BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects: Soluble olfactory proteins in insects. Biol Rev 2018;93:184-200. [DOI: 10.1111/brv.12339] [Cited by in Crossref: 196] [Cited by in F6Publishing: 160] [Article Influence: 39.2] [Reference Citation Analysis]
Number Citing Articles
1 Ma S, Li LL, Yao WC, Yin MZ, Li JQ, Xu JW, Dewer Y, Zhu XY, Zhang YN. Two Odorant-Binding Proteins Involved in the Recognition of Sex Pheromones in Spodoptera litura Larvae. J Agric Food Chem 2022. [PMID: 36129378 DOI: 10.1021/acs.jafc.2c04335] [Reference Citation Analysis]
2 Pan S, Li W, Qin Y, Yang Z, Liu Y, Shi Z, Qu C, Luo C, Yang X. Discovery of Novel Potential Aphid Repellents: Geranic Acid Esters Containing Substituted Aromatic Rings. Molecules 2022;27:5949. [DOI: 10.3390/molecules27185949] [Reference Citation Analysis]
3 Yin NN, Yang AJ, Wu C, Xiao HY, Guo YR, Liu NY. Genome-Wide Analysis of Odorant-Binding Proteins in Papilio xuthus with Focus on the Perception of Two PxutGOBPs to Host Odorants and Insecticides. J Agric Food Chem 2022. [PMID: 36002911 DOI: 10.1021/acs.jafc.2c03396] [Reference Citation Analysis]
4 Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022;13:924750. [DOI: 10.3389/fphys.2022.924750] [Reference Citation Analysis]
5 Mani K, Nganso BT, Rodin P, Otmy A, Rafaeli A, Soroker V. Effects of Niemann-Pick type C2 (NPC2) gene transcripts silencing on behavior of Varroa destructor and molecular changes in the putative olfactory gene networks. Insect Biochem Mol Biol 2022;148:103817. [PMID: 35926690 DOI: 10.1016/j.ibmb.2022.103817] [Reference Citation Analysis]
6 Wang K, He Y, Zhang Y, Guo Z, Xie W, Wu Q, Wang S. Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa. Journal of Integrative Agriculture 2022. [DOI: 10.1016/j.jia.2022.08.015] [Reference Citation Analysis]
7 Meslin C, Mainet P, Montagné N, Robin S, Legeai F, Bretaudeau A, Johnston JS, Koutroumpa F, Persyn E, Monsempès C, François MC, Jacquin-Joly E. Spodoptera littoralis genome mining brings insights on the dynamic of expansion of gustatory receptors in polyphagous noctuidae. G3 (Bethesda) 2022;12:jkac131. [PMID: 35652787 DOI: 10.1093/g3journal/jkac131] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ma Y, Guo Z, Wang L, Wang B, Huang T, Tang B, Zhang G, Zhou Q. The genome of the rice planthopper egg parasitoid wasps Anagrus nilaparvatae casts light on the chemo- and mechanosensation in parasitism. BMC Genomics 2022;23:541. [PMID: 35902811 DOI: 10.1186/s12864-022-08656-9] [Reference Citation Analysis]
9 Wu F, Liu S, Zhang X, Hu H, Wei Q, Han B, Li H. Differences in ASP1 expression and binding dynamics to queen mandibular pheromone HOB between Apis mellifera and Apis cerana workers reveal olfactory adaptation to colony organization. Int J Biol Macromol 2022;217:583-91. [PMID: 35850267 DOI: 10.1016/j.ijbiomac.2022.07.064] [Reference Citation Analysis]
10 Li J, Yin M, Yao W, Ma S, Dewer Y, Liu X, Wang Y, Wang C, Li B, Zhu X. Genome-Wide Analysis of Odorant-Binding Proteins and Chemosensory Proteins in the Bean bug Riptortus pedestris. Front Physiol 2022;13:949607. [DOI: 10.3389/fphys.2022.949607] [Reference Citation Analysis]
11 Vyas M, Pagadala Damodaram KJ, Krishnarao G. Antennal Transcriptome of the Fruit-Sucking Moth Eudocima materna: Identification of Olfactory Genes and Preliminary Evidence for RNA-Editing Events in Odorant Receptors. Genes (Basel) 2022;13:1207. [PMID: 35885990 DOI: 10.3390/genes13071207] [Reference Citation Analysis]
12 Wang B, Huang T, Yao Y, Francis F, Yan C, Wang G, Wang B. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone. Journal of Integrative Agriculture 2022;21:2042-54. [DOI: 10.1016/s2095-3119(21)63712-7] [Reference Citation Analysis]
13 González-gonzález A, Yañez O, Ballesteros GI, Palma-millanao R, Figueroa CC, Niemeyer HM, Ramírez CC. A mutation increases the specificity to plant compounds in an insect chemosensory protein. Journal of Molecular Graphics and Modelling 2022;114:108191. [DOI: 10.1016/j.jmgm.2022.108191] [Reference Citation Analysis]
14 Cassau S, Sander D, Karcher T, Laue M, Hause G, Breer H, Krieger J. The Sensilla-Specific Expression and Subcellular Localization of SNMP1 and SNMP2 Reveal Novel Insights into Their Roles in the Antenna of the Desert Locust Schistocerca gregaria. Insects 2022;13:579. [DOI: 10.3390/insects13070579] [Reference Citation Analysis]
15 Tian L, Guo HG, Ren ZG, Zhang AH, Qin XC, Zhang MZ, Du YL. Ligand-binding specificities of four odorant-binding proteins in Conogethes punctiferalis. Arch Insect Biochem Physiol 2022;:e21947. [PMID: 35731526 DOI: 10.1002/arch.21947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Li H, Hao E, Li Y, Yang H, Sun P, Lu P, Qiao H. Antennal transcriptome analysis of olfactory genes and tissue expression profiling of odorant binding proteins in Semanotus bifasciatus (cerambycidae: coleoptera). BMC Genomics 2022;23:461. [PMID: 35733103 DOI: 10.1186/s12864-022-08655-w] [Reference Citation Analysis]
17 Wu G, Su R, Ouyang H, Zheng X, Lu W, Wang X. Antennal Transcriptome Analysis and Identification of Olfactory Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae). Insects 2022;13:553. [PMID: 35735890 DOI: 10.3390/insects13060553] [Reference Citation Analysis]
18 Mahmood MA, Naqvi RZ, Siddiqui HA, Amin I, Mansoor S. Current knowledge and implementations of Bemisia tabaci genomic technologies for sustainable control. J Pest Sci. [DOI: 10.1007/s10340-022-01520-5] [Reference Citation Analysis]
19 Li J, Zhang L. Identification and expression patterns of candidate carboxylesterases in Carposina sasakii Matsumura (Lepidoptera: Carposinidae), an important pest of fruit trees. Bull Entomol Res 2022;:1-7. [PMID: 35670157 DOI: 10.1017/S0007485322000244] [Reference Citation Analysis]
20 Hong B, Chang Q, Zhai Y, Ren B, Zhang F. Functional Characterization of Odorant Binding Protein PyasOBP2 From the Jujube Bud Weevil, Pachyrhinus yasumatsui (Coleoptera: Curculionidae). Front Physiol 2022;13:900752. [PMID: 35574498 DOI: 10.3389/fphys.2022.900752] [Reference Citation Analysis]
21 Ma X, Lu X, Zhang P, Deng X, Bai J, Xu Z, Diao J, Pang H, Wang Q, Zhao H, Ma W, Ma L. Transcriptome Analysis of Antennal Chemosensory Genes in Curculio Dieckmanni Faust. (Coleoptera: Curculionidae). Front Physiol 2022;13:896793. [DOI: 10.3389/fphys.2022.896793] [Reference Citation Analysis]
22 Jiang X, Qin Y, Jiang J, Xu Y, Francis F, Fan J, Chen J. Spatial Expression Analysis of Odorant Binding Proteins in Both Sexes of the Aphid Parasitoid Aphidius gifuensis and Their Ligand Binding Properties. Front Physiol 2022;13:877133. [DOI: 10.3389/fphys.2022.877133] [Reference Citation Analysis]
23 Zhang Y, Guo J, Wei Z, Zhang X, Liu S, Guo H, Dong S. Identification and sex expression profiles of olfactory-related genes in Mythimna loreyi based on antennal transcriptome analysis. Journal of Asia-Pacific Entomology 2022. [DOI: 10.1016/j.aspen.2022.101934] [Reference Citation Analysis]
24 Wang Z, Yang F, Sun A, Song J, Shan S, Zhang Y, Wang S. Expressional and functional comparisons of five clustered odorant binding proteins in the brown marmorated stink bug Halyomorpha halys. International Journal of Biological Macromolecules 2022;206:759-67. [DOI: 10.1016/j.ijbiomac.2022.03.084] [Reference Citation Analysis]
25 Zhang J, Mao K, Ren Z, Jin R, Zhang Y, Cai T, He S, Li J, Wan H. Odorant binding protein 3 is associated with nitenpyram and sulfoxaflor resistance in Nilaparvata lugens. Int J Biol Macromol 2022;209:1352-8. [PMID: 35460755 DOI: 10.1016/j.ijbiomac.2022.04.100] [Reference Citation Analysis]
26 Sims C, Birkett MA, Withall DM. Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. Insects 2022;13:368. [DOI: 10.3390/insects13040368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Gao SS, Li RM, Xue S, Zhang YC, Zhang YL, Wang JS, Zhang KP. Odorant Binding Protein C17 Contributes to the Response to Artemisia vulgaris Oil in Tribolium castaneum. Front Toxicol 2021;3:627470. [PMID: 35387178 DOI: 10.3389/ftox.2021.627470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yadav RK, Kambham MR, Parepally SK, Vyas M, Manem KR, Kamala Jayanthi PD. Encounter With a Selfish Virus Sabotages Its Vector to Orient Toward Requisite Host Plant: A Case Study With Chili Leaf Curl Virus-Whitefly. Front Ecol Evol 2022;10:819023. [DOI: 10.3389/fevo.2022.819023] [Reference Citation Analysis]
29 Sun Y, Tao S, Zhang W, Jiang B, Dai H, Liu B, Zhang Y, Kong X, Zhao J, Bai L. Transcriptome profile analysis reveals the emamectin benzoate-induced genes associated with olfaction and metabolic detoxification in Spodoptera exigua Hübner (Lepidoptera: noctuidae). All Life 2022;15:340-57. [DOI: 10.1080/26895293.2022.2052190] [Reference Citation Analysis]
