BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Elshawi R, Sherif Y, Al‐mallah M, Sakr S. Interpretability in healthcare: A comparative study of local machine learning interpretability techniques. Computational Intelligence 2021;37:1633-50. [DOI: 10.1111/coin.12410] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Zhang W. A qualitatively analyzable two-stage ensemble model based on machine learning for credit risk early warning: Evidence from Chinese manufacturing companies. Information Processing & Management 2023;60:103267. [DOI: 10.1016/j.ipm.2023.103267] [Reference Citation Analysis]
2 Oliveira FM, Balbino MS, Zarate LE, Ngo F, Govindu R, Agarwal A, Nobre CN. Predicting inmates misconduct using the SHAP approach. Artif Intell Law 2023. [DOI: 10.1007/s10506-023-09352-z] [Reference Citation Analysis]
3 Xi J, Wang D, Yang X, Zhang W, Huang Q. Cancer omic data based explainable AI drug recommendation inference: A traceability perspective for explainability. Biomedical Signal Processing and Control 2023;79:104144. [DOI: 10.1016/j.bspc.2022.104144] [Reference Citation Analysis]
4 Valizade D, Schulz F, Nicoara C. Towards a Paradigm Shift: How Can Machine Learning Extend the Boundaries of Quantitative Management Scholarship? British J of Management 2022. [DOI: 10.1111/1467-8551.12678] [Reference Citation Analysis]
5 Coqueret G. The determinants of health assessment in the United States: A supervised learning approach. Healthcare Analytics 2022;2:100106. [DOI: 10.1016/j.health.2022.100106] [Reference Citation Analysis]
6 Gurina E, Klyuchnikov N, Antipova K, Koroteev D. Making the black-box brighter: Interpreting machine learning algorithm for forecasting drilling accidents. Journal of Petroleum Science and Engineering 2022;218:111041. [DOI: 10.1016/j.petrol.2022.111041] [Reference Citation Analysis]
7 Elshawi R, Sakr S. cSmartML-Glassbox: Increasing Transparency and Controllability in Automated Clustering. 2022 IEEE International Conference on Data Mining Workshops (ICDMW) 2022. [DOI: 10.1109/icdmw58026.2022.00015] [Reference Citation Analysis]
8 Takahashi S, Terai H, Hoshino M, Tsujio T, Kato M, Toyoda H, Suzuki A, Tamai K, Yabu A, Nakamura H. Machine-learning-based approach for nonunion prediction following osteoporotic vertebral fractures. Eur Spine J 2022. [DOI: 10.1007/s00586-022-07431-4] [Reference Citation Analysis]
9 Bernal J, Mazo C. Transparency of Artificial Intelligence in Healthcare: Insights from Professionals in Computing and Healthcare Worldwide. Applied Sciences 2022;12:10228. [DOI: 10.3390/app122010228] [Reference Citation Analysis]
10 Ferreira R, Goularte V, Pate A, Braga MC, Abreub A, Pereira RG. Predicting hospital admissions and its cost due to respiratory diseases in Brazil using Machine Learning Time Series Forecasting.. [DOI: 10.21203/rs.3.rs-2050214/v1] [Reference Citation Analysis]
11 Lopes P, Silva E, Braga C, Oliveira T, Rosado L. XAI Systems Evaluation: A Review of Human and Computer-Centred Methods. Applied Sciences 2022;12:9423. [DOI: 10.3390/app12199423] [Reference Citation Analysis]
12 Khan T, Ahmad K, Khan J, Khan I, Ahmad N. An Explainable Regression Framework for Predicting Remaining Useful Life of Machines. 2022 27th International Conference on Automation and Computing (ICAC) 2022. [DOI: 10.1109/icac55051.2022.9911162] [Reference Citation Analysis]
13 Cheema C, Baldwin J, Rodeghero J, Werneke MW, Mioduski JE, Jeffries L, Kucksdorf J, Shepherd M, Randall K, Dionne C. The effectiveness of post-professional physical therapist training in the treatment of chronic low back pain using a propensity score approach with machine learning. Musculoskeletal Care 2022;20:625-40. [PMID: 35226394 DOI: 10.1002/msc.1626] [Reference Citation Analysis]
14 Levy JJ, Lima JF, Miller MW, Freed GL, O'malley AJ, Emeny RT. Machine Learning Approaches for Hospital Acquired Pressure Injuries: A Retrospective Study of Electronic Medical Records. Front Med Technol 2022;4. [DOI: 10.3389/fmedt.2022.926667] [Reference Citation Analysis]
15 Amini M, Bagheri A, Delen D. An explanatory analytics model for identifying factors indicative of long- versus short-term survival after lung transplantation. Decision Analytics Journal 2022;3:100058. [DOI: 10.1016/j.dajour.2022.100058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kavila SD, Bandaru R, Gali TVMB, Shafi J. Analysis of Cardiovascular Disease Prediction Using Model-Agnostic Explainable Artificial Intelligence Techniques. Advances in Medical Technologies and Clinical Practice 2022. [DOI: 10.4018/978-1-6684-3791-9.ch002] [Reference Citation Analysis]
17 Alhaddad AY, Aly H, Gad H, Al-ali A, Sadasivuni KK, Cabibihan J, Malik RA. Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection. Front Bioeng Biotechnol 2022;10:876672. [DOI: 10.3389/fbioe.2022.876672] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Jin D, Sergeeva E, Weng WH, Chauhan G, Szolovits P. Explainable deep learning in healthcare: A methodological survey from an attribution view. WIREs Mech Dis 2022;:e1548. [PMID: 35037736 DOI: 10.1002/wsbm.1548] [Reference Citation Analysis]
19 Hild M, Untergasser S. Humanoide Robotik und körperlose KI-Systeme im Gesundheitswesen. Künstliche Intelligenz im Gesundheitswesen 2022. [DOI: 10.1007/978-3-658-33597-7_37] [Reference Citation Analysis]
20 Ferreira CA, Cantão AH, Baranauskas JA. Decision Tree Induction Through Meta-learning. IFIP Advances in Information and Communication Technology 2022. [DOI: 10.1007/978-3-031-08337-2_9] [Reference Citation Analysis]
21 Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks 2022;3:58-73. [DOI: 10.1016/j.ijin.2022.05.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Alban AQ, Ayesh M, Alhaddad AY, Khalid Al-ali A, So WC, Connor O, Cabibihan J. Detection of Challenging Behaviours of Children with Autism Using Wearable Sensors during Interactions with Social Robots. 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN) 2021. [DOI: 10.1109/ro-man50785.2021.9515459] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]