BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tillander M, Hokland S, Koskela J, Dam H, Andersen NP, Pedersen M, Tanderup K, Ylihautala M, Köhler M. High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control. Med Phys 2016;43:1539-49. [DOI: 10.1118/1.4942378] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Namakshenas P, Mojra A. Efficient drug delivery to hypoxic tumors using thermosensitive liposomes with encapsulated anti-cancer drug under high intensity pulsed ultrasound. International Journal of Mechanical Sciences 2023;237:107818. [DOI: 10.1016/j.ijmecsci.2022.107818] [Reference Citation Analysis]
2 Pattyn A, Kratkiewicz K, Alijabbari N, Carson PL, Littrup P, Fowlkes JB, Duric N, Mehrmohammadi M. Feasibility of ultrasound tomography-guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies. Med Phys 2022. [PMID: 35759729 DOI: 10.1002/mp.15829] [Reference Citation Analysis]
3 Andrés D, Jiménez N, Benlloch JM, Camarena F. Numerical Study of Acoustic Holograms for Deep-Brain Targeting through the Temporal Bone Window. Ultrasound Med Biol 2022;48:872-86. [PMID: 35221196 DOI: 10.1016/j.ultrasmedbio.2022.01.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Bilgin MB, Tiryaki ME, Lazovic J, Sitti M. Radio Frequency Sensing‐Based In Situ Temperature Measurements during Magnetic Resonance Imaging Interventional Procedures. Adv Materials Technologies. [DOI: 10.1002/admt.202101625] [Reference Citation Analysis]
5 Andrés D, Vappou J, Jiménez N, Camarena F. Thermal holographic patterns for ultrasound hyperthermia. Appl Phys Lett 2022;120:084102. [DOI: 10.1063/5.0081565] [Reference Citation Analysis]
6 Sebeke L, Gómez JDC, Heijman E, Rademann P, Maul AC, Ekdawi S, Vlachakis S, Toker D, Mink BL, Schubert-quecke C, Yeo SY, Schmidt P, Lucas C, Brodesser S, Hossann M, Lindner LH, Grüll H. Hyperthermia-induced doxorubicin delivery from thermosensitive liposomes via MR-HIFU in a pig model. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.02.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Kim K, Zubair M, Adams M, Diederich CJ, Ozhinsky E. Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system. Int J Hyperthermia 2021;38:1590-600. [PMID: 34749579 DOI: 10.1080/02656736.2021.1998658] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Souri M, Soltani M, Moradi Kashkooli F. Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors. Sci Rep 2021;11:19539. [PMID: 34599207 DOI: 10.1038/s41598-021-98554-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
9 Pattyn A, Kratkiewicz K, Alijabbari N, Mehrmohammadi M, Duric N, Carson PL. Mild-Hyperthermia Generation and Control with a Ring-based Ultrasound Tomography. 2021 IEEE International Ultrasonics Symposium (IUS) 2021. [DOI: 10.1109/ius52206.2021.9593675] [Reference Citation Analysis]
10 Andres D, Jimenez N, Camarena F. Transtemporal Ultrasound Holograms for Thalamic Therapy. 2021 IEEE International Ultrasonics Symposium (IUS) 2021. [DOI: 10.1109/ius52206.2021.9593685] [Reference Citation Analysis]
11 Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021;38:1174-87. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Karmacharya MB, Sultan LR, Hunt SJ, Sehgal CM. Hydralazine augmented ultrasound hyperthermia for the treatment of hepatocellular carcinoma. Sci Rep 2021;11:15553. [PMID: 34330960 DOI: 10.1038/s41598-021-94323-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Filippou A, Drakos T, Giannakou M, Evripidou N, Damianou C. Experimental evaluation of the near-field and far-field heating of focused ultrasound using the thermal dose concept. Ultrasonics 2021;116:106513. [PMID: 34293620 DOI: 10.1016/j.ultras.2021.106513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhu L, Huang Y, Lam D, Gach HM, Zoberi I, Hallahan DE, Grigsby PW, Chen H, Altman MB. Targetability of cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT) for patients receiving radiation therapy. Int J Hyperthermia 2021;38:498-510. [PMID: 33757406 DOI: 10.1080/02656736.2021.1895330] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Cheng B, Bing C, Staruch RM, Shaikh S, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch TW, Chopra R. The effect of injected dose on localized tumor accumulation and cardiac uptake of doxorubicin in a Vx2 rabbit tumor model using MR-HIFU mild hyperthermia and thermosensitive liposomes. Int J Hyperthermia 2020;37:1052-9. [PMID: 32892667 DOI: 10.1080/02656736.2020.1812737] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2020;37:711-41. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Cited by in Crossref: 98] [Cited by in F6Publishing: 73] [Article Influence: 98.0] [Reference Citation Analysis]