30 Qu C, Yang Z, Wang S, Zhao H, Li F, Yang X, Luo C. Binding Affinity Characterization of Four Antennae-Enriched Odorant-Binding Proteins From Harmonia axyridis (Coleoptera: Coccinellidae). Front Physiol 2022;13:829766. [DOI: 10.3389/fphys.2022.829766] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Xu H, Pan Y, Li J, Yang F, Chen X, Gao X, Wen S, Shang Q. Chemosensory proteins confer adaptation to the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii glover. Pesticide Biochemistry and Physiology 2022. [DOI: 10.1016/j.pestbp.2022.105076] [Reference Citation Analysis]
32 Ma Y, Huang T, Tang B, Wang B, Wang L, Liu J, Zhou Q. Transcriptome analysis and molecular characterization of soluble chemical communication proteins in the parasitoid wasp Anagrus nilaparvatae (Hymenoptera: Mymaridae). Ecology and Evolution 2022;12. [DOI: 10.1002/ece3.8661] [Reference Citation Analysis]
33 Waris MI, Younas A, Ullah RMK, Rasool F, Adeel MM, Wang M. Molecular and in vitro biochemical assessment of chemosensory protein 10 from brown planthopper Nilaparvata lugens at acidic pH. Journal of Integrative Agriculture 2022;21:781-96. [DOI: 10.1016/s2095-3119(20)63494-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Chen W, Du L, Gao X, Sun L, Chen L, Xie G, An S, Zhao X. Identification of Odorant-Binding and Chemosensory Protein Genes in Mythimna separata Adult Brains Using Transcriptome Analyses. Front Physiol 2022;13:839559. [DOI: 10.3389/fphys.2022.839559] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Gao Y, Chen Z, Liu M, Song C, Jia Z, Liu F, Qu C, Dewer Y, Zhao H, Xu Y, Kang Z. Characterization of Antennal Chemosensilla and Associated Chemosensory Genes in the Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintanca). Front Physiol 2022;13:847895. [DOI: 10.3389/fphys.2022.847895] [Reference Citation Analysis]
36 Yang HH, Xu JW, Zhang XQ, Huang JR, Li LL, Yao WC, Zhao PP, Zhang D, Liu JY, Dewer Y, Zhu XY, Li XM, Zhang YN. AlepPBP2, but not AlepPBP3, may involve in the recognition of sex pheromones and maize volatiles in Athetis lepigone. Bull Entomol Res 2022;:1-10. [PMID: 35199636 DOI: 10.1017/S0007485321001127] [Reference Citation Analysis]
37 Xu H, Yan K, Ding Y, Lv Y, Li J, Yang F, Chen X, Gao X, Pan Y, Shang Q. Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover. Int J Mol Sci 2022;23:2356. [PMID: 35216472 DOI: 10.3390/ijms23042356] [Reference Citation Analysis]
38 Zhang Y, Yang B, Yu J, Pang B, Wang G. Expression profiles and functional prediction of ionotropic receptors in Asian corn borer, (Lepidoptera: Crambidae). Journal of Integrative Agriculture 2022;21:474-85. [DOI: 10.1016/s2095-3119(20)63427-x] [Reference Citation Analysis]
39 Gao X, Hu X, Mo F, Ding Y, Li M, Li R. Repellency Mechanism of Natural Guar Gum-Based Film Incorporated with Citral against Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Int J Mol Sci 2022;23:758. [PMID: 35054952 DOI: 10.3390/ijms23020758] [Reference Citation Analysis]
40 Prelic S, Pal Mahadevan V, Venkateswaran V, Lavista-llanos S, Hansson BS, Wicher D. Functional Interaction Between Drosophila Olfactory Sensory Neurons and Their Support Cells. Front Cell Neurosci 2022;15:789086. [DOI: 10.3389/fncel.2021.789086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
41 Shen RX, Wang YT, Wu JH, Zhang N, Zhang HD, Xing D, Chen Y, Li CX, Zhao TY. Deltamethrin interacts with Culex quinquefasciatus odorant-binding protein: a novel potential resistance mechanism. Parasit Vectors 2022;15:2. [PMID: 34980219 DOI: 10.1186/s13071-021-05041-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Shah JS, Buckmeier BG, Griffith W, Olafson PU, Perez de Leon AA, Renthal R. Odorant-binding protein from the stable fly (Stomoxys calcitrans) has a high-histidine N-terminal extension that binds transition metals. Insect Biochem Mol Biol 2021;141:103707. [PMID: 34979251 DOI: 10.1016/j.ibmb.2021.103707] [Reference Citation Analysis]
43 Agnihotri A, Liu N, Xu W. Chemosensory Proteins (CSPs) in the Cotton Bollworm Helicoverpa armigera. Insects 2022;13:29. [DOI: 10.3390/insects13010029] [Reference Citation Analysis]
44 King K, Meuti ME, Johnson NF. Identification and expression of odorant binding proteins in the egg-parasitoid Trissolcus basalis (Wollaston) (Hymenoptera, Scelionidae, Telenominae). JHR 2021;87:251-66. [DOI: 10.3897/jhr.87.68954] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Amaro IA, Ahmed-Braimah YH, League GP, Pitcher SA, Avila FW, Cruz PC, Harrington LC, Wolfner MF. Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract. BMC Genomics 2021;22:896. [PMID: 34906087 DOI: 10.1186/s12864-021-08201-0] [Reference Citation Analysis]
46 Li Y, Chen H, Liang X, Wang S, Zhu H, Yan M, Wu F, Wang J, Sheng S. Identification of candidate chemosensory genes by antennal transcriptome analysis in an ectoparasitoid wasp. J Appl Entomol. [DOI: 10.1111/jen.12962] [Reference Citation Analysis]
47 Ortega-Insaurralde I, Barrozo RB. The closer the better: Sensory tools and host-association in blood-sucking insects. J Insect Physiol 2021;136:104346. [PMID: 34896372 DOI: 10.1016/j.jinsphys.2021.104346] [Reference Citation Analysis]
48 Zeng H, Millar JG, Chen L, Keller L, Ross KG. Characterization of Queen Supergene Pheromone in the Red Imported Fire Ant Using Worker Discrimination Assays. J Chem Ecol 2021. [PMID: 34850312 DOI: 10.1007/s10886-021-01336-0] [Reference Citation Analysis]
49 Gao S, Lu R, Zhang Y, Sun H, Li S, Zhang K, Li R. Odorant binding protein C12 is involved in the defense against eugenol in Tribolium castaneum. Pestic Biochem Physiol 2021;179:104968. [PMID: 34802518 DOI: 10.1016/j.pestbp.2021.104968] [Reference Citation Analysis]
50 Zaremska V, Fischer IM, Renzone G, Arena S, Scaloni A, Knoll W, Pelosi P. Reverse Chemical Ecology Suggests Putative Primate Pheromones. Mol Biol Evol 2021:msab338. [PMID: 34897488 DOI: 10.1093/molbev/msab338] [Reference Citation Analysis]
51 Li DZ, Duan SG, Yang RN, Yi SC, Liu A, Abdelnabby HE, Wang MQ. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope. Insect Biochem Mol Biol 2021;140:103677. [PMID: 34763091 DOI: 10.1016/j.ibmb.2021.103677] [Reference Citation Analysis]
52 Al-Jalely BH, Xu W. Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Insects 2021;12:998. [PMID: 34821797 DOI: 10.3390/insects12110998] [Reference Citation Analysis]
53 Zhan H, Dewer Y, Zhang J, Tian J, Li D, Qu C, Yang Z, Li F, Luo C. Odorant-Binding Protein 1 Plays a Crucial Role in the Olfactory Response of Bemisia tabaci to R-Curcumene. J Agric Food Chem 2021;69:12785-93. [PMID: 34669397 DOI: 10.1021/acs.jafc.1c03825] [Reference Citation Analysis]
54 Pereira RB, Pinto NFS, Fernandes MJG, Vieira TF, Rodrigues ARO, Pereira DM, Sousa SF, Castanheira EMS, Fortes AG, Gonçalves MST. Amino Alcohols from Eugenol as Potential Semisynthetic Insecticides: Chemical, Biological, and Computational Insights. Molecules 2021;26:6616. [PMID: 34771025 DOI: 10.3390/molecules26216616] [Reference Citation Analysis]
55 Zhu X, Xu B, Qin Z, Kader A, Song B, Chen H, Liu Y, Liu W. Identification of Candidate Olfactory Genes in Scolytus schevyrewi Based on Transcriptomic Analysis. Front Physiol 2021;12:717698. [PMID: 34671270 DOI: 10.3389/fphys.2021.717698] [Reference Citation Analysis]
56 Zhao H, Peng Z, Huang L, Zhao S, Liu M. Expression Profile and Ligand Screening of a Putative Odorant-Binding Protein, AcerOBP6, from the Asian Honeybee. Insects 2021;12:955. [PMID: 34821756 DOI: 10.3390/insects12110955] [Reference Citation Analysis]
57 Sun YL, Dong JF, Song YQ, Wang SL. GOBP1 from the Variegated Cutworm Peridroma saucia (Hübner) (Lepidoptera: Noctuidae) Displays High Binding Affinities to the Behavioral Attractant (Z)-3-Hexenyl acetate. Insects 2021;12:939. [PMID: 34680708 DOI: 10.3390/insects12100939] [Reference Citation Analysis]
58 Yang F, Shao R, Zhao J, Li L, Wang M, Zhou A. Cadmium exposure disrupts the olfactory sensitivity of fire ants to semiochemicals. Environ Pollut 2021;287:117359. [PMID: 34020258 DOI: 10.1016/j.envpol.2021.117359] [Reference Citation Analysis]
59 Wang Z, Wu C, Li G, Nuo S, Yin N, Liu N. Transcriptome Analysis and Characterization of Chemosensory Genes in the Forest Pest, Dioryctria abietella (Lepidoptera: Pyralidae). Front Ecol Evol 2021;9:748199. [DOI: 10.3389/fevo.2021.748199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 McKenna CH, Asgari D, Crippen TL, Zheng L, Sherman RA, Tomberlin JK, Meisel RP, Tarone AM. Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. Insect Mol Biol 2021. [PMID: 34613655 DOI: 10.1111/imb.12740] [Reference Citation Analysis]
61 Zhang S, Gao X, Wang L, Jiang W, Su H, Jing T, Cui J, Zhang L, Yang Y. Chromosome-level genome assemblies of two cotton-melon aphid Aphis gossypii biotypes unveil mechanisms of host adaption. Mol Ecol Resour 2021. [PMID: 34601821 DOI: 10.1111/1755-0998.13521] [Reference Citation Analysis]
