouliot J. An automated deformable image registration evaluation of confidence tool. Phys Med Biol 2016;61:N203-14. [DOI: 10.1088/0031-9155/61/8/n203] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
25 Nie K, Pouliot J, Smith E, Chuang C. Performance variations among clinically available deformable image registration tools in adaptive radiotherapy - how should we evaluate and interpret the result? J Appl Clin Med Phys 2016;17:328-40. [PMID: 27074457 DOI: 10.1120/jacmp.v17i2.5778] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
26 Beasley WJ, McWilliam A, Aitkenhead A, Mackay RI, Rowbottom CG. The suitability of common metrics for assessing parotid and larynx autosegmentation accuracy. J Appl Clin Med Phys 2016;17:41-9. [PMID: 27074471 DOI: 10.1120/jacmp.v17i2.5889] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
27 Zeng C, Plastaras JP, Tochner ZA, White BM, Hill-kayser CE, Hahn SM, Both S. Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning. Phys Med Biol 2015;60:3013-29. [DOI: 10.1088/0031-9155/60/7/3013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
28 Rivard MJ, Ghadyani HR, Bastien AD, Lutz NN, Hepel JT. Multi-axis dose accumulation of noninvasive image-guided breast brachytherapy through biomechanical modeling of tissue deformation using the finite element method. J Contemp Brachytherapy 2015;7:55-71. [PMID: 25829938 DOI: 10.5114/jcb.2015.49355] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
29 Kumarasiri A, Siddiqui F, Liu C, Yechieli R, Shah M, Pradhan D, Zhong H, Chetty IJ, Kim J. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting: DIR-based contour propagation for H&N ART. Med Phys 2014;41:121712. [DOI: 10.1118/1.4901409] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 6.3] [Reference Citation Analysis]