17 Lyon PC, Mannaris C, Gray M, Carlisle R, Gleeson FV, Cranston D, Wu F, Coussios CC. Large-Volume Hyperthermia for Safe and Cost-Effective Targeted Drug Delivery Using a Clinical Ultrasound-Guided Focused Ultrasound Device. Ultrasound in Medicine & Biology 2021;47:982-97. [DOI: 10.1016/j.ultrasmedbio.2020.12.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
18 Feddersen TV, Hernandez-Tamames JA, Franckena M, van Rhoon GC, Paulides MM. Clinical Performance and Future Potential of Magnetic Resonance Thermometry in Hyperthermia. Cancers (Basel) 2020;13:E31. [PMID: 33374176 DOI: 10.3390/cancers13010031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
19 Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020;7:363-88. [PMID: 33251282 DOI: 10.1080/23328940.2020.1769006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
20 Zhu L, Lam D, Pacia CP, Gach HM, Partanen A, Talcott MR, Greco SC, Zoberi I, Hallahan DE, Chen H, Altman MB. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. International Journal of Hyperthermia 2020;37:1159-73. [DOI: 10.1080/02656736.2020.1825836] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020;23:101561. [PMID: 32954229 DOI: 10.1016/j.isci.2020.101561] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
22 Tung S, Fahy AS, Lamberti-Pasculli M, Waspe AC, Pichardo S, Gerstle JT. Magnetic Resonance-guided High-intensity Focused Ultrasound (MRgHIFU) Virtual Treatment Planning for Abdominal Neuroblastoma Utilizing Retrospective Diagnostic 3D CT Images. J Pediatr Hematol Oncol 2019;41:e443-9. [PMID: 31449496 DOI: 10.1097/MPH.0000000000001563] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Zhu L, Partanen A, Talcott MR, Gach HM, Greco SC, Henke LE, Contreras JA, Zoberi I, Hallahan DE, Chen H, Altman MB. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J Hyperthermia 2019;36:1147-59. [PMID: 31752562 DOI: 10.1080/02656736.2019.1685684] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
24 Bing C, Cheng B, Staruch RM, Nofiele J, Wodzak Staruch M, Szczepanski D, Farrow-Gillespie A, Yang A, Laetsch TW, Chopra R. Breath-hold MR-HIFU hyperthermia: phantom and in vivo feasibility. Int J Hyperthermia 2019;36:1084-97. [PMID: 31707872 DOI: 10.1080/02656736.2019.1679893] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
25 Lau LW, Eranki A, Celik H, Kim A, Kim PCW, Sharma KV, Yarmolenko PS. Are Current Technical Exclusion Criteria for Clinical Trials of Magnetic Resonance-Guided High-Intensity Focused Ultrasound Too Restrictive?: Early Experiences at a Pediatric Hospital. J Ultrasound Med 2020;39:1849-55. [PMID: 32227606 DOI: 10.1002/jum.15259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Deenen D, Maljaars E, Sebeke L, de Jager B, Heijman E, Grüll H, Heemels W. Mixed-integer model predictive control for large-area MR-HIFU hyperthermia in cancer therapy. IFAC-PapersOnLine 2020;53:6637-6643. [DOI: 10.1016/j.ifacol.2020.12.084] [Reference Citation Analysis]
27 Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020;163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
28 Sebeke L, Deenen DA, Maljaars E, Heijman E, de Jager B, Heemels WPMH, Grüll H. Model predictive control for MR-HIFU-mediated, uniform hyperthermia. International Journal of Hyperthermia 2019;36:1039-49. [DOI: 10.1080/02656736.2019.1668065] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
29 Bing F, Cabras P, De Mathelin M, Gangi A, Vappou J. MR-guided high intensity focused ultrasound (MRgHIFU) ablation of bone lesions: Impact of the ultrasound focusing on the thermal curves and of dissection needles interposition on the ultrasound field. Journal of Neuroradiology 2019;46:69-70. [DOI: 10.1016/j.neurad.2019.01.064] [Reference Citation Analysis]
30 Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. Ultrasound Med Biol 2019;45:1025-43. [PMID: 30773377 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 16.3] [Reference Citation Analysis]
31 Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2019;36:196-203. [PMID: 30541350 DOI: 10.1080/02656736.2018.1550815] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