62 Silva D, Ceballos R, Arismendi N, Dalmon A, Vargas M. Variant A of the Deformed Wings Virus Alters the Olfactory Sensitivity and the Expression of Odorant Binding Proteins on Antennas of Apis mellifera. Insects 2021;12:895. [PMID: 34680665 DOI: 10.3390/insects12100895] [Reference Citation Analysis]
63 Pan Y, Zhang X, Wang Z, Qi L, Zhang X, Zhang J, Xi J. Identification and analysis of chemosensory genes encoding odorant-binding proteins, chemosensory proteins and sensory neuron membrane proteins in the antennae of Lissorhoptrus oryzophilus. Bull Entomol Res 2021;:1-11. [PMID: 34588009 DOI: 10.1017/S0007485321000857] [Reference Citation Analysis]
64 Piron-Prunier F, Persyn E, Legeai F, McClure M, Meslin C, Robin S, Alves-Carvalho S, Mohammad A, Blugeon C, Jacquin-Joly E, Montagné N, Elias M, Gauthier J. Comparative transcriptome analysis at the onset of speciation in a mimetic butterfly-The Ithomiini Melinaea marsaeus. J Evol Biol 2021;34:1704-21. [PMID: 34570954 DOI: 10.1111/jeb.13940] [Reference Citation Analysis]
65 Yang Y, Luo L, Tian L, Zhao C, Niu H, Hu Y, Shi C, Xie W, Zhang Y. Function and Characterization Analysis of BodoOBP8 from Bradysia odoriphaga (Diptera: Sciaridae) in the Recognition of Plant Volatiles and Sex Pheromones. Insects 2021;12:879. [PMID: 34680648 DOI: 10.3390/insects12100879] [Reference Citation Analysis]
66 Li Y, Zhang Y, Xiang Y, Chen D, Hu J, Liu F. Comparative Transcriptome Analysis of Chemoreception Organs of Laodelphax striatellus in Response to Rice Stripe Virus Infection. Int J Mol Sci 2021;22:10299. [PMID: 34638638 DOI: 10.3390/ijms221910299] [Reference Citation Analysis]
67 Wang Z, Yang F, Sun A, Shan S, Zhang Y, Wang S. Expression Profiles and Functional Characterization of Chemosensory Protein 15 (HhalCSP15) in the Brown Marmorated Stink Bug Halyomorpha halys. Front Physiol 2021;12:721247. [PMID: 34552507 DOI: 10.3389/fphys.2021.721247] [Reference Citation Analysis]
68 Savini G, Scolari F, Ometto L, Rota-Stabelli O, Carraretto D, Gomulski LM, Gasperi G, Abd-Alla AMM, Aksoy S, Attardo GM, Malacrida AR. Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biol 2021;19:211. [PMID: 34556101 DOI: 10.1186/s12915-021-01148-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Zhang C, Tang B, Zhou T, Yu X, Hu M, Dai W. Involvement of Chemosensory Protein BodoCSP1 in Perception of Host Plant Volatiles in Bradysia odoriphaga. J Agric Food Chem 2021;69:10797-806. [PMID: 34503327 DOI: 10.1021/acs.jafc.1c02807] [Reference Citation Analysis]
70 Scieuzo C, Nardiello M, Farina D, Scala A, Cammack JA, Tomberlin JK, Vogel H, Salvia R, Persaud K, Falabella P. Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach. Insects 2021;12:814. [PMID: 34564254 DOI: 10.3390/insects12090814] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2021. [PMID: 34480392 DOI: 10.1111/brv.12787] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Al-Jalely BH, Wang P, Liao Y, Xu W. Identification and characterization of olfactory genes in the parasitoid wasp Diadegma semiclausum (Hellén) (Hymenoptera: Ichneumonidae). Bull Entomol Res 2021;:1-10. [PMID: 34474703 DOI: 10.1017/S0007485321000675] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Wasilewski T, Gębicki J, Kamysz W. Bio-inspired approaches for explosives detection. TrAC Trends in Analytical Chemistry 2021;142:116330. [DOI: 10.1016/j.trac.2021.116330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
74 Wang L, Yin H, Zhu Z, Yang S, Fan J. A Detailed Spatial Expression Analysis of Wing Phenotypes Reveals Novel Patterns of Odorant Binding Proteins in the Soybean Aphid, Aphis glycines. Front Physiol 2021;12:702973. [PMID: 34421640 DOI: 10.3389/fphys.2021.702973] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Li LL, Huang JR, Xu JW, Yao WC, Yang HH, Shao L, Zhang HR, Dewer Y, Zhu XY, Zhang YN. Ligand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles. Pest Manag Sci 2021. [PMID: 34418275 DOI: 10.1002/ps.6606] [Reference Citation Analysis]
76 D'Onofrio C, Knoll W, Pelosi P. Aphid Odorant-Binding Protein 9 Is Narrowly Tuned to Linear Alcohols and Aldehydes of Sixteen Carbon Atoms. Insects 2021;12:741. [PMID: 34442308 DOI: 10.3390/insects12080741] [Reference Citation Analysis]
77 Yuting Y, Dengke H, Caihua S, Wen X, Youjun Z. Molecular and Binding Characteristics of OBP5 of Bradysia odoriphaga (Diptera: Sciaridae). J Econ Entomol 2021;114:1509-16. [PMID: 34050657 DOI: 10.1093/jee/toab095] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Johnstun JA, Shankar V, Mokashi SS, Sunkara LT, Ihearahu UE, Lyman RL, Mackay TFC, Anholt RRH. Functional Diversification, Redundancy, and Epistasis among Paralogs of the Drosophila melanogaster Obp50a-d Gene Cluster. Mol Biol Evol 2021;38:2030-44. [PMID: 33560417 DOI: 10.1093/molbev/msab004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Gatti JL, Belghazi M, Legeai F, Ravallec M, Frayssinet M, Robin S, Aboubakar-Souna D, Srinivasan R, Tamò M, Poirié M, Volkoff AN. Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae). Toxins (Basel) 2021;13:502. [PMID: 34357975 DOI: 10.3390/toxins13070502] [Reference Citation Analysis]
80 Sierra I, Latorre-Estivalis JM, Traverso L, Gonzalez PV, Aptekmann A, Nadra AD, Masuh H, Ons S. Transcriptomic analysis and molecular docking reveal genes involved in the response of Aedes aegypti larvae to an essential oil extracted from Eucalyptus. PLoS Negl Trop Dis 2021;15:e0009587. [PMID: 34270558 DOI: 10.1371/journal.pntd.0009587] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Li YJ, Chen HC, Hong TL, Yan MW, Wang J, Shao ZM, Wu FA, Sheng S, Wang J. Identification of chemosensory genes by antennal transcriptome analysis and expression profiles of odorant-binding proteins in parasitoid wasp Aulacocentrum confusum. Comp Biochem Physiol Part D Genomics Proteomics 2021;40:100881. [PMID: 34273642 DOI: 10.1016/j.cbd.2021.100881] [Reference Citation Analysis]
82 Nganso BT, Mani K, Eliash N, Rafaeli A, Soroker V. Towards disrupting Varroa -honey bee chemosensing: A focus on a Niemann-Pick type C2 transcript. Insect Mol Biol 2021. [PMID: 34216416 DOI: 10.1111/imb.12722] [Reference Citation Analysis]
83 Koutroumpa FA, Monsempes C, François M, Severac D, Montagné N, Meslin C, Jacquin-joly E. Description of Chemosensory Genes in Unexplored Tissues of the Moth Spodoptera littoralis. Front Ecol Evol 2021;9:678277. [DOI: 10.3389/fevo.2021.678277] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
84 Amigues B, Zhu J, Gaubert A, Arena S, Renzone G, Leone P, Fischer IM, Paulsen H, Knoll W, Scaloni A, Roussel A, Cambillau C, Pelosi P. A new non-classical fold of varroa odorant-binding proteins reveals a wide open internal cavity. Sci Rep 2021;11:13172. [PMID: 34162975 DOI: 10.1038/s41598-021-92604-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Poivet E, Gallot A, Montagné N, Senin P, Monsempès C, Legeai F, Jacquin-Joly E. Transcriptome Profiling of Starvation in the Peripheral Chemosensory Organs of the Crop Pest Spodoptera littoralis Caterpillars. Insects 2021;12:573. [PMID: 34201462 DOI: 10.3390/insects12070573] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Li L, Zhang WB, Shan YM, Zhang ZR, Pang BP. Functional Characterization of Olfactory Proteins Involved in Chemoreception of Galeruca daurica. Front Physiol 2021;12:678698. [PMID: 34177623 DOI: 10.3389/fphys.2021.678698] [Reference Citation Analysis]
87 Li J, Gao P, Zhang L. Identification and expression characteristics of putative chemosensory proteins in the peach fruit borer Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Comp Biochem Physiol Part D Genomics Proteomics 2021;39:100858. [PMID: 34082360 DOI: 10.1016/j.cbd.2021.100858] [Reference Citation Analysis]
88 Hua J, Fu Y, Zhou Q, Huang Y, Li H, Chen T, Ma D, Li Z. Three chemosensory proteins from the sweet potato weevil, Cylas formicarius, are involved in the perception of host plant volatiles. Pest Manag Sci 2021;77:4497-509. [PMID: 34037312 DOI: 10.1002/ps.6484] [Reference Citation Analysis]
89 Jiang XC, Liu S, Jiang XY, Wang ZW, Xiao JJ, Gao Q, Sheng CW, Shi TF, Zeng HR, Yu LS, Cao HQ. Identification of Olfactory Genes From the Greater Wax Moth by Antennal Transcriptome Analysis. Front Physiol 2021;12:663040. [PMID: 34093226 DOI: 10.3389/fphys.2021.663040] [Reference Citation Analysis]
90 Balart-García P, Cieslak A, Escuer P, Rozas J, Ribera I, Fernández R. Smelling in the dark: Phylogenomic insights into the chemosensory system of a subterranean beetle. Mol Ecol 2021;30:2573-90. [PMID: 33856058 DOI: 10.1111/mec.15921] [Reference Citation Analysis]
91 Scolari F, Valerio F, Benelli G, Papadopoulos NT, Vaníčková L. Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives. Insects 2021;12:408. [PMID: 33946603 DOI: 10.3390/insects12050408] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
