BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng B, Ye L, Zhou Y, Zhu S, Wang Q, Shi H, Chen D, Wei X, Wang Z, Li X, Xiao J, Xu H, Zhang H. Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury. J Cell Mol Med 2016;20:1062-75. [PMID: 26769343 DOI: 10.1111/jcmm.12761] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Xiao C, Yin W, Zhong Y, Luo J, Liu L, Liu W, Zhao K. The role of PI3K/Akt signalling pathway in spinal cord injury. Biomedicine & Pharmacotherapy 2022;156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Reference Citation Analysis]
2 Deng L, Lv JQ, Sun L. Experimental treatments to attenuate blood spinal cord barrier rupture in rats with traumatic spinal cord injury: A meta-analysis and systematic review. Front Pharmacol 2022;13:950368. [DOI: 10.3389/fphar.2022.950368] [Reference Citation Analysis]
3 Luo D, Li X, Hou Y, Hou Y, Luan J, Weng J, Zhan J, Lin D. Sodium tanshinone IIA sulfonate promotes spinal cord injury repair by inhibiting blood spinal cord barrier disruption in vitro and in vivo. Drug Dev Res 2021. [PMID: 34842291 DOI: 10.1002/ddr.21898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Huang C, Zhang W, Chu F, Qian H, Wang Y, Qi F, Ye M, Zhou J, Lin Z, Dong C, Wang X, Wang Q, Jin H. Patchouli Alcohol Improves the Integrity of the Blood-Spinal Cord Barrier by Inhibiting Endoplasmic Reticulum Stress Through the Akt/CHOP/Caspase-3 Pathway Following Spinal Cord Injury. Front Cell Dev Biol 2021;9:693533. [PMID: 34368142 DOI: 10.3389/fcell.2021.693533] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Bie F, Wang K, Xu T, Yuan J, Ding H, Lv B, Liu Y, Lan M. The potential roles of circular RNAs as modulators in traumatic spinal cord injury. Biomed Pharmacother 2021;141:111826. [PMID: 34328121 DOI: 10.1016/j.biopha.2021.111826] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Wang Q, Dong X, Zhang H, Li P, Lu X, Wu M, Zhang W, Lin X, Zheng Y, Mao Y, Zhang J, Lin Y, Chen X, Chen D, Wang J, Xiao J. A novel hydrogel-based combination therapy for effective neuroregeneration after spinal cord injury. Chemical Engineering Journal 2021;415:128964. [DOI: 10.1016/j.cej.2021.128964] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
7 Zheng B, Jin Y, Mi S, Xu W, Yang X, Hong Z, Wang Z. Dl-3-n-butylphthalide Attenuates Spinal Cord Injury via Regulation of MMPs and Junction Proteins in Mice. Neurochem Res 2021;46:2297-306. [PMID: 34086144 DOI: 10.1007/s11064-021-03361-7] [Reference Citation Analysis]
8 Wang X, Wei Z, Tang Z, Xue C, Yu H, Zhang D, Li Y, Liu X, Shi Y, Zhang L, Chen G, Zhou H, Wang J, Wang X. IL-37bΔ1-45 suppresses the migration and invasion of endometrial cancer cells by targeting the Rac1/NF-κB/MMP2 signal pathway. Lab Invest 2021;101:760-74. [PMID: 33753880 DOI: 10.1038/s41374-021-00544-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 2021;38:1203-24. [PMID: 33292072 DOI: 10.1089/neu.2020.7413] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 28.0] [Reference Citation Analysis]
10 Ye LX, An NC, Huang P, Li DH, Zheng ZL, Ji H, Li H, Chen DQ, Wu YQ, Xiao J, Xu K, Li XK, Zhang HY. Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury. Neural Regen Res 2021;16:765-71. [PMID: 33063740 DOI: 10.4103/1673-5374.295347] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
11 Maiuolo J, Mollace R, Gliozzi M, Musolino V, Carresi C, Paone S, Scicchitano M, Macrì R, Nucera S, Bosco F, Scarano F, Zito MC, Ruga S, Tavernese A, Mollace V. The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-Cov-2 Infection. Int J Mol Sci 2020;21:E9309. [PMID: 33291346 DOI: 10.3390/ijms21239309] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
12 Ying X, Xie Q, Li S, Yu X, Zhou K, Yue J, Chen X, Tu W, Yang G, Jiang S. Water treadmill training attenuates blood-spinal cord barrier disruption in rats by promoting angiogenesis and inhibiting matrix metalloproteinase-2/9 expression following spinal cord injury. Fluids Barriers CNS 2020;17:70. [PMID: 33292360 DOI: 10.1186/s12987-020-00232-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
13 Peng P, Zhang B, Huang J, Xing C, Liu W, Sun C, Guo W, Yao S, Ruan W, Ning G, Kong X, Feng S. Identification of a circRNA-miRNA-mRNA network to explore the effects of circRNAs on pathogenesis and treatment of spinal cord injury. Life Sciences 2020;257:118039. [DOI: 10.1016/j.lfs.2020.118039] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
14 Abou-El-Hassan H, Bsat S, Sukhon F, Assaf EJ, Mondello S, Kobeissy F, Wang KKW, Weiner HL, Omeis I. Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020;57:2702-26. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
