BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kipritidis J, Hugo G, Weiss E, Williamson J, Keall PJ. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging. Med Phys 2015;42:1255-67. [PMID: 25735281 DOI: 10.1118/1.4907991] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Terunuma T, Sakae T, Hu Y, Takei H, Moriya S, Okumura T, Sakurai H. Explainability and controllability of patient-specific deep learning with attention-based augmentation for markerless image-guided radiotherapy. Med Phys 2023;50:480-94. [PMID: 36354286 DOI: 10.1002/mp.16095] [Reference Citation Analysis]
2 Yang Z, Lafata KJ, Chen X, Bowsher J, Chang Y, Wang C, Yin FF. Quantification of lung function on CT images based on pulmonary radiomic filtering. Med Phys 2022;49:7278-86. [PMID: 35770964 DOI: 10.1002/mp.15837] [Reference Citation Analysis]
3 Liu Z, Tian Y, Miao J, Men K, Wang W, Wang X, Zhang T, Bi N, Dai J. Deriving Pulmonary Ventilation Images From Clinical 4D-CBCT Using a Deep Learning-Based Model. Front Oncol 2022;12:889266. [PMID: 35586492 DOI: 10.3389/fonc.2022.889266] [Reference Citation Analysis]
4 Huang P, Yan H, Hu Z, Liu Z, Tian Y, Dai J. Predicting radiation pneumonitis with fuzzy clustering neural network using 4DCT ventilation image based dosimetric parameters. Quant Imaging Med Surg 2021;11:4731-41. [PMID: 34888185 DOI: 10.21037/qims-20-1095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
5 Das R, Sen S, Maulik U. A Survey on Fuzzy Deep Neural Networks. ACM Comput Surv 2021;53:1-25. [DOI: 10.1145/3369798] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
6 Mo Y, Liu J, Li Q, Ma J, Zhang H. [Four-dimensional cone-beam CT reconstruction based on motion-compensated robust principal component analysis]. Nan Fang Yi Ke Da Xue Xue Bao 2021;41:243-9. [PMID: 33624598 DOI: 10.12122/j.issn.1673-4254.2021.02.12] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Mo Y, Liu J, Li Q, Yu J, Zhang K, Gao Y, Zhang H. Joint Motion Estimation and Compensation for Four-Dimensional Cone-Beam Computed Tomography Image Reconstruction. IEEE Access 2021;9:147559-147569. [DOI: 10.1109/access.2021.3110861] [Reference Citation Analysis]
8 Vicente E, Modiri A, Kipritidis J, Hagan A, Yu K, Wibowo H, Yan Y, Owen DR, Matuszak MM, Mohindra P, Timmerman R, Sawant A. Functionally weighted airway sparing (FWAS): a functional avoidance method for preserving post-treatment ventilation in lung radiotherapy. Phys Med Biol 2020;65:165010. [PMID: 32575096 DOI: 10.1088/1361-6560/ab9f5d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
9 Kadoya N, Nemoto H, Kajikawa T, Nakajima Y, Kanai T, Ieko Y, Ikeda R, Sato K, Dobashi S, Takeda K, Jingu K. Evaluation of four-dimensional cone beam computed tomography ventilation images acquired with two different linear accelerators at various gantry speeds using a deformable lung phantom. Phys Med 2020;77:75-83. [PMID: 32795891 DOI: 10.1016/j.ejmp.2020.07.030] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Tian Y, Miao J, Liu Z, Huang P, Wang W, Wang X, Zhai Y, Wang J, Li M, Ma P, Zhang K, Yan H, Dai J. Availability of a simplified lung ventilation imaging algorithm based on four-dimensional computed tomography. Phys Med 2019;65:53-8. [PMID: 31430587 DOI: 10.1016/j.ejmp.2019.08.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
11 Rigaud B, Simon A, Castelli J, Lafond C, Acosta O, Haigron P, Cazoulat G, de Crevoisier R. Deformable image registration for radiation therapy: principle, methods, applications and evaluation. Acta Oncol 2019;58:1225-37. [PMID: 31155990 DOI: 10.1080/0284186X.2019.1620331] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 11.5] [Reference Citation Analysis]
12 Green OL, Henke LE, Hugo GD. Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy. Semin Radiat Oncol 2019;29:219-27. [PMID: 31027639 DOI: 10.1016/j.semradonc.2019.02.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 12.3] [Reference Citation Analysis]
13 Vinogradskiy Y. CT-based ventilation imaging in radiation oncology. BJR Open 2019;1:20180035. [PMID: 33178925 DOI: 10.1259/bjro.20180035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
14 Castillo E, Castillo R, Vinogradskiy Y, Dougherty M, Solis D, Myziuk N, Thompson A, Guerra R, Nair G, Guerrero T. Robust CT ventilation from the integral formulation of the Jacobian. Med Phys 2019;46:2115-25. [PMID: 30779353 DOI: 10.1002/mp.13453] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
15 Bucknell NW, Hardcastle N, Bressel M, Hofman MS, Kron T, Ball D, Siva S. Functional lung imaging in radiation therapy for lung cancer: A systematic review and meta-analysis. Radiother Oncol 2018;129:196-208. [PMID: 30082143 DOI: 10.1016/j.radonc.2018.07.014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