92 Zhu J, Iannucci A, Dani FR, Knoll W, Pelosi P. Lipocalins in Arthropod Chemical Communication. Genome Biol Evol 2021;13:evab091. [PMID: 33930146 DOI: 10.1093/gbe/evab091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Godoy R, Machuca J, Venthur H, Quiroz A, Mutis A. An Overview of Antennal Esterases in Lepidoptera. Front Physiol 2021;12:643281. [PMID: 33868009 DOI: 10.3389/fphys.2021.643281] [Reference Citation Analysis]
94 Wei HS, Qin JH, Cao YZ, Li KB, Yin J. Two classic OBPs modulate the responses of female Holotrichia oblita to three major ester host plant volatiles. Insect Mol Biol 2021;30:390-9. [PMID: 33822423 DOI: 10.1111/imb.12703] [Reference Citation Analysis]
95 Lin YB, Rong JJ, Wei XF, Sui ZX, Xiao J, Huang DW. Proteomics and ultrastructural analysis of Hermetia illucens (Diptera: Stratiomyidae) larval peritrophic matrix. Proteome Sci 2021;19:7. [PMID: 33836751 DOI: 10.1186/s12953-021-00175-x] [Reference Citation Analysis]
96 Xiao HY, Li GC, Wang ZQ, Guo YR, Liu NY. Combined transcriptomic, proteomic and genomic analysis identifies reproductive-related proteins and potential modulators of female behaviors in Spodoptera litura. Genomics 2021;113:1876-94. [PMID: 33839272 DOI: 10.1016/j.ygeno.2021.04.006] [Reference Citation Analysis]
97 Xue HJ, Niu YW, Segraves KA, Nie RE, Hao YJ, Zhang LL, Cheng XC, Zhang XW, Li WZ, Chen RS, Yang XK. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae). BMC Genomics 2021;22:243. [PMID: 33827435 DOI: 10.1186/s12864-021-07558-6] [Reference Citation Analysis]
98 Younas A, Waris MI, Shaaban M, Tahir Ul Qamar M, Wang MQ. Appraisal of MsepCSP14 for chemosensory functions in Mythimna separata. Insect Sci 2021. [PMID: 33822484 DOI: 10.1111/1744-7917.12909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Rihani K, Ferveur JF, Briand L. The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021;11:509. [PMID: 33808208 DOI: 10.3390/biom11040509] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
100 Liu J, Liu H, Yi J, Mao Y, Li J, Sun D, An Y, Wu H. Transcriptome Characterization and Expression Analysis of Chemosensory Genes in Chilo sacchariphagus (Lepidoptera Crambidae), a Key Pest of Sugarcane. Front Physiol 2021;12:636353. [PMID: 33762968 DOI: 10.3389/fphys.2021.636353] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Wei Z, Ortiz-Urquiza A, Keyhani NO. Altered Expression of Chemosensory and Odorant Binding Proteins in Response to Fungal Infection in the Red Imported Fire Ant, Solenopsis invicta. Front Physiol 2021;12:596571. [PMID: 33746766 DOI: 10.3389/fphys.2021.596571] [Reference Citation Analysis]
102 Liu XQ, Jiang HB, Fan JY, Liu TY, Meng LW, Liu Y, Yu HZ, Dou W, Wang JJ. An odorant-binding protein of Asian citrus psyllid, Diaphorina citri, participates in the response of host plant volatiles. Pest Manag Sci 2021;77:3068-79. [PMID: 33686750 DOI: 10.1002/ps.6352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
103 Shao X, Cheng K, Wang Z, Zhang Q, Yang X. Use of odor by host-finding insects: the role of real-time odor environment and odor mixing degree. Chemoecology 2021;31:149-58. [DOI: 10.1007/s00049-021-00342-8] [Reference Citation Analysis]
104 Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021;11:5032. [PMID: 33658582 DOI: 10.1038/s41598-021-84385-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
105 Ye J, Mang D, Kang K, Chen C, Zhang X, Tang Y, R Purba E, Song L, Zhang QH, Zhang L. Putative carboxylesterase gene identification and their expression patterns in Hyphantria cunea (Drury). PeerJ 2021;9:e10919. [PMID: 33717687 DOI: 10.7717/peerj.10919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Li LL, Xu JW, Yao WC, Yang HH, Dewer Y, Zhang F, Zhu XY, Zhang YN. Chemosensory genes in the head of Spodoptera litura larvae. Bull Entomol Res 2021;111:454-63. [PMID: 33632348 DOI: 10.1017/S0007485321000109] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
107 Chen C, Zhu H, Li SY, Han YY, Chen L, Fan BQ, Zhang YF, Wang Y, Hao DJ. Insights into chemosensory genes of Pagiophloeus tsushimanus adults using transcriptome and qRT-PCR analysis. Comp Biochem Physiol Part D Genomics Proteomics 2021;37:100785. [PMID: 33548831 DOI: 10.1016/j.cbd.2020.100785] [Reference Citation Analysis]
108 Xu C, Yang F, Duan S, Li D, Li L, Wang M, Zhou A. Discovery of behaviorally active semiochemicals in Aenasius bambawalei using a reverse chemical ecology approach. Pest Manag Sci 2021;77:2843-53. [PMID: 33538389 DOI: 10.1002/ps.6319] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Wang MM, Long GJ, Guo H, Liu XZ, Wang H, Dewer Y, Li ZQ, Liu K, Zhang QL, Ma YF, He P, He M. Two carboxylesterase genes in Plutella xylostella associated with sex pheromones and plant volatiles degradation. Pest Manag Sci 2021;77:2737-46. [PMID: 33527628 DOI: 10.1002/ps.6302] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
110 Xiao Y, Sun L, Wang Q, An XK, Huang XZ, Khashaveh A, Li ZY, Zhang YJ. Host plants transfer induced regulation of the chemosensory genes repertoire in the alfalfa plant bug Adelphocoris lineolatus (Goeze). Comp Biochem Physiol Part D Genomics Proteomics 2021;38:100798. [PMID: 33581507 DOI: 10.1016/j.cbd.2021.100798] [Reference Citation Analysis]
111 Wheelwright M, Whittle CR, Riabinina O. Olfactory systems across mosquito species. Cell Tissue Res 2021;383:75-90. [PMID: 33475852 DOI: 10.1007/s00441-020-03407-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
112 Wang Q, Liu JT, Zhang YJ, Chen JL, Li XC, Liang P, Gao XW, Zhou JJ, Gu SH. Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. Insect Biochem Mol Biol 2021;130:103528. [PMID: 33482303 DOI: 10.1016/j.ibmb.2021.103528] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Bonazza C, Zhu J, Hasler R, Mastrogiacomo R, Pelosi P, Knoll W. Responses of the Pheromone-Binding Protein of the Silk Moth Bombyx mori on a Graphene Biosensor Match Binding Constants in Solution. Sensors (Basel) 2021;21:E499. [PMID: 33445619 DOI: 10.3390/s21020499] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Knutelski S, Awad M, Łukasz N, Bukowski M, Śmiałek J, Suder P, Dubin G, Mak P. Isolation, Identification, and Bioinformatic Analysis of Antibacterial Proteins and Peptides from Immunized Hemolymph of Red Palm Weevil Rhynchophorus ferrugineus. Biomolecules 2021;11:83. [PMID: 33440876 DOI: 10.3390/biom11010083] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Melis M, Tomassini Barbarossa I, Hummel T, Crnjar R, Sollai G. Effect of the rs2890498 polymorphism of the OBPIIa gene on the human ability to smell single molecules. Behav Brain Res 2021;402:113127. [PMID: 33422593 DOI: 10.1016/j.bbr.2021.113127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 Fu S, Li F, Yan X, Hao C. Expression Profiles and Binding Properties of the Chemosensory Protein PxylCSP11 from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). J Insect Sci 2020;20:17. [PMID: 33057681 DOI: 10.1093/jisesa/ieaa107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
117 Jia HR, Niu LL, Sun YF, Liu YQ, Wu KM. Odorant Binding Proteins and Chemosensory Proteins in Episyrphus balteatus (Diptera: Syrphidae): Molecular Cloning, Expression Profiling, and Gene Evolution. J Insect Sci 2020;20:15. [PMID: 32770251 DOI: 10.1093/jisesa/ieaa065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
118 Basu S, Clark RE, Fu Z, Lee BW, Crowder DW. Insect alarm pheromones in response to predators: Ecological trade-offs and molecular mechanisms. Insect Biochem Mol Biol 2021;128:103514. [PMID: 33359575 DOI: 10.1016/j.ibmb.2020.103514] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
119 Peng X, Qu MJ, Wang SJ, Huang YX, Chen C, Chen MH. Chemosensory proteins participate in insecticide susceptibility in Rhopalosiphum padi, a serious pest on wheat crops. Insect Mol Biol 2021;30:138-51. [PMID: 33188557 DOI: 10.1111/imb.12683] [Reference Citation Analysis]
120 Torres-Huerta B, Segura-León OL, Aragón-Magadan MA, González-Hernández H. Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome. Sci Rep 2020;10:20695. [PMID: 33244016 DOI: 10.1038/s41598-020-77144-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
121 Ullah RMK, Quershi SR, Adeel MM, Abdelnabby H, Waris MI, Duan SG, Wang MQ. An Odorant Binding Protein (SaveOBP9) Involved in Chemoreception of the Wheat Aphid Sitobion avenae. Int J Mol Sci 2020;21:E8331. [PMID: 33172024 DOI: 10.3390/ijms21218331] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
122 Zhu X, Xu J, Li L, Wang D, Zhang M, Yu N, Purba ER, Zhang F, Li X, Zhang Y, Mang D. Analysis of chemosensory genes in Semiothisa cinerearia reveals sex-specific contributions for type-II sex pheromone chemosensation. Genomics 2020;112:3846-55. [DOI: 10.1016/j.ygeno.2020.06.042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
