BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kipritidis J, Hofman MS, Siva S, Callahan J, Le Roux P, Woodruff HC, Counter WB, Keall PJ. Estimating lung ventilation directly from 4D CT Hounsfield unit values: Estimating lung ventilation from 4DCT HU values. Med Phys 2016;43:33-43. [DOI: 10.1118/1.4937599] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Xue P, Fu Y, Zhang J, Ma L, Ren M, Zhang Z, Dong E. Effective lung ventilation estimation based on 4D CT image registration and supervoxels. Biomedical Signal Processing and Control 2023;79:104074. [DOI: 10.1016/j.bspc.2022.104074] [Reference Citation Analysis]
2 Yang Z, Lafata KJ, Chen X, Bowsher J, Chang Y, Wang C, Yin FF. Quantification of lung function on CT images based on pulmonary radiomic filtering. Med Phys 2022;49:7278-86. [PMID: 35770964 DOI: 10.1002/mp.15837] [Reference Citation Analysis]
3 Zhou P, Zhang S. Functional lung imaging in thoracic tumor radiotherapy: Application and progress. Front Oncol 2022;12:908345. [DOI: 10.3389/fonc.2022.908345] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Li B, Ren G, Guo W, Zhang J, Lam S, Zheng X, Teng X, Wang Y, Yang Y, Dan Q, Meng L, Ma Z, Cheng C, Tao H, Lei H, Cai J, Ge H. Function-Wise Dual-Omics analysis for radiation pneumonitis prediction in lung cancer patients. Front Pharmacol 2022;13:971849. [DOI: 10.3389/fphar.2022.971849] [Reference Citation Analysis]
5 Ren G, Li B, Lam S, Xiao H, Huang Y, Cheung AL, Lu Y, Mao R, Ge H, Kong F(, Ho W, Cai J. A Transfer Learning Framework for Deep Learning-Based CT-to-Perfusion Mapping on Lung Cancer Patients. Front Oncol 2022;12:883516. [DOI: 10.3389/fonc.2022.883516] [Reference Citation Analysis]
6 Huang P, Yan H, Hu Z, Liu Z, Tian Y, Dai J. Predicting radiation pneumonitis with fuzzy clustering neural network using 4DCT ventilation image based dosimetric parameters. Quant Imaging Med Surg 2021;11:4731-41. [PMID: 34888185 DOI: 10.21037/qims-20-1095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
7 Vinogradskiy Y, Castillo R, Castillo E, Schubert L, Jones BL, Faught A, Gaspar LE, Kwak J, Bowles DW, Waxweiler T, Dougherty JM, Gao D, Stevens C, Miften M, Kavanagh B, Grills I, Rusthoven CG, Guerrero T. Results of a multi-institutional phase II clinical trial for 4DCT-ventilation functional avoidance thoracic radiotherapy. Int J Radiat Oncol Biol Phys 2021:S0360-3016(21)03070-4. [PMID: 34767934 DOI: 10.1016/j.ijrobp.2021.10.147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Lucia F, Rehn M, Blanc-Béguin F, Le Roux PY. Radiation Therapy Planning of Thoracic Tumors: A Review of Challenges Associated With Lung Toxicities and Potential Perspectives of Gallium-68 Lung PET/CT Imaging. Front Med (Lausanne) 2021;8:723748. [PMID: 34513884 DOI: 10.3389/fmed.2021.723748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Bin L, Yuan T, Zhaohui S, Wenting R, Zhiqiang L, Peng H, Shuying Y, Lei D, Jianyang W, Jingbo W, Tao Z, Xiaotong L, Nan B, Jianrong D. A deep learning-based dual-omics prediction model for radiation pneumonitis. Med Phys 2021. [PMID: 34224595 DOI: 10.1002/mp.15079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
10 Wuschner AE, Wallat EM, Flakus MJ, Shanmuganayagam D, Meudt J, Christensen GE, Reinhardt JM, Miller JR, Lawless MJ, Baschnagel AM, Bayouth JE. Radiation-induced Hounsfield unit change correlates with dynamic CT perfusion better than 4DCT-based ventilation measures in a novel-swine model. Sci Rep 2021;11:13156. [PMID: 34162987 DOI: 10.1038/s41598-021-92609-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
11 Ren G, Lam SK, Zhang J, Xiao H, Cheung AL, Ho WY, Qin J, Cai J. Investigation of a Novel Deep Learning-Based Computed Tomography Perfusion Mapping Framework for Functional Lung Avoidance Radiotherapy. Front Oncol 2021;11:644703. [PMID: 33842356 DOI: 10.3389/fonc.2021.644703] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Goo HW, Kim H, Goo JM. Basics and Clinical Application of CT for Pulmonary Functional Evaluation. Medical Radiology 2021. [DOI: 10.1007/978-3-030-43539-4_3] [Reference Citation Analysis]
13 Cazoulat G, Balter JM, Matuszak MM, Jolly S, Owen D, Brock KK. Mapping lung ventilation through stress maps derived from biomechanical models of the lung. Med Phys 2021;48:715-23. [PMID: 33617034 DOI: 10.1002/mp.14643] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
14 Castillo E, Castillo R, Vinogradskiy Y, Nair G, Grills I, Guerrero T, Stevens C. Technical Note: On the spatial correlation between robust CT-ventilation methods and SPECT ventilation. Med Phys 2020;47:5731-8. [PMID: 33007118 DOI: 10.1002/mp.14511] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Kadoya N, Nemoto H, Kajikawa T, Nakajima Y, Kanai T, Ieko Y, Ikeda R, Sato K, Dobashi S, Takeda K, Jingu K. Evaluation of four-dimensional cone beam computed tomography ventilation images acquired with two different linear accelerators at various gantry speeds using a deformable lung phantom. Phys Med 2020;77:75-83. [PMID: 32795891 DOI: 10.1016/j.ejmp.2020.07.030] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Watase S, Sonoda A, Matsutani N, Muraoka S, Hanaoka J, Nitta N, Watanabe Y. Evaluation of intrathoracic tracheal narrowing in patients with obstructive ventilatory impairment using dynamic chest radiography: A preliminary study. Eur J Radiol 2020;129:109141. [PMID: 32593078 DOI: 10.1016/j.ejrad.2020.109141] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