15 Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020;8:190. [PMID: 32269994 DOI: 10.3389/fcell.2020.00190] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
16 Zhu N, Ruan J, Yang X, Huang Y, Jiang Y, Wang Y, Cai D, Geng Y, Fang M. Triptolide improves spinal cord injury by promoting autophagy and inhibiting apoptosis. Cell Biol Int 2020;44:785-94. [DOI: 10.1002/cbin.11273] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
17 Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2020;66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Cited by in Crossref: 65] [Cited by in F6Publishing: 76] [Article Influence: 21.7] [Reference Citation Analysis]
18 Wang J, Nie Z, Zhao H, Gao K, Cao Y. MiRNA-125a-5p attenuates blood-spinal cord barrier permeability under hypoxia in vitro. Biotechnol Lett 2020;42:25-34. [PMID: 31696327 DOI: 10.1007/s10529-019-02753-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
19 Xi J, Luo X, Wang Y, Li J, Guo L, Wu G, Li Q. Tetrahydrocurcumin protects against spinal cord injury and inhibits the oxidative stress response by regulating FOXO4 in model rats. Exp Ther Med 2019;18:3681-7. [PMID: 31602247 DOI: 10.3892/etm.2019.7974] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
20 Wei Z, Fan B, Ding H, Liu Y, Tang H, Pan D, Shi J, Zheng P, Shi H, Wu H, Li A, Feng S. Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for central nervous system injury. Mol Cell Biochem 2019;457:51-9. [PMID: 30830528 DOI: 10.1007/s11010-019-03511-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
21 Wang H, Wu Y, Han W, Li J, Xu K, Li Z, Wang Q, Xu K, Liu Y, Xie L, Wu J, He H, Xu H, Xiao J. Hydrogen Sulfide Ameliorates Blood-Spinal Cord Barrier Disruption and Improves Functional Recovery by Inhibiting Endoplasmic Reticulum Stress-Dependent Autophagy. Front Pharmacol 2018;9:858. [PMID: 30210332 DOI: 10.3389/fphar.2018.00858] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
22 Ozturk AM, Sozbilen MC, Sevgili E, Dagci T, Özyalcin H, Armagan G. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury. Injury 2018;49:1038-45. [PMID: 29602490 DOI: 10.1016/j.injury.2018.03.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
23 Natsheh H, Touitou E. Phospholipid Magnesome—a nasal vesicular carrier for delivery of drugs to brain. Drug Deliv and Transl Res 2018;8:806-19. [DOI: 10.1007/s13346-018-0503-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
24 Li J, Wang Q, Cai H, He Z, Wang H, Chen J, Zheng Z, Yin J, Liao Z, Xu H, Xiao J, Gong F. FGF1 improves functional recovery through inducing PRDX1 to regulate autophagy and anti-ROS after spinal cord injury. J Cell Mol Med 2018;22:2727-38. [PMID: 29512938 DOI: 10.1111/jcmm.13566] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
25 Birukov KG, Karki P. Injured lung endothelium: mechanisms of self-repair and agonist-assisted recovery (2017 Grover Conference Series). Pulm Circ 2018;8:2045893217752660. [PMID: 29261029 DOI: 10.1177/2045893217752660] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
26 Li J, Wang Q, Wang H, Wu Y, Yin J, Chen J, Zheng Z, Jiang T, Xie L, Wu F, Zhang H, Li X, Xu H, Xiao J. Lentivirus Mediating FGF13 Enhances Axon Regeneration after Spinal Cord Injury by Stabilizing Microtubule and Improving Mitochondrial Function. J Neurotrauma 2018;35:548-59. [PMID: 28922963 DOI: 10.1089/neu.2017.5205] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
27 Zheng B, Zhou Y, Zhang H, Yang G, Hong Z, Han D, Wang Q, He Z, Liu Y, Wu F, Zhang X, Tong S, Xu H, Xiao J. Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury. Int J Biol Sci 2017;13:1520-31. [PMID: 29230100 DOI: 10.7150/ijbs.21107] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
28 Wang Q, He Y, Zhao Y, Xie H, Lin Q, He Z, Wang X, Li J, Zhang H, Wang C, Gong F, Li X, Xu H, Ye Q, Xiao J. A Thermosensitive Heparin-Poloxamer Hydrogel Bridges aFGF to Treat Spinal Cord Injury. ACS Appl Mater Interfaces 2017;9:6725-45. [PMID: 28181797 DOI: 10.1021/acsami.6b13155] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 12.0] [Reference Citation Analysis]
29 Zhang D, Xuan J, Zheng BB, Zhou YL, Lin Y, Wu YS, Zhou YF, Huang YX, Wang Q, Shen LY, Mao C, Wu Y, Wang XY, Tian NF, Xu HZ, Zhang XL. Metformin Improves Functional Recovery After Spinal Cord Injury via Autophagy Flux Stimulation. Mol Neurobiol 2017;54:3327-41. [PMID: 27167128 DOI: 10.1007/s12035-016-9895-1] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 13.3] [Reference Citation Analysis]