123 Bhowmick B, Tang Y, Lin F, Øines Ø, Zhao J, Liao C, Ignell R, Hansson BS, Han Q. Comparative morphological and transcriptomic analyses reveal chemosensory genes in the poultry red mite, Dermanyssus gallinae. Sci Rep 2020;10:17923. [PMID: 33087814 DOI: 10.1038/s41598-020-74998-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
124 Zhang J, Zhong Y, Tang R, Rebijith KB, Li F, Chen G, Zhang F. Olfactory Reception of Host Alarm Pheromone Component by the Odorant-Binding Proteins in the Samurai Wasp, Trissolcus japonicus (Hymenoptera: Scelionidae). Front Physiol 2020;11:1058. [PMID: 33013453 DOI: 10.3389/fphys.2020.01058] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
125 Zhang Y, Xu J, Zhang X, Zhang X, Li L, Yuan X, Mang D, Zhu X, Zhang F, Dewer Y, Xu L, Wu X. Organophosphorus insecticide interacts with the pheromone-binding proteins of Athetis lepigone: Implication for olfactory dysfunction. Journal of Hazardous Materials 2020;397:122777. [DOI: 10.1016/j.jhazmat.2020.122777] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
126 Xin Z, Huang D, Zhao D, Li J, Wei X, Xiao J. Genome-Wide Analysis of Chemosensory Protein Genes (CSPs) Family in Fig Wasps (Hymenoptera, Chalcidoidea). Genes (Basel) 2020;11:E1149. [PMID: 33003564 DOI: 10.3390/genes11101149] [Reference Citation Analysis]
127 Brito NF, Oliveira DS, Santos TC, Moreira MF, Melo ACA. Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 2020;104:8631-48. [PMID: 32888038 DOI: 10.1007/s00253-020-10860-0] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
128 Li F, Dewer Y, Li D, Qu C, Luo C. Functional and evolutionary characterization of chemosensory protein CSP2 in the whitefly, Bemisia tabaci. Pest Manag Sci 2021;77:378-88. [PMID: 32741104 DOI: 10.1002/ps.6027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
129 Liu X, Jiang H, Liu Y, Fan J, Ma Y, Yuan C, Lou B, Wang J. Odorant binding protein 2 reduces imidacloprid susceptibility of Diaphorina citri. Pesticide Biochemistry and Physiology 2020;168:104642. [DOI: 10.1016/j.pestbp.2020.104642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
130 Zhang YC, Gao SS, Xue S, Zhang KP, Wang JS, Li B. Odorant-Binding Proteins Contribute to the Defense of the Red Flour Beetle, Tribolium castaneum, Against Essential Oil of Artemisia vulgaris. Front Physiol 2020;11:819. [PMID: 32982763 DOI: 10.3389/fphys.2020.00819] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
131 Peng X, Liu L, Huang Y, Wang S, Li D, Chen S, Simon J, Qu M, Chen M. Involvement of chemosensory proteins in host plant searching in the bird cherry‐oat aphid. Insect Science. [DOI: 10.1111/1744-7917.12865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 Cai L, Cheng X, Qin J, Xu W, You M. Expression, purification and characterization of three odorant binding proteins from the diamondback moth, Plutella xylostella. Insect Mol Biol 2020;29:531-44. [PMID: 32715559 DOI: 10.1111/imb.12664] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
133 Hua J, Pan C, Huang Y, Li Y, Li H, Wu C, Chen T, Ma D, Li Z. Functional characteristic analysis of three odorant-binding proteins from the sweet potato weevil (Cylas formicarius) in the perception of sex pheromones and host plant volatiles. Pest Manag Sci 2021;77:300-12. [PMID: 32696609 DOI: 10.1002/ps.6019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
134 Wang S, Minter M, Homem RA, Michaelson LV, Venthur H, Lim KS, Withers A, Xi J, Jones CM, Zhou J. Odorant binding proteins promote flight activity in the migratory insect, Helicoverpa armigera. Mol Ecol 2020;29:3795-808. [DOI: 10.1111/mec.15556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
135 Li L, Gao X, Gui H, Lan M, Zhu J, Xie Y, Zhan Y, Wang Z, Li Z, Ye M, Wu G. Identification and preliminary characterization of chemosensory-related proteins in the gall fly, Procecidochares utilis by transcriptomic analysis. Comp Biochem Physiol Part D Genomics Proteomics 2020;36:100724. [PMID: 32836214 DOI: 10.1016/j.cbd.2020.100724] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
136 Martinez-Ruiz C, Pracana R, Stolle E, Paris CI, Nichols RA, Wurm Y. Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants. Elife 2020;9:e55862. [PMID: 32773032 DOI: 10.7554/eLife.55862] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Li MY, Jiang XY, Qi YZ, Huang YJ, Li SG, Liu S. Identification and Expression Profiles of 14 Odorant-Binding Protein Genes From Pieris rapae (Lepidoptera: Pieridae). J Insect Sci 2020;20:2. [PMID: 32889524 DOI: 10.1093/jisesa/ieaa087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Li M, Jiang X, Liu X, Huang Y, Li S, Liu S. Genome-wide analysis of chemosensory protein genes in the small white butterfly Pieris rapae (Lepidoptera: Pieridae). Journal of Asia-Pacific Entomology 2020;23:772-80. [DOI: 10.1016/j.aspen.2020.07.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Yan C, Sun X, Cao W, Li R, Zhao C, Sun Z, Liu W, Pan L. Identification and expression pattern of chemosensory genes in the transcriptome of Propsilocerus akamusi. PeerJ 2020;8:e9584. [PMID: 32742817 DOI: 10.7717/peerj.9584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
140 Cai L, Zheng L, Huang Y, Xu W, You M. Identification and characterization of odorant binding proteins in the diamondback moth, Plutella xylostella. Insect Science 2021;28:987-1004. [DOI: 10.1111/1744-7917.12817] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
141 McCarthy DM, Lowe SE, Morgan TJ, Cannon EN, Biederman J, Spencer TJ, Bhide PG. Transgenerational transmission of behavioral phenotypes produced by exposure of male mice to saccharin and nicotine. Sci Rep 2020;10:11974. [PMID: 32686722 DOI: 10.1038/s41598-020-68883-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
142 Zeng Y, Merchant A, Wu Q, Wang S, Kong L, Zhou X, Xie W, Zhang Y. A Chemosensory Protein BtabCSP11 Mediates Reproduction in Bemisia tabaci. Front Physiol 2020;11:709. [PMID: 32695020 DOI: 10.3389/fphys.2020.00709] [Reference Citation Analysis]
143 van Schooten B, Meléndez-Rosa J, Van Belleghem SM, Jiggins CD, Tan JD, McMillan WO, Papa R. Divergence of chemosensing during the early stages of speciation. Proc Natl Acad Sci U S A 2020;117:16438-47. [PMID: 32601213 DOI: 10.1073/pnas.1921318117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
144 Zaremska V, Tan J, Lim S, Knoll W, Pelosi P. Isoleucine Residues Determine Chiral Discrimination of Odorant‐Binding Protein. Chem Eur J 2020;26:8720-4. [DOI: 10.1002/chem.202000872] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
145 Gao S, Zhang K, Wei L, Wei G, Xiong W, Lu Y, Zhang Y, Gao A, Li B. Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Front Genet 2020;11:589. [PMID: 32670352 DOI: 10.3389/fgene.2020.00589] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
146 Drozdova P, Saranchina A, Morgunova M, Kizenko A, Lubyaga Y, Baduev B, Timofeyev M. The level of putative carotenoid-binding proteins determines the body color in two species of endemic Lake Baikal amphipods. PeerJ 2020;8:e9387. [PMID: 32596057 DOI: 10.7717/peerj.9387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
147 Li Z, Yuan Y, Meng M, Hu P, Wang Y. De novo transcriptome of the whole-body of the gastropod mollusk Philomycus bilineatus, a pest with medical potential in China. J Appl Genet 2020;61:439-49. [PMID: 32557200 DOI: 10.1007/s13353-020-00566-4] [Reference Citation Analysis]
148 Singh S, Tyagi C, Rather IA, Sabir JSM, Hassan MI, Singh A, Singh IK. Molecular Modeling of Chemosensory Protein 3 from Spodoptera litura and Its Binding Property with Plant Defensive Metabolites. Int J Mol Sci 2020;21:E4073. [PMID: 32517283 DOI: 10.3390/ijms21114073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
149 Zhang YN, Zhang XQ, Zhang XC, Xu JW, Li LL, Zhu XY, Wang JJ, Wei JY, Mang DZ, Zhang F, Yuan X, Wu XM. Key Amino Acid Residues Influencing Binding Affinities of Pheromone-Binding Protein from Athetis lepigone to Two Sex Pheromones. J Agric Food Chem 2020;68:6092-103. [PMID: 32392414 DOI: 10.1021/acs.jafc.0c01572] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
150 Wasilewski T, Szulczyński B, Wojciechowski M, Kamysz W, Gębicki J. Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide. Microchemical Journal 2020;154:104509. [DOI: 10.1016/j.microc.2019.104509] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
151 Wang D, Tao J, Lu P, Luo Y, Hu P. The whole body transcriptome of Coleophora obducta reveals important olfactory proteins. PeerJ 2020;8:e8902. [PMID: 32309046 DOI: 10.7717/peerj.8902] [Reference Citation Analysis]
152 Zhang F, Merchant A, Zhao Z, Zhang Y, Zhang J, Zhang Q, Wang Q, Zhou X, Li X. Characterization of MaltOBP1, a Minus-C Odorant-Binding Protein, From the Japanese Pine Sawyer Beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Front Physiol 2020;11:212. [PMID: 32296339 DOI: 10.3389/fphys.2020.00212] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