32 Abraham CB, Loree-Spacek J, Andrew Drainville R, Pichardo S, Curiel L. Development of custom RF coils for use in a small animal platform for magnetic resonance-guided focused ultrasound hyperthermia compatible with a clinical MRI scanner. Int J Hyperthermia 2018;35:348-60. [PMID: 30295125 DOI: 10.1080/02656736.2018.1503344] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Bing F, Vappou J, de Mathelin M, Gangi A. Targetability of osteoid osteomas and bone metastases by MR-guided high intensity focused ultrasound (MRgHIFU). International Journal of Hyperthermia 2018;35:471-9. [DOI: 10.1080/02656736.2018.1508758] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
34 Ozhinsky E, Salgaonkar VA, Diederich CJ, Rieke V. MR thermometry-guided ultrasound hyperthermia of user-defined regions using the ExAblate prostate ablation array. J Ther Ultrasound 2018;6:7. [PMID: 30123506 DOI: 10.1186/s40349-018-0115-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
35 Sharma KV, Yarmolenko PS, Eranki A, Partanen A, Celik H, Kim A, Oetgen M, Kim PCW. Magnetic Resonance Imaging-guided High-intensity Focused Ultrasound Applications in Pediatrics: Early Experience at Children's National Medical Center. Top Magn Reson Imaging 2018;27:45-51. [PMID: 29406415 DOI: 10.1097/RMR.0000000000000163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
36 Kneepkens E, Heijman E, Keupp J, Weiss S, Nicolay K, Grüll H. Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Invest Radiol 2017;52:620-30. [PMID: 28598900 DOI: 10.1097/RLI.0000000000000392] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
37 V. V. N. Kothapalli S, Altman MB, Zhu L, Partanen A, Cheng G, Gach HM, Straube W, Zoberi I, Hallahan DE, Chen H. Evaluation and selection of anatomic sites for magnetic resonance imaging-guided mild hyperthermia therapy: a healthy volunteer study. International Journal of Hyperthermia 2018;34:1381-9. [DOI: 10.1080/02656736.2017.1418536] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
38 Li M, Wang Y, Zhang Y, Zhou H, Huang Z, Li D. Highly flexible and stretchable MWCNT/HEPCP nanocomposites with integrated near-IR, temperature and stress sensitivity for electronic skin. J Mater Chem C 2018;6:5877-87. [DOI: 10.1039/c8tc01331d] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
39 Hijnen N, Kneepkens E, de Smet M, Langereis S, Heijman E, Grüll H. Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci U S A 2017;114:E4802-11. [PMID: 28566498 DOI: 10.1073/pnas.1700790114] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 12.0] [Reference Citation Analysis]
40 VanOsdol J, Ektate K, Ramasamy S, Maples D, Collins W, Malayer J, Ranjan A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release 2017;247:55-63. [PMID: 28042085 DOI: 10.1016/j.jconrel.2016.12.033] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
41 Borasi G, Nahum A, Paulides MM, Powathil G, Russo G, Fariselli L, Lamia D, Cirincione R, Forte GI, Borrazzo C, Caccia B, di Castro E, Pozzi S, Gilardi MC. Fast and high temperature hyperthermia coupled with radiotherapy as a possible new treatment for glioblastoma. J Ther Ultrasound 2016;4:32. [PMID: 27980785 DOI: 10.1186/s40349-016-0078-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
42 Frazier N, Payne A, de Bever J, Dillon C, Panda A, Subrahmanyam N, Ghandehari H. High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. J Control Release 2016;241:186-93. [PMID: 27686583 DOI: 10.1016/j.jconrel.2016.09.030] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
43 Chu W, Staruch RM, Pichardo S, Tillander M, Köhler MO, Huang Y, Ylihautala M, Mcguffin M, Czarnota G, Hynynen K. Magnetic Resonance–Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation. International Journal of Radiation Oncology*Biology*Physics 2016;95:1259-67. [DOI: 10.1016/j.ijrobp.2016.03.019] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
44 Bing C, Staruch RM, Tillander M, Köhler MO, Mougenot C, Ylihautala M, Laetsch TW, Chopra R. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU. Int J Hyperthermia 2016;32:673-87. [PMID: 27210733 DOI: 10.1080/02656736.2016.1179799] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
45 Shim J, Staruch RM, Koral K, Xie XJ, Chopra R, Laetsch TW. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics. Pediatr Blood Cancer 2016;63:1753-60. [PMID: 27199087 DOI: 10.1002/pbc.26079] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]