17 Wallat EM, Flakus MJ, Wuschner AE, Shao W, Christensen GE, Reinhardt JM, Baschnagel AM, Bayouth JE. Modeling the impact of out‐of‐phase ventilation on normal lung tissue response to radiation dose. Med Phys 2020;47:3233-42. [DOI: 10.1002/mp.14146] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
18 Tian Y, Miao J, Liu Z, Huang P, Wang W, Wang X, Zhai Y, Wang J, Li M, Ma P, Zhang K, Yan H, Dai J. Availability of a simplified lung ventilation imaging algorithm based on four-dimensional computed tomography. Phys Med 2019;65:53-8. [PMID: 31430587 DOI: 10.1016/j.ejmp.2019.08.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
19 Hegi-johnson F, de Ruysscher D, Keall P, Hendriks L, Vinogradskiy Y, Yamamoto T, Tahir B, Kipritidis J. Imaging of regional ventilation: Is CT ventilation imaging the answer? A systematic review of the validation data. Radiotherapy and Oncology 2019;137:175-85. [DOI: 10.1016/j.radonc.2019.03.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
20 Szmul A, Matin T, Gleeson FV, Schnabel JA, Grau V, Papież BW. Patch-based lung ventilation estimation using multi-layer supervoxels. Comput Med Imaging Graph 2019;74:49-60. [PMID: 31009928 DOI: 10.1016/j.compmedimag.2019.04.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
21 Vinogradskiy Y. CT-based ventilation imaging in radiation oncology. BJR Open 2019;1:20180035. [PMID: 33178925 DOI: 10.1259/bjro.20180035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
22 Kipritidis J, Tahir BA, Cazoulat G, Hofman MS, Siva S, Callahan J, Hardcastle N, Yamamoto T, Christensen GE, Reinhardt JM, Kadoya N, Patton TJ, Gerard SE, Duarte I, Archibald-Heeren B, Byrne M, Sims R, Ramsay S, Booth JT, Eslick E, Hegi-Johnson F, Woodruff HC, Ireland RH, Wild JM, Cai J, Bayouth JE, Brock K, Keall PJ. The VAMPIRE challenge: A multi-institutional validation study of CT ventilation imaging. Med Phys 2019;46:1198-217. [PMID: 30575051 DOI: 10.1002/mp.13346] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
23 Ren G, Ho WY, Qin J, Cai J. Deriving Lung Perfusion Directly from CT Image Using Deep Convolutional Neural Network: A Preliminary Study. Artificial Intelligence in Radiation Therapy 2019. [DOI: 10.1007/978-3-030-32486-5_13] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Le Roux P, Hicks RJ, Siva S, Hofman MS. PET/CT Lung Ventilation and Perfusion Scanning using Galligas and Gallium-68-MAA. Seminars in Nuclear Medicine 2019;49:71-81. [DOI: 10.1053/j.semnuclmed.2018.10.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
25 Goo HW. Four-Dimensional Thoracic CT in Free-Breathing Children. Korean J Radiol 2019;20:50-7. [PMID: 30627021 DOI: 10.3348/kjr.2018.0325] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
26 Tahir BA, Hughes PJ, Robinson SD, Marshall H, Stewart NJ, Norquay G, Biancardi A, Chan H, Collier GJ, Hart KA, Swinscoe JA, Hatton MQ, Wild JM, Ireland RH. Spatial Comparison of CT-Based Surrogates of Lung Ventilation With Hyperpolarized Helium-3 and Xenon-129 Gas MRI in Patients Undergoing Radiation Therapy. International Journal of Radiation Oncology*Biology*Physics 2018;102:1276-86. [DOI: 10.1016/j.ijrobp.2018.04.077] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
27 Patton TJ, Gerard SE, Shao W, Christensen GE, Reinhardt JM, Bayouth JE. Quantifying ventilation change due to radiation therapy using 4DCT Jacobian calculations. Med Phys 2018;45:4483-92. [PMID: 30047588 DOI: 10.1002/mp.13105] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
28 Bucknell NW, Hardcastle N, Bressel M, Hofman MS, Kron T, Ball D, Siva S. Functional lung imaging in radiation therapy for lung cancer: A systematic review and meta-analysis. Radiother Oncol 2018;129:196-208. [PMID: 30082143 DOI: 10.1016/j.radonc.2018.07.014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
29 Eslick EM, Kipritidis J, Gradinscak D, Stevens MJ, Bailey DL, Harris B, Booth JT, Keall PJ. CT ventilation imaging derived from breath hold CT exhibits good regional accuracy with Galligas PET. Radiotherapy and Oncology 2018;127:267-73. [DOI: 10.1016/j.radonc.2017.12.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
30 Hegi-Johnson F, Keall P, Barber J, Bui C, Kipritidis J. Evaluating the accuracy of 4D-CT ventilation imaging: First comparison with Technegas SPECT ventilation. Med Phys 2017;44:4045-55. [PMID: 28477378 DOI: 10.1002/mp.12317] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
31 Ireland R, Tahir B, Wild J, Lee C, Hatton M. Functional Image-guided Radiotherapy Planning for Normal Lung Avoidance. Clinical Oncology 2016;28:695-707. [DOI: 10.1016/j.clon.2016.08.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]