153 Tvedte ES, Walden KKO, McElroy KE, Werren JH, Forbes AA, Hood GR, Logsdon JM, Feder JL, Robertson HM. Genome of the Parasitoid Wasp Diachasma alloeum, an Emerging Model for Ecological Speciation and Transitions to Asexual Reproduction. Genome Biol Evol 2019;11:2767-73. [PMID: 31553440 DOI: 10.1093/gbe/evz205] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
154 Waris MI, Younas A, Ameen A, Rasool F, Wang MQ. Expression Profiles and Biochemical Analysis of Chemosensory Protein 3 from Nilaparvata lugens (Hemiptera: Delphacidae). J Chem Ecol 2020;46:363-77. [PMID: 32125582 DOI: 10.1007/s10886-020-01166-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
155 Zhang H, Chen JL, Lin JH, Lin JT, Wu ZZ. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri. Pest Manag Sci 2020;76:2609-18. [PMID: 32083388 DOI: 10.1002/ps.5799] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
156 Zhang X, Yan Q, Li L, Xu J, Mang D, Wang X, Hoh H, Ye J, Ju Q, Ma Y, Liang M, Zhang Y, Zhu X, Zhang F, Dong S, Zhang Y, Zhang L. Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides. Pesticide Biochemistry and Physiology 2020;164:173-82. [DOI: 10.1016/j.pestbp.2020.01.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
157 Zheng R, Xia Y, Keyhani NO. Sex-specific variation in the antennal proteome of the migratory locust. Journal of Proteomics 2020;216:103681. [DOI: 10.1016/j.jprot.2020.103681] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
158 Li H, Song X, Wu F, Qiu Y, Fu X, Zhang L, Tan J. Chemical structure of semiochemicals and key binding sites together determine the olfactory functional modes of odorant-binding protein 2 in Eastern honey bee, Apis cerana. International Journal of Biological Macromolecules 2020;145:876-84. [DOI: 10.1016/j.ijbiomac.2019.11.189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
159 Wang Z, Meng Q, Zhu X, Sun S, Liu A, Gao S, Gou Y. Identification and Evaluation of Reference Genes for Normalization of Gene Expression in Developmental Stages, Sexes, and Tissues of Diaphania caesalis (Lepidoptera, Pyralidae). J Insect Sci 2020;20:6. [PMID: 31925425 DOI: 10.1093/jisesa/iez130] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
160 Yang H, Dong J, Sun Y, Hu Z, Lv Q, Li D. Antennal transcriptome analysis and expression profiles of putative chemosensory soluble proteins in Histia rhodope Cramer (Lepidoptera: Zygaenidae). Comp Biochem Physiol Part D Genomics Proteomics 2020;33:100654. [PMID: 31954363 DOI: 10.1016/j.cbd.2020.100654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
161 Becchimanzi A, Avolio M, Bostan H, Colantuono C, Cozzolino F, Mancini D, Chiusano ML, Pucci P, Caccia S, Pennacchio F. Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genomics 2020;21:34. [PMID: 31924169 DOI: 10.1186/s12864-019-6396-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
162 Wang S, Shan S, Yu G, Wang H, Dhiloo KH, Khashaveh A, Zhang F, Zhang Y. Identification of odorant-binding proteins and functional analysis of antenna-specific AplaOBP1 in the emerald ash borer, Agrilus planipennis. J Pest Sci 2020;93:853-65. [DOI: 10.1007/s10340-019-01188-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Zhou YT, Li L, Zhou XR, Tan Y, Pang BP. Three Chemosensory Proteins Involved in Chemoreception of Oedaleus asiaticus (Orthopera: Acridoidea). J Chem Ecol 2020;46:138-49. [PMID: 31853816 DOI: 10.1007/s10886-019-01138-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
164 Tan J, Zaremska V, Lim S, Knoll W, Pelosi P. Probe-dependence of competitive fluorescent ligand binding assays to odorant-binding proteins. Anal Bioanal Chem 2020;412:547-54. [PMID: 31853607 DOI: 10.1007/s00216-019-02309-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
165 Du Y, Xu K, Ma W, Su W, Tai M, Zhao H, Jiang Y, Li X. Contact Chemosensory Genes Identified in Leg Transcriptome of Apis cerana cerana (Hymenoptera: Apidae). J Econ Entomol 2019;112:2015-29. [PMID: 31188452 DOI: 10.1093/jee/toz130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
166 Pan L, Guo M, Jin X, Sun Z, Jiang H, Han J, Wang Y, Yan C, Li M. Full-Length Transcriptome Survey and Expression Analysis of Parasitoid Wasp Chouioia cunea upon Exposure to 1-Dodecene. Sci Rep 2019;9:18167. [PMID: 31796851 DOI: 10.1038/s41598-019-54710-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
167 Li Y, Hu J, Xiang Y, Zhang Y, Chen D, Liu F. Identification and comparative expression profiles of chemosensory genes in major chemoreception organs of a notorious pests, Laodelphax striatellus. Comp Biochem Physiol Part D Genomics Proteomics 2020;33:100646. [PMID: 31869635 DOI: 10.1016/j.cbd.2019.100646] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
168 Zhu G, Zheng M, Sun J, Khuhro SA, Yan Q, Huang Y, Syed Z, Dong S. CRISPR/Cas9 mediated gene knockout reveals a more important role of PBP1 than PBP2 in the perception of female sex pheromone components in Spodoptera litura. Insect Biochemistry and Molecular Biology 2019;115:103244. [DOI: 10.1016/j.ibmb.2019.103244] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
169 Wu F, Feng Y, Han B, Hu H, Feng M, Meng L, Ma C, Yu L, Li J. Mechanistic insight into binding interaction between chemosensory protein 4 and volatile larval pheromones in honeybees (Apis mellifera). International Journal of Biological Macromolecules 2019;141:553-63. [DOI: 10.1016/j.ijbiomac.2019.09.041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
170 He P, Wang MM, Wang H, Ma YF, Yang S, Li SB, Li XG, Li S, Zhang F, Wang Q, Ran HN, Yang GQ, Dewer Y, He M. Genome-wide identification of chemosensory receptor genes in the small brown planthopper, Laodelphax striatellus. Genomics 2020;112:2034-40. [PMID: 31765823 DOI: 10.1016/j.ygeno.2019.11.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
171 Pan L, Xiang W, Sun Z, Yang Y, Han J, Wang Y, Yan C, Li M. CcOBP2 plays a crucial role in 3-carene olfactory response of the parasitoid wasp Chouioia cunea. Insect Biochem Mol Biol 2020;117:103286. [PMID: 31760134 DOI: 10.1016/j.ibmb.2019.103286] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
172 Rihani K, Fraichard S, Chauvel I, Poirier N, Delompré T, Neiers F, Tanimura T, Ferveur JF, Briand L. A conserved odorant binding protein is required for essential amino acid detection in Drosophila. Commun Biol 2019;2:425. [PMID: 31799428 DOI: 10.1038/s42003-019-0673-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
173 Zhang Y, Shen C, Xia D, Wang J, Tang Q. Characterization of the Expression and Functions of Two Odorant-Binding Proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea). Insects 2019;10:E409. [PMID: 31731819 DOI: 10.3390/insects10110409] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
174 Yuan H, Chang H, Zhao L, Yang C, Huang Y. Sex- and tissue-specific transcriptome analyses and expression profiling of olfactory-related genes in Ceracris nigricornis Walker (Orthoptera: Acrididae). BMC Genomics 2019;20:808. [PMID: 31694535 DOI: 10.1186/s12864-019-6208-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
175 Li H, Gu T, Chen C, Huang K, Chen R, Hao D. Identification and expression patterns of chemosensory proteins in the black-back prominent moth, Clostera restitura (Lepidoptera: Notodontidae). Eur J Entomol 2019;116:372-91. [DOI: 10.14411/eje.2019.039] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
176 Qu MQ, Cui Y, Zou Y, Wu ZZ, Lin JT. Identification and expression analysis of odorant binding proteins and chemosensory proteins from dissected antennae and mouthparts of the rice bug Leptocorisa acuta. Comp Biochem Physiol Part D Genomics Proteomics 2020;33:100631. [PMID: 31706978 DOI: 10.1016/j.cbd.2019.100631] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
177 Xiao S, Sun JS, Carlson JR. Robust olfactory responses in the absence of odorant binding proteins. Elife 2019;8:e51040. [PMID: 31651397 DOI: 10.7554/eLife.51040] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
178 Gonzalez D, Rihani K, Neiers F, Poirier N, Fraichard S, Gotthard G, Chertemps T, Maïbèche M, Ferveur JF, Briand L. The Drosophila odorant-binding protein 28a is involved in the detection of the floral odour ß-ionone. Cell Mol Life Sci 2020;77:2565-77. [PMID: 31564000 DOI: 10.1007/s00018-019-03300-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
179 Xu P, Wang Y, Akami M, Niu CY. Identification of olfactory genes and functional analysis of BminCSP and BminOBP21 in Bactrocera minax. PLoS One 2019;14:e0222193. [PMID: 31509572 DOI: 10.1371/journal.pone.0222193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