16 Vinogradskiy Y, Faught A, Castillo R, Castillo E, Guerrero T, Miften M, Liu AK. Using 4DCT-ventilation to characterize lung function changes for pediatric patients getting thoracic radiotherapy. J Appl Clin Med Phys 2018;19:407-12. [PMID: 29943892 DOI: 10.1002/acm2.12397] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
17 Jensen KR, Brink C, Hansen O, Bernchou U. Ventilation measured on clinical 4D-CBCT: Increased ventilation accuracy through improved image quality. Radiotherapy and Oncology 2017;125:459-63. [DOI: 10.1016/j.radonc.2017.10.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
18 Fried DV, Das SK, Marks LB. Imaging Radiation-Induced Normal Tissue Injury to Quantify Regional Dose Response. Semin Radiat Oncol 2017;27:325-31. [PMID: 28865515 DOI: 10.1016/j.semradonc.2017.04.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
19 Archibald-Heeren BR, Byrne MV, Hu Y, Cai M, Wang Y. Robust optimization of VMAT for lung cancer: Dosimetric implications of motion compensation techniques. J Appl Clin Med Phys 2017;18:104-16. [PMID: 28786213 DOI: 10.1002/acm2.12142] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
20 Vinogradskiy Y, Schubert L, Diot Q, Waxweiller T, Koo P, Castillo R, Castillo E, Guerrero T, Rusthoven C, Gaspar L, Kavanagh B, Miften M. Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An Evaluation for Functional Avoidance Radiation Therapy. Int J Radiat Oncol Biol Phys 2016;95:1273-80. [PMID: 27354134 DOI: 10.1016/j.ijrobp.2016.02.058] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
21 Hegi-Johnson F, Keall P, Barber J, Bui C, Kipritidis J. Evaluating the accuracy of 4D-CT ventilation imaging: First comparison with Technegas SPECT ventilation. Med Phys 2017;44:4045-55. [PMID: 28477378 DOI: 10.1002/mp.12317] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
22 Woodruff HC, Shieh C, Hegi-johnson F, Keall PJ, Kipritidis J. Quantifying the reproducibility of lung ventilation images between 4-Dimensional Cone Beam CT and 4-Dimensional CT. Med Phys 2017;44:1771-81. [DOI: 10.1002/mp.12199] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
23 Hugo GD, Weiss E, Sleeman WC, Balik S, Keall PJ, Lu J, Williamson JF. A longitudinal four-dimensional computed tomography and cone beam computed tomography dataset for image-guided radiation therapy research in lung cancer. Med Phys 2017;44:762-71. [PMID: 27991677 DOI: 10.1002/mp.12059] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 6.3] [Reference Citation Analysis]
24 Ireland R, Tahir B, Wild J, Lee C, Hatton M. Functional Image-guided Radiotherapy Planning for Normal Lung Avoidance. Clinical Oncology 2016;28:695-707. [DOI: 10.1016/j.clon.2016.08.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
25 Zhang H, Liu Y, Tao X, Bian Z, Ma J, Chen W. Four dimensional cone-beam computed tomography reconstruction using multi-phase projections. 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) 2016. [DOI: 10.1109/nssmic.2016.8069595] [Reference Citation Analysis]
26 Cazoulat G, Owen D, Matuszak MM, Balter JM, Brock KK. Biomechanical deformable image registration of longitudinal lung CT images using vessel information. Phys Med Biol 2016;61:4826-39. [PMID: 27273115 DOI: 10.1088/0031-9155/61/13/4826] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
27 Zhang GG, Latifi K, Du K, Reinhardt JM, Christensen GE, Ding K, Feygelman V, Moros EG. Evaluation of the ΔV 4D CT ventilation calculation method using in vivo xenon CT ventilation data and comparison to other methods. J Appl Clin Med Phys 2016;17:550-60. [PMID: 27074479 DOI: 10.1120/jacmp.v17i2.5985] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
28 Yoganathan SA, Maria Das KJ, Mohamed Ali S, Agarwal A, Mishra SP, Kumar S. Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed. Br J Radiol 2016;89:20150870. [PMID: 26916281 DOI: 10.1259/bjr.20150870] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
29 Park S, Lee SJ, Weiss E, Motai Y. Intra- and Inter-Fractional Variation Prediction of Lung Tumors Using Fuzzy Deep Learning. IEEE J Transl Eng Health Med 2016;4:4300112. [PMID: 27170914 DOI: 10.1109/JTEHM.2016.2516005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
30 Kipritidis J, Hofman MS, Siva S, Callahan J, Le Roux P, Woodruff HC, Counter WB, Keall PJ. Estimating lung ventilation directly from 4D CT Hounsfield unit values: Estimating lung ventilation from 4DCT HU values. Med Phys 2016;43:33-43. [DOI: 10.1118/1.4937599] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]