180 Sun JS, Xiao S, Carlson JR. The diverse small proteins called odorant-binding proteins. Open Biol 2018;8:180208. [PMID: 30977439 DOI: 10.1098/rsob.180208] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
181 Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. Pesticide Biochemistry and Physiology 2019;159:107-17. [DOI: 10.1016/j.pestbp.2019.06.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
182 He Z, Luo J, Gui L, Hua D, Du T, Wang F, Liang P, Shi Y, Yang X. Tracking the movement trajectory of newly emerged adult Chinese citrus flies with insect harmonic radar. Journal of Asia-Pacific Entomology 2019;22:853-9. [DOI: 10.1016/j.aspen.2019.06.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
183 Wang C, Li J, Li E, Nyamwasa I, Li K, Zhang S, Peng Y, Wei Z, Yin J. Molecular and functional characterization of odorant-binding protein genes in Holotrichia oblita Faldermann. International Journal of Biological Macromolecules 2019;136:359-67. [DOI: 10.1016/j.ijbiomac.2019.06.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
184 Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front Physiol 2019;10:972. [PMID: 31427985 DOI: 10.3389/fphys.2019.00972] [Cited by in Crossref: 56] [Cited by in F6Publishing: 25] [Article Influence: 18.7] [Reference Citation Analysis]
185 Balabanidou V, Kefi M, Aivaliotis M, Koidou V, Girotti JR, Mijailovsky SJ, Juárez MP, Papadogiorgaki E, Chalepakis G, Kampouraki A, Nikolaou C, Ranson H, Vontas J. Mosquitoes cloak their legs to resist insecticides. Proc Biol Sci 2019;286:20191091. [PMID: 31311476 DOI: 10.1098/rspb.2019.1091] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
186 Bari G, Scala A, Garzone V, Salvia R, Yalcin C, Vernile P, Aresta AM, Facini O, Baraldi R, Bufo SA, Vogel H, de Lillo E, Rapparini F, Falabella P. Chemical Ecology of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae): Behavioral and Biochemical Strategies for Intraspecific and Host Interactions. Front Physiol 2019;10:604. [PMID: 31191334 DOI: 10.3389/fphys.2019.00604] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
187 González-González A, Rubio-Meléndez ME, Ballesteros GI, Ramírez CC, Palma-Millanao R. Sex- and tissue-specific expression of odorant-binding proteins and chemosensory proteins in adults of the scarab beetle Hylamorpha elegans (Burmeister) (Coleoptera: Scarabaeidae). PeerJ 2019;7:e7054. [PMID: 31223529 DOI: 10.7717/peerj.7054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
188 Sollai G, Melis M, Magri S, Usai P, Hummel T, Tomassini Barbarossa I, Crnjar R. Association between the rs2590498 polymorphism of Odorant Binding Protein (OBPIIa) gene and olfactory performance in healthy subjects. Behav Brain Res 2019;372:112030. [PMID: 31195037 DOI: 10.1016/j.bbr.2019.112030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
189 Wu ZZ, Cui Y, Qu MQ, Lin JH, Chen MS, Bin SY, Lin JT. Candidate genes coding for odorant binding proteins and chemosensory proteins identified from dissected antennae and mouthparts of the southern green stink bug Nezara viridula. Comp Biochem Physiol Part D Genomics Proteomics 2019;31:100594. [PMID: 31170686 DOI: 10.1016/j.cbd.2019.100594] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
190 Tang B, Tai S, Dai W, Zhang C. Expression and Functional Analysis of Two Odorant-Binding Proteins from Bradysia odoriphaga (Diptera: Sciaridae). J Agric Food Chem 2019;67:3565-74. [DOI: 10.1021/acs.jafc.9b00568] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
191 Robert-Hazotte A, Faure P, Neiers F, Potin C, Artur Y, Coureaud G, Heydel JM. Nasal mucus glutathione transferase activity and impact on olfactory perception and neonatal behavior. Sci Rep 2019;9:3104. [PMID: 30816217 DOI: 10.1038/s41598-019-39495-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
192 Zhang Y, Ren Y, Wang X, Liu Y, Wang N. Responses to Host Plant Volatiles and Identification of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga. ACS Omega 2019;4:3800-11. [DOI: 10.1021/acsomega.8b03486] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
193 Zhang Y, Du L, Xu J, Wang B, Zhang X, Yan Q, Wang G. Functional characterization of four sex pheromone receptors in the newly discovered maize pest Athetis lepigone. Journal of Insect Physiology 2019;113:59-66. [DOI: 10.1016/j.jinsphys.2018.08.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
194 Waris MI, Younas A, Adeel MM, Duan S, Quershi SR, Kaleem Ullah RM, Wang M. The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens. Insect Science 2020;27:531-44. [DOI: 10.1111/1744-7917.12659] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
195 Robertson HM, Robertson ECN, Walden KKO, Enders LS, Miller NJ. The chemoreceptors and odorant binding proteins of the soybean and pea aphids. Insect Biochem Mol Biol 2019;105:69-78. [PMID: 30654011 DOI: 10.1016/j.ibmb.2019.01.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
196 He P, Chen GL, Li S, Wang J, Ma YF, Pan YF, He M. Evolution and functional analysis of odorant-binding proteins in three rice planthoppers: Nilaparvata lugens, Sogatella furcifera, and Laodelphax striatellus. Pest Manag Sci 2019;75:1606-20. [PMID: 30515974 DOI: 10.1002/ps.5277] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
197 Cui X, Liu D, Sun K, He Y, Shi X. Expression Profiles and Functional Characterization of Two Odorant-Binding Proteins From the Apple Buprestid Beetle Agrilus mali (Coleoptera: Buprestidae). J Econ Entomol 2018;111:1420-32. [PMID: 29590372 DOI: 10.1093/jee/toy066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
198 Chen GL, Pan YF, Ma YF, Wang J, He M, He P. Binding affinity characterization of an antennae-enriched chemosensory protein from the white-backed planthopper, Sogatella furcifera (Horváth), with host plant volatiles. Pestic Biochem Physiol 2018;152:1-7. [PMID: 30497699 DOI: 10.1016/j.pestbp.2018.09.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
199 Pregitzer P, Zielonka M, Eichhorn AS, Jiang X, Krieger J, Breer H. Expression of odorant-binding proteins in mouthpart palps of the desert locust Schistocerca gregaria. Insect Mol Biol 2019;28:264-76. [PMID: 30375079 DOI: 10.1111/imb.12548] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
200 Fu X, Zhang Y, Qiu Y, Song X, Wu F, Feng Y, Zhang J, Li H. Physicochemical Basis and Comparison of Two Type II Sex Pheromone Components Binding with Pheromone-Binding Protein 2 from Tea Geometrid, Ectropis obliqua. J Agric Food Chem 2018;66:13084-95. [DOI: 10.1021/acs.jafc.8b04510] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
201 Younas A, Waris MI, Chang XQ, Shaaban M, Abdelnabby H, Ul Qamar MT, Wang MQ. A chemosensory protein MsepCSP5 involved in chemoreception of oriental armyworm Mythimna separata. Int J Biol Sci 2018;14:1935-49. [PMID: 30585258 DOI: 10.7150/ijbs.27315] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
202 Robertson HM, Waterhouse RM, Walden KKO, Ruzzante L, Reijnders MJMF, Coates BS, Legeai F, Gress JC, Biyiklioglu S, Weaver DK, Wanner KW, Budak H. Genome Sequence of the Wheat Stem Sawfly, Cephus cinctus, Representing an Early-Branching Lineage of the Hymenoptera, Illuminates Evolution of Hymenopteran Chemoreceptors. Genome Biol Evol 2018;10:2997-3011. [PMID: 30335145 DOI: 10.1093/gbe/evy232] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
203 Pelosi P, Zhu J, Knoll W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. Sensors (Basel) 2018;18:E3248. [PMID: 30262737 DOI: 10.3390/s18103248] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
204 Sparks JT, Botsko G, Swale DR, Boland LM, Patel SS, Dickens JC. Membrane Proteins Mediating Reception and Transduction in Chemosensory Neurons in Mosquitoes. Front Physiol 2018;9:1309. [PMID: 30294282 DOI: 10.3389/fphys.2018.01309] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
205 Barbosa AJM, Oliveira AR, Roque ACA. Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol 2018;36:1244-58. [PMID: 30213453 DOI: 10.1016/j.tibtech.2018.07.004] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 10.8] [Reference Citation Analysis]
206 Khuhro SA, Yan Q, Liao H, Zhu GH, Sun JB, Dong SL. Expression Profile and Functional Characterization Suggesting the Involvement of Three Chemosensory Proteins in Perception of Host Plant Volatiles in Chilo suppressalis (Lepidoptera: Pyralidae). J Insect Sci 2018;18. [PMID: 30260453 DOI: 10.1093/jisesa/iey088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
207 Du L, Liu Y, Zhang J, Gao X, Wang B, Wang G. Identification and characterization of chemosensory genes in the antennal transcriptome of Spodoptera exigua. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2018;27:54-65. [DOI: 10.1016/j.cbd.2018.05.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
208 Wang GY, Zhu JL, Zhou WW, Liu S, Khairul QM, Ansari NA, Zhu ZR. Identification and expression analysis of putative chemoreception genes from Cyrtorhinus lividipennis (Hemiptera: Miridae) antennal transcriptome. Sci Rep 2018;8:12981. [PMID: 30154418 DOI: 10.1038/s41598-018-31294-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
209 Oliveira DS, Brito NF, Franco TA, Moreira MF, Leal WS, Melo ACA. Functional Characterization of Odorant Binding Protein 27 (RproOBP27) From Rhodnius prolixus Antennae. Front Physiol 2018;9:1175. [PMID: 30210359 DOI: 10.3389/fphys.2018.01175] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
210 Guo M, Chen Q, Liu Y, Wang G, Han Z. Chemoreception of Mouthparts: Sensilla Morphology and Discovery of Chemosensory Genes in Proboscis and Labial Palps of Adult Helicoverpa armigera (Lepidoptera: Noctuidae). Front Physiol 2018;9:970. [PMID: 30131703 DOI: 10.3389/fphys.2018.00970] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
211 Jia HR, Sun YF, Luo SP, Wu KM. Characterization of antennal chemosensilla and associated odorant binding as well as chemosensory proteins in the Eupeodes corollae (Diptera: Syrphidae). J Insect Physiol 2019;113:49-58. [PMID: 30080999 DOI: 10.1016/j.jinsphys.2018.08.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
212 Tan J, Song X, Fu X, Wu F, Hu F, Li H. Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018;201:346-53. [DOI: 10.1016/j.saa.2018.04.074] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
213 Pelosi P, Zhu J, Knoll W. From radioactive ligands to biosensors: binding methods with olfactory proteins. Appl Microbiol Biotechnol 2018;102:8213-27. [PMID: 30054700 DOI: 10.1007/s00253-018-9253-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
214 Wang D, Pentzold S, Kunert M, Groth M, Brandt W, Pasteels JM, Boland W, Burse A. A subset of chemosensory genes differs between two populations of a specialized leaf beetle after host plant shift. Ecol Evol 2018;8:8055-75. [PMID: 30250684 DOI: 10.1002/ece3.4246] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
215 Younas A, Waris MI, Tahir Ul Qamar M, Shaaban M, Prager SM, Wang MQ. Functional Analysis of the Chemosensory Protein MsepCSP8 From the Oriental Armyworm Mythimna separata. Front Physiol 2018;9:872. [PMID: 30050456 DOI: 10.3389/fphys.2018.00872] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
216 Du L, Zhao X, Liang X, Gao X, Liu Y, Wang G. Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis. BMC Genomics 2018;19:518. [PMID: 29973137 DOI: 10.1186/s12864-018-4898-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
217 Huang G, Liu J, Zhou J, Wang Q, Dong J, Zhang Y, Li X, Li J, Gu S. Expressional and functional comparisons of two general odorant binding proteins in Agrotis ipsilon. Insect Biochemistry and Molecular Biology 2018;98:34-47. [DOI: 10.1016/j.ibmb.2018.05.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
218 Bruno D, Grossi G, Salvia R, Scala A, Farina D, Grimaldi A, Zhou JJ, Bufo SA, Vogel H, Grosse-Wilde E, Hansson BS, Falabella P. Sensilla Morphology and Complex Expression Pattern of Odorant Binding Proteins in the Vetch Aphid Megoura viciae (Hemiptera: Aphididae). Front Physiol 2018;9:777. [PMID: 29988577 DOI: 10.3389/fphys.2018.00777] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
219 Iovinella I, Cappa F, Cini A, Petrocelli I, Cervo R, Turillazzi S, Dani FR. Antennal Protein Profile in Honeybees: Caste and Task Matter More Than Age. Front Physiol 2018;9:748. [PMID: 29973886 DOI: 10.3389/fphys.2018.00748] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
220 Wang SN, Shan S, Liu JT, Li RJ, Lu ZY, Dhiloo KH, Khashaveh A, Zhang YJ. Characterization of antennal chemosensilla and associated odorant binding as well as chemosensory proteins in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). Sci Rep 2018;8:7649. [PMID: 29769575 DOI: 10.1038/s41598-018-25996-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
221 Zhang YN, Qian JL, Xu JW, Zhu XY, Li MY, Xu XX, Liu CX, Xue T, Sun L. Identification of Chemosensory Genes Based on the Transcriptomic Analysis of Six Different Chemosensory Organs in Spodoptera exigua. Front Physiol 2018;9:432. [PMID: 29740343 DOI: 10.3389/fphys.2018.00432] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
222 Song XM, Zhang LY, Fu XB, Wu F, Tan J, Li HL. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana. Front Physiol 2018;9:422. [PMID: 29740337 DOI: 10.3389/fphys.2018.00422] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
223 Jiang X, Ryl M, Krieger J, Breer H, Pregitzer P. Odorant Binding Proteins of the Desert Locust Schistocerca gregaria (Orthoptera, Acrididae): Topographic Expression Patterns in the Antennae. Front Physiol 2018;9:417. [PMID: 29719516 DOI: 10.3389/fphys.2018.00417] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
224 Das T, Alabi I, Colley M, Yan F, Griffith W, Bach S, Weintraub ST, Renthal R. Major venom proteins of the fire ant Solenopsis invicta: insights into possible pheromone-binding function from mass spectrometric analysis. Insect Mol Biol 2018;27:505-11. [PMID: 29656567 DOI: 10.1111/imb.12388] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
225 Waris MI, Younas A, Ul Qamar MT, Hao L, Ameen A, Ali S, Abdelnabby HE, Zeng FF, Wang MQ. Silencing of Chemosensory Protein Gene NlugCSP8 by RNAi Induces Declining Behavioral Responses of Nilaparvata lugens. Front Physiol 2018;9:379. [PMID: 29706901 DOI: 10.3389/fphys.2018.00379] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
226 Iovinella I, McAfee A, Mastrobuoni G, Kempa S, Foster LJ, Pelosi P, Dani FR. Proteomic analysis of chemosensory organs in the honey bee parasite Varroa destructor: A comprehensive examination of the potential carriers for semiochemicals. J Proteomics 2018;181:131-41. [PMID: 29653265 DOI: 10.1016/j.jprot.2018.04.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
227 Zhao Y, Ding J, Zhang Z, Liu F, Zhou C, Mu W. Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae). Front Physiol 2018;9:107. [PMID: 29666581 DOI: 10.3389/fphys.2018.00107] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
228 Lin X, Mao Y, Zhang L. Binding properties of four antennae-expressed chemosensory proteins (CSPs) with insecticides indicates the adaption of Spodoptera litura to environment. Pesticide Biochemistry and Physiology 2018;146:43-51. [DOI: 10.1016/j.pestbp.2018.02.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
229 Li Z, Dai L, Chu H, Fu D, Sun Y, Chen H. Identification, Expression Patterns, and Functional Characterization of Chemosensory Proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Front Physiol 2018;9:291. [PMID: 29636701 DOI: 10.3389/fphys.2018.00291] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
230 Zeng Y, Yang YT, Wu QJ, Wang SL, Xie W, Zhang YJ. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. Insect Sci 2019;26:620-34. [PMID: 29441682 DOI: 10.1111/1744-7917.12576] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
231 Antony B, Johny J, Aldosari SA. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol. Front Physiol 2018;9:252. [PMID: 29618982 DOI: 10.3389/fphys.2018.00252] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
232 Nyanjom SG, Tare C, Wamunyokoli F, Obiero GF. Expression Levels of Odorant Receptor Genes in the Savanna Tsetse Fly, Glossina morsitans morsitans. Journal of Medical Entomology 2018;55:855-61. [DOI: 10.1093/jme/tjy018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
233 Zhu J, Guo M, Ban L, Song LM, Liu Y, Pelosi P, Wang G. Niemann-Pick C2 Proteins: A New Function for an Old Family. Front Physiol 2018;9:52. [PMID: 29472868 DOI: 10.3389/fphys.2018.00052] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
234 Zhang SF, Zhang Z, Kong XB, Wang HB, Liu F. Dynamic Changes in Chemosensory Gene Expression during the Dendrolimus punctatus Mating Process. Front Physiol 2017;8:1127. [PMID: 29375398 DOI: 10.3389/fphys.2017.01127] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
235 Sun L, Wang Q, Wang Q, Dong K, Xiao Y, Zhang YJ. Identification and Characterization of Odorant Binding Proteins in the Forelegs of Adelphocoris lineolatus (Goeze). Front Physiol 2017;8:735. [PMID: 29018358 DOI: 10.3389/fphys.2017.00735] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
236 Cagirici HB, Biyiklioglu S, Budak H. Assembly and Annotation of Transcriptome Provided Evidence of miRNA Mobility between Wheat and Wheat Stem Sawfly. Front Plant Sci 2017;8:1653. [PMID: 29038661 DOI: 10.3389/fpls.2017.01653] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
237 Jiang X, Krieger J, Breer H, Pregitzer P. Distinct Subfamilies of Odorant Binding Proteins in Locust (Orthoptera, Acrididae): Molecular Evolution, Structural Variation, and Sensilla-Specific Expression. Front Physiol 2017;8:734. [PMID: 29018357 DOI: 10.3389/fphys.2017.00734] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]